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Abstract. Given an orientable Riemannian manifold, we consider the bundle of ori-
ented orthonormal frames and the tangent sphere bundle over it, which admit natural Rie-
mannian metrics defined by the Riemannian connection. We show that there is a natural
homomorphism between the Lie algebras of fiber preserving Killing vector fields on these
bundles. In particular, for any orientable Riemannian manifold of dimension two, we show
that the homomorphism is extended to an isomorphism between these Lie algebras.

1. Introduction. Itis well-known that the tangent bundle and the bundle of orthonor-
mal frames over a Riemannian manifold admit natural Riemannian metrics defined by the
Riemannian connection. In fact, let (M, g) be a connected, orientable Riemannian manifold
of dimension n > 2, and SO (M) the bundle of oriented orthonormal frames over M. Then,
for ahy fixed positive number A, a Riemannian metric G on SO (M) is defined by

2
G(Z, W) ='6(Z)-6(W) + %trace(’w(Z) - w(W))
for Z,W e T,SOM), ueSOM),

where 6 and w denote the canonical form and the Riemannian connection form on SO (M),
respectively.

In this paper we shall prove that there is a natural homomorphism between the Lie alge-
bra of fiber preserving Killing vector fields on the tangent sphere bundle over M and that
of fiber preserving Killing vector fields on (SO(M), G). In their paper [8], Takagi and
Yawata studied the Lie algebra of Killing vector fields on (SO (M), G) with A = V2 and
proved that there exist natural lifts Ysom)(X) € (SO(M), G) for each X € (M, g) and
DPsomy(@) € iI(SO(M), G) for each ¢ € DZ(M), where i(M, ¢) and i(SO (M), G) denote
respectively the set of Killing vector fields on (M, g) and (SO(M), G), and DM )o the set
of parallel two-forms on (M, g). Refining their results, we shall prove that the mappings
Ysom)y : (M, g) = i(SO(M), G) and Psom) : D2(M)y — iI(SO(M), G) are simultane-
ously factored through in terms of natural lifts to the tangent sphere bundle over M.

To be precise, let T M be the tangent bundle of M, and ¢° the Sasaki metric on T M.
For a given positive number A, we consider the tangent sphere bundle T*M over M. The
total space of T*M is defined to be {X € TM; g(X, X) = A?}, and gives rise to a hyper-
surface of (T M, ¢%). We denote the induced metric on T*M also by g5. We show a certain
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relation between the Riemannian metrics gS and G in Section 2. In Konno [4], we stud-
ied the fiber preserving Killing vector fields on (T*M, ¢°) and prove that there exist natural
lifts Wray (X) € i(T*M, ¢%) for each X € i(M, g) and @71y, (¢) € (T*M, g5) for each
¢ € D*(M). Then, regarding SO (M) as the total space of a principal fiber bundle over the
base manifold 7*M (cf. Nagy [6]), we prove that Ysom and Pso(m) are simultaneously
factored through Wy, and @11y, respectively. Namely, we have the following.

THEOREM 1.1. Let (M, g) be a connected, orientable Riemannian manifold and A a
positive number. Then there exists a unique homomorphism ¥ of the Lie algebra of fiber
preserving Killing vector fields on (T*M, ¢) into the Lie algebra of fiber preserving Killing
vector fields on (SO(M), G) such that Usoy = W o Wray and Psomy = W o Priyy.

In Section 3, we define the vector field ¥ (Z) on (SO (M), G) for any Killing vector field
Z on (T*M, ¢°) by using the Riemannian connection form on SO (M), and prove in Section
4 that ¥ is a homomorphism of the Lie algebra of fiber preserving Killing vector fields on
(T*M, g5).

When dim M = 2, we can refine Theorem 1.1 as follows: The tangent sphere bundle
(T*M, ¢%) is isometric to (SO (M), G), and there exists an isomorphism ¥ : i((T*M, ¢5) —
i(SO(M), G) such that ¥som)y = ¥ o Wiy and Psomy = ¥ o @ray,. Moreover, we can
determine the structure of the Lie algebra of Killing vector fields on (SO (M), G), without
assuming the completeness of the Riemannian manifold. Namely, we obtain the following.

