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Abstract. In this paper, an oriented graph G(M, F) is assigned to each co-
dimension-one foliation (M, F), and topological relations between (M, F) and G(M, F)
are studied. A strong relation between admissible functions of (M, F) and G(M, F) is given.

1. Introduction. Let (M, F) be a transversely oriented codimension-one foliation

Fof a closed oriented manifold M. On the set of all leaves of F, Novikov [6] introduced

a partial order to define a so-called Novikov component. On the other hand, it is

well-known that a partially ordered set is described as an oriented graph. In this paper,

we assign to each (M, F), in a unique way, an oriented graph G(M, F) by a similar way

to Novikov's method, and show that for any oriented graph G, there is a codimension-one

foliation (M, F) with G = G(M, F). These are done in §3. We also show that there is a

'nice' embedding φ : G(M, F) -» M, and in §4 we prove that the induced homomorphism

φ^ : πγ(G(M, F)) -• nx(M) is injective. Walczak [15] introduced the notion of admissible

functions of (M, F) and the present author defined the notion of admissible functions

of oriented graphs in [10]. As an application of the viewpoint obtained above, we show

that these two notions of admissible functions are essentially same. This is done in

§5. Finally, in §6, we give a brief discussion on Riemannian labels of oriented graphs,

whose definition comes naturally from our viewpoint, and on the Laplacians on

graphs.

2. Preliminaries. We begin this section with some definitions on graphs. For the

definition of cellular complexes, see Spanier [13], and for generalities on graph theory,

see Bollobas [2].

G is called a graph if G is a finite one-dimensional cellular complex. We set

V= v(G) = {Vi} = {aO. 0-cells of G} and E=E{G) = {ea} = {<ύ\ 1-cells of G}. We call each

veV(G) a vertex, and eeE{G) an edge. For eeE(G), we also set V(e) = C\(e) — e =

{endpoints of e}, where the closure Cl(e) of e is taken in G.

REMARK, (a) V(e) may consist of only one point {v}. In this case, we call e a

loop at v.

(b) V{ea)= V(eb) may occur even if eaΦeb. In this case, G is called a multigraph

(see Bollobas [2]).
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A path P = (V(P\ E(P)) is a pair of ordered elements of V(G) and E(G) of the form

) = ζel9e2,...,eιy with V(eί)={vi_uvi} .

The length l(P) of P is denned to be the cardinality of the set E(P\ that is, /. In case

vt = v0, we call P a closed path.

Let G = (V,E) be a graph. Since each edge e is homeomorphic to (0, 1), e has a

natural orientation induced, via a fixed homeomorphism, from that of (0, 1). In this

case, we say that e is oriented. With this in mind, we give the following definition.

G is called an oriented graph if G is a graph and each edge is oriented. For each

edge eeE(G\ we call I{e) = H{0) the initial vertex, and T(e) = H(\) the terminal vertex.

Here H: [0, 1] -» G is the extended map of the given homeomorphism h : (0, 1) -* e a G.

In case I(e) = v and T(e) = w, we occasionally denote e by [y, w]. Note that if e is a loop

at the vertex v, then v = I(e)=Ί\e).

Now, let (M, F) be a transversely oriented codimension-one foliation Z7 of a closed

oriented manifold M. For generalities on foliations, see Hector and Hirsh [3]. In the

following, we shall work in the C00-category.

A compact saturated domain D of M is said to be a foliated trivial /-bundle if D

is the total space of a trivial /-bundle over a compact leaf L of F and if the induced

foliation on D from Fis everywhere transverse to the fibers /. Note that the boundary 3D

consists of two copies of the compact leaf L. A compact saturated domain D of M

is said to be a ( + )-fcd (resp. ( —)-fcd) if TV is outward (resp. inward) everywhere on the

boundary dD of D, where TV is a non-vanishing vector field on M transverse to F so

that the direction of TV coincides with the transverse orientation of F.

It is well-known that if F has an infinite number of compact leaves, then all

but a finite number of them are contained in some foliated trivial /-bundles (cf. Hector

and Hirsh [3]).

Let L<=IntM be a compact leaf of a foliated manifold (M, F) with a boundary

which is a union of compact leaves of F. Construct a new foliated manifold (Mo, Fo)

as follows: Delete the subset L from M and add two copies of L to M—L by the natural

identification so that the resulting manifold Mo to be compact with <3M0 = 3Mu{two

copies of L) and F0 = (F— L)u {two copies of L}. We say that (Mo, Fo) is obtained from

(M, F) by cutting M along L.