THEOREM 1.2. Let (M, g) be a connected, orientable two-dimensional Riemannian
manifold and X a positive number. If (T*M, ¢°) admits a Killing vector field which does not
preserve the fibers, then (M, g) is a space of constant curvature 1/ A2. For the structure of the
Lie algebra of Killing vector fields on (T* M, ¢%), we have the following:

() If (M, g) is not a space of constant curvature 1/A2, then

(T*M, )/ Wiy (M, g)) = Ppapy (D*(M)g) .

In this case, the center ofi(T)‘M, gS) is ¢TAM(:D2(M)O).
(i) If (M, g) is a space of constant curvature 1 /A2, then

WT*M, ¢5)/Wrrp (M, g)) = span{®ri (@), S, [Drip (h), ST € D2 (Mo},

where S denotes the geodesic spray on (T*M, ¢%). In this case, the center of (T*M, ¢%) is
trivial.

This result is proved in Section 5. It has been known by Tanno [9] that, conversely,
if (M, g) is a space of constant curvature 1/A2, then the tangent sphere bundle (T*M, ¢°)
always admits a Killing vector field which is not of fiber preserving.

When (M, g) is the unit two-sphere in the Euclidean three-space with the standard metric,
it follows from Theorem 1.2 that the tangent sphere bundle (7'M, ¢5) is isometric to the
three-dimensional real projective space of constant sectional curvature 1/4, which was proved,
for instance, by Klingenberg and Sasaki in [2].
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2. The Riemannian metric on SO(M). In this section, we fix our notation used
throughout this paper and prove a certain relation between the Sasaki metric ¢5 on T*M
and the metric G on SO (M) defined in the Introduction.

Let V denote the Riemannian connection of (M, g), and = : TM — M be the bundle
projection of the tangent bundle T M of M. Recall that the connectionmap K : TTM — TM
corresponding to V is defined to be

. X)) - X
K(Zy=lm — for ZeTxTM, Xe€TM,

t—0 t
where X (f), —& < t < &, is a differentiable curve on T M satisfying X (0) = X, X0 = Z,
and (X (t)) denotes the parallel displacement of X (¢) from 7 (X (¢)) to 7(X) along the
geodesic arc joining 7 (X (¢)) and 7w (X) in a normal neighborhood of 7 (X). We define distri-
butions H and V on T M by

Hx = Ker(K|rytm), Vx =Ker(mylryrm),

where X is in T M. The space Hy is called the horizontal subspace of TxT M and Vx the
vertical subspace of Ty T M. The tangent space TxT M of T M is decomposed into a direct
sum TxTM = Vx @& Hy. Then the Sasaki metric gS on T M is defined by

gS(Z, W) = g(mi(Z), m(W)) + g(K(Z), K(W)) for Z, W eTxTM, XeTM.

The space Hy is orthogonal to Vy with respect to the Sasaki metric.

Let D%(M) denote the Lie algebra of two-forms on M, and ©%(M)g be the Lie subal-
gebra of parallel two-forms in D2(M) with respect to V. We shall identify D%(M) with the
set of all skew-symmetric tensor fields of type (1, 1) on M in the usual manner. For each
¢ € D%(M), there exists a unique vector field ¢ on T* M such that

@)@ ) =0,  (Klp,rap)(@ty) =¢(Y) forany ¥ e T*M.

Given a Killing vector field X on (M, g), since the tensor field VX is regarded as an element
of D2(M), we then define the vector field X~ on T* M by

(2.1 xL=x"  vx)t,

where X denotes the horizontal lift of X. It follows from Corollary in [4] that X~ and ¢l
are fiber preserving Killing vector fields on (T*M, ¢%). We recall that Wiy is the mapping
of i(M, g) into i(T*M, ¢°) defined by W71y (X) = XL for X € i(M, g), and that s, is
the mapping of D2(M)g into i(T* M, ¢) defined by P11 ,,(¢) = ¢~ for ¢ € D2(M)o.

We consider SO (M) as a principal fiber bundle over the base manifold M with structure
group S O(n), the special orthogonal group of n x n-matrices, and denote it simply by P. Let
wp : P — M denote its bundle projection, and wp be the Riemannian connection form on
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P. Let (-, -) denote the canonical inner product on the n-dimensional real vector space R".
We regard each u € P as an isometry of (R", (-, -)) onto (Trpw)M, glxpw)) as follows: For
u=(Xy,...,X,) €P,
@)
u(e))=X; fore;="(0,....1,....00cR", 1<i<n.
Let o(n) be the Lie algebra of SO (n). For ¢ € D2(M), we define an o(n)-valued function ¢*
on P and a vector field $-7 on P respectively by

(22) ¢*wW) =u"'odrpuyou forue P and wp(pt?)=¢", (mp)(@*?)=0.
Given a Killing vector field X on (M, g), the vector field X LP on P is defined by
(2.3) xtr = xHr 4 (vx)L?,

where X P denotes the horizontal lift of X. For any X € i(M, g) and ¢ € D*(M)o, XL»
and ¢~ give rise to fiber preserving Killing vector fields on (P, G), which can be seen in the
same manner as in [8]. We define the mapping ¥p of i(M, g) into i(P, G) by ¥p(X) = xke
for X € i(M, g), and also the mapping @p of D(M) into i(P, G) by ®p(p) = ¢LP for
¢ € D*(M)o.

Let us identify SO (n — 1) with a subgroup of SO (n) given by

a 0N csom—1
[(O 1),ae (n — )}.

The set of oriented orthonormal frames over M, or SO (M), can be regarded as the total space
of a principal fiber bundle over the base manifold 7*M with structure group SO(n — 1). In
fact, the bundle projection g : SO(M) — T*M is defined by

o) =A-X, foru=(Xy,...,X,) €SOM),
and the structure group SO(n — 1) acts on SO (M) on the right as follows:

ua = ;akllxkl""’Zak"_'nAXk,,_.,Xn f0ra=(aij)€SO(n—1).
1 kn—l

Each a in SO(n) defines a diffeomorphism R, : u € SO(M) — ua € SO(M). We denote
this principal fiber bundle simply by Q.

We define an inner product (-, -) on the vector space o(n) by (A, C) = trace("A - C) for
A,C € o(n). Let o(n — 1)+ denote the orthogonal complement of o(n — 1) in o(n), and
p : o(n) — o(n — 1) be the orthogonal projection. Define wg = p o wp. We remark that wg
is a connection form on Q. Indeed, by a direct computation, we can see that wg(A*) = A
for A € o(n — 1) and R,*wgp = ad(a‘])wQ fora € SO(n — 1), where A* denotes the
fundamental vector field corresponding to A € o(n).

We now define the horizontal and the vertical subspaces of the tangent spaces of P and
Q. Let N denote either the bundle P or Q. Distributions Hy and Vy on SO (M) are defined
by

(HN)u = Ker(on|T,s0m)»  (VN)u = Ker((n)«lT,50M)) »
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where u is in SO(M). The space (Hy), is called the horizontal subspace of T, N and (Vy),
the vertical subspace of T,N. At each point # in SO(M), the tangent space T,SO (M) is
decomposed into a direct sum 7,,SO (M) = (Hn), @ (VN),. Given a vector field Z on T M,
there exists a unique vector field Z HN on SO(M) such that

@28y =27, wyzfMy =0,

which is called the horizontal lift of Z to N.

Let N be a Riemannian manifold with metric . Let F(N) denote the ring of C*°-
functions on N, X(N) the §(N)-module of vector fields on N, and i(N, k) the Lie algebra
of Killing vector fields on (N, k), respectively. Suppose N has a structure of a fiber bundle.
Then a vector field X on N is called a fiber preserving vector field if any element of the local
one-parameter group of local transformations of X maps each fiber of N to another fiber.
Suppose further that N is one of the fiber bundles T*M, P, and Q. For a vector field W on
N, we call W horizontal (resp. vertical) if the tangent vector W), is in the horizontal (resp.
vertical) subspace of 7}, N for each point p of N. A vector field Z on N is of fiber preserving
if and only if the commutator product [W, Z] is vertical for any vertical vector field W on N.

A useful relation between ¢° and G is given by the following.

THEOREM 2.1. (i) Fora given A > 0, we have

)\'2
G(Z, W) = ¢ ()« Z, (m@)«W) + 7(wQ(Z),wQ(W)) for Z,W € T(SO(M)).