Let (M, F) be as above and (G, V, E) be an oriented graph. We say that a mapping

φ : G -»M is a transverse embedding if φ is a continuous injection and the restriction

0|ci(e> °f 0 t o e a c n Cl(e), <?££, can be extended to a smooth transverse embedding of

some open interval containing [0,1], the domain of the extended map H: [0, 1] ->G

of e. Furthermore, if the image of φ intersects all leaves of F and the induced orientation

on e from the transverse orientation of F coincides with the original one of e, we call

φ to be nice.
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3. Construction of graphs and foliations. Let (M, F) be a transversely oriented

codimension-one foliation F of a closed oriented manifold M with d i m M > 3 . In this

section, we shall construct, in a unique way, an oriented graph G(M, F) from (M, F).

Furthermore, from an arbitrarily given oriented graph G, we shall construct a

transversely oriented codimension-one foliation of a closed oriented manifold (M, F)

so that G = G(M,F).
First, assume that F has no compact leaves. In this case, it is well-known that

there is a closed transversal intersecting all leaves of F9 where a closed transversal means

an embedding φ : S1 -> M which is transverse to the leaves of F. Then take a point v

on S1 and regard S1 as an oriented graph G(M, F) with one vertex {v} and one loop

{/S1} at v with the orientation induced from the transverse orientation of F.

Second, assume that F has at least one compact leaf, say L, and by cutting along

which the foliated manifold obtained from M is a foliated trivial /-bundle. In this case,

it is also well-known that there is a closed transversal S1 intersecting all leaves of F.

By the same way as in the first case, take a point v on S1 and regard S1 as an oriented

graph G(M, F) with one vertex {v} and one loop {S1} at v with the orientation induced

from the transverse orientation of F.

Finally, we assume that F has compact leaves, but none of them have the property

in the second case. In this case, take all (set-theoretical) maximal foliated trivial /-bundles

Dί9 Z ) 2 , . . . , DS9 and set M1 =M— (J s

i= χ Int(Z)j). By assumption, Mί is not empty. Then

take minimal (±)-fcd's Ds+U Ds+2,..., Dt, and set M2 = M1-\Jt

i=s+1lnt(Di). If M2

is not empty, cut M2 along all compact leaves in the interior of M 2 , and list all connected

components as Dt+1, Dt + 2, , Du. Note that the number of compact leaves in M2 is

finite from the fact stated in Section 2.

Now we construct an oriented graph G(M,F) from (M, F). Take i^e lntφί)

(/ = 1, 2 , . . . , ύ) and set V(G) = {vl9 v2,. ., vu}. In case M2 = 0 , the argument below is

valid by simply replacing u with t. For each compact leaf Ltj:a3Di9 take a point/?f j.eLf j.

If Li} = LkιadDt ndDk, then c h o o s e r ' s so that pij=pkι. On each Z)f it is easy to con-

struct smooth arcs {cfj.} satisfying the following conditions: c{j is a smooth arc between

Vi and pij9 c^nc^^l ί J if jΦl, each c{. is properly contained in a smooth transverse

curve, and the set [jjC^ intersects all leaves of F\Dt. For each compact leaf L = Ltj =

Lkι a dDi n dDk, take a union ctj u ckι and deform it slightly near L so that the resulting

curve is again a smooth transverse curve between vt and vk. We denote this curve

by eL and give eL an orientation induced from the transverse orientation of F. Note

that this definition makes sense even in the case ί = k. In this case, eL is a loop. Set

E(G) = {eL}. It is easy to see that G = (V(G), E(G)) is an oriented graph. We define

By the construction above, we get the following result.

THEOREM 1. Let (M, F) be as above. For each (M, F) there exist an oriented graph

G(M, F) and a nice transverse embedding φ : G(M, F)->(M9 F). Furthermore, for each
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edge eeE(G), φ(lnt(e)) intersects each compact leaf of F at most once.

Conversely, we have the following

THEOREM 2. Let G be an oriented graph. Then there is a foliated manifold (M, F)

sothatG = G(M,F).

PROOF. Let G = {V, E) be an arbitrarily given oriented graph. We shall construct

a codimension-one foliation (M 3 , F) on a 3-dimensional manifold M 3 so that

G{M\F) = G.

The idea is the following: For each vertex veV adjacent k edges, construct a

3-dimensional manifold M 3 with k tori Γ2 's as boundary components and a

codimension-one foliation Fv with 3M3czFv. If v is adjacent to w, then glue suitable

T2czdMv and T2^dMw. After glue all Γ2 's, we get the desired (M 3 , F).

Let y e F b e a vertex adjacent £„ outward edges and lv inward edges, that is, v is a

initial point of kv edges and is a terminal point of lυ edges. Take a 2-dimensional

sphere S2, delete &„ + /„ small open discs from S 2 , and denote by Dv the resulting disc

with kv + lv boundary components. Set MV = DV x Sι, and list all boundary components

of dMv as Cj1", . . . , Cfc

+

υ, C 7 , . . . , Cz~ so that each C* corresponds to a vertex adjacent

to v with an oriented edge outward at v and that each CJ corresponds to a vertex

adjacent to v with an oriented edge inward at v. Now construct a transversely oriented

codimension-one foliation Fυ with dMv = dDvx S1 <^FV as follows: Give S1=R/Z the

canonical orientation induced from the one of R. Wind (lntDv) x {ί}, teS1, along S 1

in the negative direction near C^'s and in the positive direction near Cy's (cf.

turbulization in [3] or [7]). Then we get a foliation Fv consisting of these leaves and

compact leaves {dDv) x S1. Note that the transverse orientation along C* x S1 is outward

and is inward along Cf x S 1 . The resulting foliated manifold (Mv, Fv) is the desired

one. In case kv = lv=l, this construction simply gives a foliated trivial /-bundle over

T2 and we need to deform it. To do this, the simplest way is to use the ^-operation

defined by Lawson [5]. Let (M'V,F'V) be the foliated manifold obtained by the above

construction. Define (Mv, fv) = (Mf

v, F'V)*(T3, Fa), where (Γ 3, Fa) is the codimension-one

foliation of Γ 3 with irrational a 'slant', that is, Fa is defined by a closed 1-form and all

leaves are dense in T3. ^-operation is an identification of foliations along closed

transversals, and produces no new compact leaves.

If v and w are adjacent, then w corresponds to one of Cf x Sus<=Mv, say, Cf

+ x S1,

and v to one of Cf x ^'sczΛf^ say, Cj x S1. Identify Mv and Mw along Cf x S1 and

Cj x S1 naturally. In this way, identifying all Cf x S l 5s in Mυ for υe V(G\ we get the

desired codimension-one foliation

(M 3 , F)=\JveV(G)(Mv, ^/{identification given above} .

It is easy to see that G(M, F) = G. This completes the proof of Theorem 2.
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4. A topological relation. In this section, we show the following topological
relation between (M, F) and G(M, F) constructed in Section 3.

THEOREM 3. Let (M, F), G(M, F) and φ be as in Theorem 1. If F has a compact
leaf, then the induced map φ^ : πί(G)->πί(M) is injective.

PROOF. We shall identify the oriented graph G=G(M, F) and φ(G(M, F))aM.
We assume that Ker φ# φ {1} and derive a contradiction. Let α be a non-trivial element
in Kerφ^. Represent α by a closed path of the smallest length, say, α = <^1e2 efc>.
Note that, as F has a compact leaf, each edge ei intersects at least one compact leaf
and distinct edges do not intersect the same compact leaf except at their vertices. Let
/ : D 2 - > ¥ b e a continuous map with f(dD) = eίe2

 mek. We deform / so that except
near vertices of ef's / is smooth and is in general position with respect to F. If Lγ is a
compact leaf intersecting Int^J, then f~i(Lιnf(D2)) is a set of circles and arcs on
D2, and one of the arcs connects a point in I n t ^ ) to a point in Int(^) for some/ If
eί = [v,w], then, by considering the orientations, it is easy to see that e,= [w, v\. If L2

is a compact leaf intersecting Int(e2), then f~ί(L2nf(D2)) is a set of circles and arcs
on Z)2, and one of the arcs connects a point in Int(e2) to a point in Int(ej) for some /.
As the compact leaves Lx and L2 does not intersect, the arc between Int(e2) and Int(ej)
does not intersect the arc between lnt{ex) and I n t ^ ). This implies /</, and if e2 =
[x, y], then eι = [y, x]. We can repeat this process until we find / so that e~ [w, z] and
ei+1 = [z,u]. Therefore, α = <^ 'ei-ί[u,z][z,u]ei + 2 ' Ό = <^Γ * • ^ - 1 ^ + 2* * •**>>
which contradicts the minimality of the length oίe1e2 —ek representing α. This completes
the proof of Theorem 3.

REMARK. It is still an open problem whether any smooth codimension-one
foliation on a simply connected closed manifold always admit compact leaves or not
(cf. Langevin [4]).

By the well-known Novikov's compact leaf theorem (see Novikov [6]), any smooth
codimension-one foliation on S3 has a compact leaf. Thus, combining this with Theorem
3, we have the following.