(i) Let VS and D denote the Riemannian connections of (T* M, gS) and (SO(M), G),
respectively. Then we have

G(D,noYHe, zMe)y = 5(VoxY, Z) for X, ¥, Z € X(T*M).

To prove Theorem 2.1 we need the following lemma.

LEMMA 2.2. Let Z and W be vector fields on T*M and A be in o(n — 1). Then we
have G(ZHe, wHeoy = ¢5(Z, W).

PROOF. Since each tangent space of T*M is decomposed into the direct sum of the
horizontal subspace and the vertical subspace, it suffices to verify the identity for the following
three cases for each u in SO (M).

Case 1. Zp,(w) and Wy, () are both in Hy (). The identity holds in this case, because
the projections 7|7, and 7p are Riemannian submersions, and (X)fe = X#P holds for
any X in X(M).

Case 2. Zy,u) is in Hyyw), but Wiy ) 18 in V). Since there exists a vector field
X on M such that Z,w) = X" 5, (), we have

G(zHe, wHey, = G(xHr, whe), = 0= ¢(Z, W)zpw) -

Case 3. Zn,w and Wy, ) are both in Vaow)- Then there exists A in o(n — 1)+ such
that Zfe, = A*,. Setting
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=& —& l 0
we have G(ZHQ, ZHQ)u = A2 Z,’(‘;:(Sk)z. Furthermore, putting exptA = (aij(t)), —& <
t<eg,andu = (Xyq,...,Xy), we have

2 n n—1
=22 @ OF =22 (&2,
k=1 k=1

and hence G(ZHe, ZHe), = ¢5(Z, Z)ny ). O
We are now in a position to prove Theorem 2.1. Since the tangent space at u € SO (M)

is orthogonally decomposed into

(2.4) T,SOM) = (X"0,; X € Tryuy T*M} @ {A*u; A € o(n — 1)},

the statement (i) of Theorem 2.1 follows from Lemma 2.2. From Lemma 2.2 and the above
decomposition, we know that the projection ¢ is the Riemannian submersion. Hence, by the
O’Neill’s formula [7], the statement (ii) holds. We proved Theorem 2.1.

REMARK 2.3. Let Z and W be in X(SO(M)). By (1.1) and (i) of Theorem 2.1, we
have

d
gS(Z, Z) = “E{(nQ o RexptA)(u)}t=0

2 2

A A
(m)*¢°)(Z, W) = (6(2), 6(W)) + 7 (@p(Z2), 0p(W)) — ?(wQ(Z),wQ(W))-

Putting A = 1 in the formula above, we obtain
n n
(10)*g® =) )7+ Y (@),
i=l i=l1

where one-forms 6; and w;,, i = 1,...,n, on SO(M) are defined respectively by 6;(-) =
(6(-), ei) and w;(-) = (w(-)ey, ;). This formula is proved by Musso and Tricerri [5, Propo-
sition 6.1].

3. The lifts of Killing vector fields on tangent sphere bundles. Given a Killing
vector field Z on T*M, we shall define the lift ZL2 of Z to SO(M), and find necessary and
sufficient condition for ZL¢ also to be a Killing vector field for G.

We first define A;; € o(n),i, j=1,...,n,by Ajj=0ifi = j,
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@) ()
R
1 0 ()

and A,‘j = —-Aj,' ifi > j
For A;j, we recall here, without proof, the following well-known facts which will be
frequently used in the following argument.

LEMMA 3.1. PutA;, = Apifori=1,... ,n—1. Whenn > 3,theset{A,...,A,_1}
is a basis ofo(n—l)l and {A;j; 1 <i < j < n—1}isabasis of o(n—1). Moreover, we have
[Ai, Aj] = Ayj, [Aij, Ax] = 8ikAj — 8jiAi, and [Aij, Apl = 8j1Aik — 8jkAji — 8uAjk +
SikAji fori, j,k,1 =1,...,n— 1, where §;j denotes the Kronecker delta.

Given a Killing vector field Z on T*M, we define an o(n — 1)-valued function F(Z) on
SO(M) by

3.1 ((F(Z)(u)) -ej,e) = %G(DAJ.*ZHQ, Ai*), forueSOM).

To see that F(Z) is o(n — 1)-valued, we first note A;*, is in (Hgp),, and there exist X; in
X(T*M) withi = 1,... ,n — 1 such that A;*, = (X;72),. It then follows from these and
(ii) in Theorem 2.1 that

1 1
(F@) @) -ej, &) = 75G(Da; 27, Ay = 567 (Vo X, Z, Xidmp)

which shows that F(Z) is o(n — 1)-valued. We then define the vector field ZL2 on SO (M)
by

(3.2) zte, =z, + (F(Z)w)*, atue SOM),

and get the mapping ¥ : i(T*M, ¢5) — X(SO(M)) by ¥(Z) = ZL0. We call ZL¢ the lift
of a Killing vector field Z on T*M.

LEMMA 3.2. If Z is a Killing vector field on (T*M, %), then G(ZLe, A;;*) =
G(Da+ZM2, Aj*).

PROOF. Ateachpointu € SO(M),weset F = (F(Z))(u) and Ffj = (Fej, e;). Then
we have

22 ,
G(Zhe, A%y, = ?trace(’F Aij) = AFI = G(DaZM2, Aj%),,

proving Lemma 3.2. |
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PROPOSITION 3.3. Let Z be a Killing vector field on (T*M, g5). Then Z'0 is a
Killing vector field on (SO(M), G) if and only if ZL0 satisfies the following equation:

L,ioG(X"P A*)=0 forany X € X(M) and A € o(n—1).

To prove Proposition 3.3, we need several lemmas.

LEMMA 3.4. Let §2 denote the curvature form of V. For any A,C € o(n) and
&,n,¢ € R*, we have the following:

G([B(), B(m)], A*) = —A*(R(B(), B(1), A), G((B&), B(n)], B) =0,
[A*, B(§)] = B(A§), [A*,C*]1=I[A,CT",
)"2
G(Dpe)B(n), A™) = —7(9(3(-’5), B(n), Ay, G(Dpg)B), B(¢)) =0,

)“2
G(Dp)A*,C*) =0, G(Dpe)A*, B(n) = —2-(9(3(5), B(n)), A),

)\2
G(Da+B(§), B(n) = 7(9(3(5), B(n)), A) + (A&, n),
1
G(Dp+B(£),C*) =0, DpC*= E[A’ Ccl,
where B(£) denotes the standard horizontal vector field corresponding to & € R".

PROOF. We prove only the first identity, because the others can be seen in a similar
way as in the proof of lemma 1 in [8]. By the structure equation of E. Cartan, we have

52
G([B(), B(m)], A™) = - (p(B(), B(m)), wp(A%)) = —2*(R2(B&), B(n), A),

which shows the first identity. g

From this lemma, it is easy to see that the tensor DA* on SO(M) is skew-symmetric
with respect to G, hence A* is a Killing vector field on SO (M).
To prove Proposition 3.3, we now find a condition which is equivalentto L ,., G = 0.

LEMMA 3.5. If Z is a Killing vector field on (T*M, g°), then L,y G(XHo, yHo) =
0 holds for any X, Y in X(T*M).
PROOF. Since mg is the Riemannian submersion, the above identity holds. d

LEMMA 3.6. If Z is a Killing vector field on (T*M, ¢%), then L,i,G(A*,C*) =0
holds for any A, C ino(n — 1).

PROOF. It suffices to show that LZLQG(A,‘j*, Ap*) =0forl <i,j,k, Il <n-—1.
Since A;;*, Ay* are Killing vector fields on (SO(M), G), we have by Lemmas 3.1 and 3.2
that

L,y G(Aij*, Au™) =Ai*G(ZM0, A*) + Aw*G(Aij*, ZV0)
=8ik{G(Da+ZM2, A*) + G(Da 210, A;%))
— 8;1{G(DaZH2, A*) + G(DaZHe, ALY .
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The formula above vanishes, because Z is a Killing vector field on (T*M, ¢%). O

LEMMA 3.7. If Z is a Killing vector field on (T*M, g°), then L,1,G(A*,C*) =0
holds for any A ino(n — 1) and C in o(n — 1)+,