COROLLARY 1. For any (S3, F\ the graph G(S3, F) is a tree. Here, the orientation
of edges ofG(S3, F) are negrected.

5. Admissible functions. First, we give further definitions on graphs. Let G =
(V{G), E(G)) be a graph. A graph K is called a full subgraph of G if

( i ) K is a non-empty subcomplex of G, and
(ii) any e e E(G) with V(e) <= K implies e e E(K).

A proper full subgraph K of an oriented graph G is called a ( + )-subgraph (resp. ( — )-
subgraph) if eeE(G) with V(e)r\V(K)Φ0 and V(e)n(V(G)-V(K))Φ0 implies I(e)e
V(K)(τesp.T(e)eV(K)).
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Recall the definition of admissible functions of an oriented graph G (see Oshikiri

[10]). We call a function / : V(G) -* R admissible if every minimal (+ )-subgraph contains

a vertex v with f(v)>0, and every minimal ( —)-subgraph contains a vertex w with

f(w)<0. Here "minimal" means the usual set theoretical sense, that is, being non-empty

and containing no non-empty proper (+ )-subgraphs (resp. ( —)-subgraphs). In case G

has no (+ )-subgraphs, any function / with f(v)>0 and /(w)<0 for some v, we V(G)

or / Ξ O is called admissible.

Next we recall some definitions on foliations. Let F be a transversely oriented

codimension-one foliation of a closed connected oriented manifold M. Let g be a

Riemannian metric on M. Then there is a unique unit vector field N orthogonal to F

whose direction coincides with the given transverse orientation of F. We give an

orientation to F as follows: Let {Eu . . . , En) be an oriented local orthonormal frame

for the tangent bundle TF of F. The orientation of M given by [N, Έί9..., En} then

coincides with the given one of M. We denote the mean curvature of a leaf L at x with

respect to N by H(x), that is,

where < , > means g(, ), V is the Riemannian connection of (M, g), and {isf} is a local

orthonormal frame for TF with d i m i 7 ^ ^ . We call H(x) the mean curvature function

of F with respect to g. We also define an «-form χF on M by

χ F ( F 1 , . . . , F n ) = det«J&i, F , » , J = 1 , . , n for V,eTM,

where {Eu ...9En} is an oriented local orthonormal frame for TF. Note that the

restriction χF\L is the volume element of (L, g\L) for Lei 7 . Then we have the following

formula.

PROPOSITION R (Rummler [12]). dχF = - Hd V(M, g) = divg(N)d V{M, g\ where

dV(M, g) is the volume element of (M, g) and ά\vg(N) is the divergence ofN with respect

to g, that is,

Let / be a smooth function on M. We call / admissible if there is a Riemannian

metric g on M so that —/ coincides with the mean curvature function of F with respect

to g (see Walczak [15] or Oshikiri [8], [9]). A characterization of admissible functions,

which is conjectured by Walczak (see Langevin [4]) and proved affirmatively by the

author (see Oshikiri [11]), is the following

THEOREM O. Let F be a transversely oriented codimension-one foliation of a

closed connected oriented manifold M. Assume that F contains at least one (-\-)-fcd.

Then f is admissible if and only iff{x) > 0 somewhere in any minimal (+ )-fcd and f(y) < 0
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somewhere in any minimal (-)-fcd. In case F contains no ( + )-fccFs, any smooth function

f with f(x)>0 and f(y)<0for some x,yeM or f=0 is admissible.

Now we shall discuss a relation between these two definitions of admissible

functions. Let (M, F) and G = G(M,F) be as in Section 3. Let veV(G) and eeE(G)

correspond to a foliated compact domain DvaM and to a compact leaf LeeF,

respectively. For a saturated compact domain D of (M, F) we denote by G(D) the

subgraph of G consisting of all vertices veV(G) with lntDnDvΦ0 and all edges

eeE(G) with LeczIntZλ It is easy to see the following.

LEMMA. If D is a ( + )-fcd (resp. (-)-fcd), then G(D) is a ( + )-subgraph (resp.

( —)-subgraph). Furthermore, D is a minimal (-\-)-fcd (resp. (-)-fcd) if and only if G(D)

is a minimal (-\-)-subgraph (resp. (-)-subgraph).

Let / be a smooth function on M and dV a volume element on M. Define a

function GdV(f)\ V(G)-+R by

GdV(f)(υ)=\ fdV for υeV(G).
JDV

The main result of this section is the following

THEOREM 4. For a smooth function f on M, the following two conditions are

equivalent.

(1) f is a admissible on (M, F).

(2) There is a volume element dV on M so that GdV(f) is admissible on G(M, F).

PROOF. First assume that / is admissible. By definition, there is a Riemannian

metric g on M so that f=—H, where H is the mean curvature function of F with

respect to g. Set dV=dV(M, g), that is, the volume element of (M, g). We show that

GdV(f) is admissible. Let K be a minimal ( + )-subgraph of G. Set Dκ= \JveV{K)Dv By

the above lemma, Dκ is a minimal ( + )-fcd. Using Rummler's formula (Proposition R)

we have

Σ GdV{f)(v)= ί fdV=\ χ F >0,
veV(K) J DK J δDκ

since Dκ is a ( + )-fcd. Thus GdV(f)(v) > 0 for some υeV(K). Similary, we also have

GdV(f)(υ)<0 for some ve V(K) when K is a (-)-subgraph.

We prove the converse. By Theorem O, it is sufficient to show that f(x)>0

somewhere in any minimal ( + )-fcd and f(y)<0 somewhere in any minimal ( —)-fcd.

Let D be a minimal ( + )-fcd. By the above lemma, G(D) is a minimal ( + )-subgraph.

Thus, there is a vertex veV(G(D)) so that GdV(f)(v) > 0, as GdV(f) is admissible on

G(M, F). By definition, this means that \DvfdV>Q. Therefore there must be a point
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XEDV<^D with f(x)>0. Similary, there must be a point yeDυaD with f(y)<0 for

any minimal (-)-fcd D. This completes the proof.

COROLLARY 2. For any admissible function h on G(M, F), there are an admissible

function f and a volume element dV on M so that h — GdV(f).

PROOF. Let h be an admissible function on G(M, F). If there are a smooth function

/ and a volume element dV on M so that h = GdV(f), then, by the above theorem, /

is automatically admissible. Thus, we have only to show the existence of a smooth

function / and a volume element dV on M so that h = Gdv(f). Choose an arbitrary

volume element dV on M and fix it. Set fx ΞΞO. For each ve V(G), deform fλ smoothly

on Int Dυ^M so that h(v) = $Df1dV, and set the resulting smooth function /. It is

easy to see h = GdV(f).

6. Concluding remarks. The viewpoint given above enables us to translate many

notions on foliated manifolds into the ones on graphs. We shall discuss on this point

briefly.

Let G = (V,E)be an oriented graph. Set

C°(G) = {f: V^R} and C\G) = {φ: E^R) .

We call QG — (9VI9Έ) a Riemannian label, where gv: V^R+ and gE:E^>R + are

functions with positive real values. Define inner products on C°(G) and Cι(G) by

<fi,f2>=Σ9Λv)fi(v)f2(υ) for Λ,/2eC°(G)
υeV

and

<Φu Φi>= Σ gE(e)Φi(e)φ2(e) for φl9 φ2eC\G).
eeE

Recall the boundary operator d: C°(G) -• C\G) defined by

df&x, y]) = f(y)-f(x) for fe C°(G) and an oriented edge [x, y] eE.

Define the coboundary operator δ: C\G) -> C°(G) by

δφ(v) = — — Σ sgn(ev)gE(ev)φ(ev),

where the summation is taken over all edges eveE adjacent to v9 sgcι(eΌ)= + 1 if v is

the terminal point of ev, and sgn(ev) = — 1 if v is the initial point of ev. It is easy to see that

(df φ} = </, δφ) for fe C°(G) and φ e C\G).

This enables us to define the so-called Laplacians Δf: C°(G)-+G°(G) and

A*E: C\G)^C\G) by

and A9

E(φ) =
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If we choose gv = gE=^^ then Δf is the standard Laplacian on graphs (cf. Biggs [1],
Urakawa [14]). Note that the definition of δ involves the orientation of edges, however,
the definitions of Δ '̂s work without orientation of edges.

Finally, we mention the so-called Stokes' Theorem. For an oriented graph G with
a Riemannian label g = (gv, gE), define the integrations of / and φ by

f / = Σ βΛv)f{v) for feC°(G)
JK veV(K)

and

gE(e)φ(e) for φeC\G),\Φ= Σ ί
JK eeE(K)

where K= V(K) u E(K) is a set of vertices and edges with orientations in G. Here the
following convention is used: If the orientation of eeE(K) is opposite to the one of the
corresponding edge e' eE(G), then define φ(e)= —φ(e'). For a full subgraph H, we have
the well-known Stokes' Theorem:

δφ=\ φ for φeC\G),
r JδH

where dH is the set of oriented edges e such that den V(H)Φ0 and den(V(G)~
V(H))Φ0. eedH is oriented from H to the complement of H, that is, outward
from H.
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