PROOF. There exist functions a* withk,/ =1,...,n—1on S O (M) such that
33) zte = zHo + % "ak Ay,
k<l

which implies that

G([z"2, 41, C*) = G(z"e + ) dAu*. A*).CM) =0,
k<l
where G([Ax*, A*],C*) = 0 and G(Ay™*, C*) = 0 hold, since [Ay;, A] and Ay are in
o(n — 1). By these formulas, we see that LZLQG(A*, C*) = —G(A*, [ZLe, C*)). Since C*
is a Killing vector field, we further have

(3.4) L,1,G(A*, C*) = C*G(A*, ZM?) — G(IC*, A*], z"9).
When A = A;j,i # j,and C = A;, itis verified that C*G(A*, ZL0) = G([C*, A*], ZL0)

in the following way. From Lemma 3.2 and the assumption that Z is a Killing vector field on
T*M, we have

Ai*G(ZM, Ajj*) = Ai*G(Da2M0, Aj*) = —A*G(Da2%2, 4%)
= —A*AG(ZM, A*) + A*G(ZH2, Dajr A,

where Dy j»«A,-* is vertical on Q by Lemmas 3.4 and 3.1. Hence the second term of the right
hand side of the above formula equals zero. On the other hand, for the first term, we compute
that

— A*A*G(ZMe, A
= Aji*G(ZMe, Ai*) — Aj*G(DaZH0 A*) — Aj*G(ZH0, Dp- A
Since Z is a Killing vector field on T*M, we see G(DA,.*ZHQ, A;*) = 0 by (ii) of Theorem

2.1. The formula D 4;+ A;* = 0 holds trivally by Lemmas 3.1 and 3.4. Since A j;* is a Killing
vector field, we have

Aji*G(ZHe, A*) = G([Aji*, ZM2), Ai*) + G(ZH2, (A%, A*]) = G([A*, Aij*), ZE9)

where we use (3.2) and the fact that [A;;*, A;*] = A;* is horizontal on Q. Hence we have
A*G(Ajj*, ZF0) = G([A/*, Aij*), Z12), and L,1yG(Aij*, Ai*) =0by 3.4).
When A = A;; and C = Ay with k # i, j, we see from Lemma 3.1 that

3.5) [A*, Aij*1=0.
Since Ag;* is a Killing vector field, we have by (3.5) that
(3.6) AL*G(ZMe, Aj*) = G([AG*, ZMe), Aj*) + G(z2He, [Au*, Aj*]) = 0.
Applying (3.5) to (3.4) and using Lemma 3.2, we see
L,ioG(Ai*, A¥) = A*G(DaZM2, Aj%),
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and, by (3.6), we further have that
A*G(DarZH2, Aj*) = A*G(Da 212, Aj%).

Therefore L,1,G(4; ¥, Ag™) is symmetric with respect to i, k, and is skew-symmetric with
respect to i, j. Hence we have that L, G(A;j*, A*) =0. O

We are now in a position to complete the proof of Proposition 3.3. At each point u in
SO (M), the tangent space T, SO (M) is decomposed ([6]) into a direct sum:

3.7 T,SOM) = (Hp), ® {A*;; Acon— 1)} @{C*,;C co(n—1)).

Lemmas 3.5, 3.6 and 3.7 together with this decomposition imply that ZZ¢ is a Killing vector
field on SO (M) if and only if ZL¢ satisfies the equation of Proposition 3.3. We thus proved
Proposition 3.3.

4. The proof of Theorem 1.1. In this section, we prove Theorem 1.1. Let Z be a
fiber preserving Killing vector field on 7* M. We first show that the lift ZL¢ is also a Killing
vector field on (SO (M), G).

LEMMA 4.1. Let Z be a Killing vector field on T* M. Then we have
L,ioG(X"P, Ajj*) = G([A*, 2M0), Dynp Aj*) — G([A*, ZH2], Dynp Ai*)

forany X in X(M) and A;j with1 <i,j <n-—1.
PROOF. Recall that ZL¢ is represented as (3.3). We first prove the following identities:

.1 AFG([ZHe, xHr] A% = A*A*G(x P, ZHe)

42) GUA* (210, X 1), Aj*) = 2G([A:*, ZHe], Dyny AS) — X7 G(Z10, A7),

(4.3) G ([Z ak Ay, X”P] , A;;.) =-x"rG(zle, A",

k<l

G((zfe, XHr), Aij*) = A*Aj*G(XHr, ZH0) — 2G([A;*, ZHe), Dynp Aj¥)

4.4
@9 +XHPG(Zhe, Ay").
Since Z € i(T*M, ¢°) and A;f € i(SO(M), G), we have

A*G((zMe, xHPY A%y = A ZPeG(XHP, Aj*) — A G(XHP [ZHe, Aj*)
= A*A*G(xHr, zHe)y,

This shows (4.1).
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(4.2) is proved as follows: Using [A;*, X Hry1 =0 together with Jacobi’s identity, we
have
G(A*, [ZMe, XHP]), A;%) = G([[A;*, ZHe], XHP], A;%)
= G(Dy, . 710, X", Aj*) — G(Dynp[A*, ZH01, A7)
=—G(X"P, Dy, . o)A = X" G((A*, 2], A7)
+G([A*, ZH0), Dynp A .
Since A ;j* and A;* are in i(SO (M), G), we have
—G(X"P, Dy, . g AS") = G(Dynp A", (A, ZH2))
—xHrG([A;*, ZHe), Aj*) = —XHP A*G(ZM2, Aj*) + XHPG(ZH2, (A%, Aj*))
=—xfrG(zle, A;;").

Hence (4.2) follows.
It follows from (3.3) that

G ([ZaklAkl*’ XHp:l , Aij*) =-x"rG(zle, A",

k<l
which proves (4.3).
Since A;* is a Killing vector field, we have by (4.1) and (4.2) that

G((zMe, xHr), Aij*) = A*G(1Ze, X7P), Aj*) — G(IA*, [2H0, XHP), Aj%)
= A AFG(X P, ZHo)y — 2G (A%, ZM2), Dyup A %)
+ xHrG(zte, A;j%).
This proves (4.4).
Using these identities (4.3) and (4.4), we prove Lemma 4.1. By (3.3), we obtain

L,i,G(X"r A" = —G((z"e, x"r], A;j*) - G ([Zak’Ak,*, XHP] , A,-j*) )
k<l
From (4.3) and (4.4), we see that the above formula equals
—AFAFG(XHP ZHO) + 2G([A*, ZH2), Dynp A¥).
We then have
L,ioG(X"P, Ajj*)

1
= =5 A" G(X", 210) + (A", Z0), Dynp ") = G(A}", 212), Dyip A)

Hence we obtain Lemma 4.1. O

Using Lemma 4.1, we next show that L ZLo G(XHr, A;j*) = 0, which is a condition
for ZLe to be in i(SO(M), G) by Proposition 3.3. From Lemma 3.4, each Dynp Ai* is
horizontal on P, so that, from Lemma 4.1, it suffices to show that [A;*, Zf¢],i =1,... ,n,
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is vertical on P. Let U (Resp. W) be a horizontal (resp. vertical) vector field on T*M. From
the assumption that Z preserves the fibers on T* M, we have by Theorem 2.1 that

4.5) G(D, ny WHe UH0) — G(Dny z"e, UMe) = 0.
Then, from (4.5), it is verified that
(4.6) G([A;*, ZH2], B(ej)) =0 (or G([A;*, Z*2], B(e;)) = 0).

It follows from (4.6) that [A;*, ZH2] is vertical on P. Therefore L,y G(xHr, Aij*) =0
holds, and Z%¢ is a Killing vector field on (SO (M), G) by Proposition 3.3.

Next, we show a lemma which completes the proof of Theorem 1.1.

LEMMA 4.2. (XDle = XLP gnd (pL)Le = ¢LP for any X in i(M, g) and ¢ in
D2(M).

PROOF. Given a vector field W on M, there exists a unique vector field wVonTM,
called the vertical lift of W, such that

mnWVy) =0, KW"y)=Wyy, forany Y e TM.

For any Y in T M, the vector Wy at ¥ depends only on the connection V and the given
vector Wy (y). Let Vy be the vertical space of TyT M. We define Iy := K|y, which is an
isomorphism from Vy to the tangent space T (yyM. Let u = (Y1, ... ,Y,) be an arbitrary
point in SO(M). Setexp tA; = (a(,-)kl(t)). Then we obtain

d d n—1
()« (Ai*y) = z{(ﬂQ) 0 (Rexpra;) W) }i=0 = o {l;a(i)kn(t)Yk}t_o

n—1

= Iy, ( Zaa)"n(om) =Yy, = (u(e)) 'y,
k=1

which implies that

4.7) A%y = {Ou(e)) v, e, .

We shall use this in the following argument.
To prove the first formula in Lemma 4.2, it suffices to show that

4.8) P (X)) = (p)u(X'P),  wp((X)H0) = wp(X7).
Note that, putting F = F(X L), we get

(xhlte = (xhfo 4+ F* = (x¥ + (vX)htie + F* = X" + (vx)M) 0 + F*,
which gives rise to the decomposition of (3.7) for (X LyLo  Then the first identity of (4.8)
follows from (2.3) and the decomposition above.

For the second identity of (4.8), it suffices to prove the following identities for each u in
SO(M)andl,i, jwithl <l,i,j <n-—1,

4.9) (@p(((VX))H2,) - en, e1) = (VX)(u)) - en, 1),

(4.10) (@p(F*)-ei,ej) = (VX)) - e €)),
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where (VX)* is defined by (2.2).
Indeed, setting

n—1

(4.11) (Vx)hHe =Y "eha, e egsom,
k=1
we see that

n—1 d n—1
(VX )rpy = Y _ &) - (mo)s (a-;«Rexpmk)(u)},:o) =1) &w - Ix, 7 (X0,
k=1 k=1
and hence
1 1
£ W) = 28 (VX Dmpu. L, ™ (XD) = 79(VXOOXn), X0) = (VX @)en, €0)
Therefore it follows that
(@p((VX))H )en, e)
n—1
= (wp (Zik(u) : Ak*u> éns ez) = &' w) = (VX W)en, €),

k=1
which proves (4.9).

Next, we show (4.10). Using (3.1), (4.7), (ii) of Theorem 2.1, and (2.1) in order, we
obtain

1
(wp(F*) -ei,ej) = ﬁG(DAi*<XL>”Q, Ay
1
= ﬁgs(vsxu(e,)v X7 aue))")x,

1
+ ﬁgs(vsw(el_)v(VX)L, auej)V)x, .

Note here that the first term in the right hand side above vanishes. In fact, by (4.7) and
Theorem 2.1, we see

PV ey X7 aule)) )x, = GDp~(X")He Aj*), = —G(XHP Dy A"y =0,

since X7 is horizontal and D A;*Aj* are vertical on P. On the other hand, we see
1
79" (Ve (VO dute)x, = PV v (VXL X,V )x,

= 9(Vx, X, X r(xy) = (VX (W))ei, €)) .

In consequence, we obtain (4.10), which completes the proof of the first formula of Lemma
4.2. The proof of the second formula proceeds in the same way as that of the first one. g

Now we prove Theorem 1.1. From the fact proved in the beginning of this section, it is
known that the mapping ¥ defined in Section 3 is regarded as a mapping of the Lie algebra of
fiber preserving Killing vector fields on T* M into i(SO(M), G). Let Z be a fiber preserving
Killing vector field on T* M. It is easy to see that the image ¥ (Z) = Z¢ preserves the fibers
on P.
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In fact, using (3.3), we have the following for 1 <i,j <n —1.

G(Z"2, A;j*1, B(ew)) = G(12"2, A;j*), B(e) + G ({Za"’fm*, A,-j*] ’ B(ek>> =0.

k<1
This formula and (4.6) imply

(4.12) G([zte, Aij*], B(ex)) =0 for 1 <i,j,k<n.

Hence Z%¢ preserves the fibers on P.

We remark that the mapping ¥ is a homomorphism, which is proved in the following
way. Note that each T*M is an integral manifold of the distribution {TT*M; A > 0}. For a
given chart (U, f) of M, a chart (= (U), f) of the tangent bundle 7'M is defined by:

~ n . a
f(;y’ (37)17) :(xl(p),..‘ ,x"(p),yl,,,, 9, '(yl,.,_ YR,

where f(p) = (x'(p), ..., x"(p)) for p € U. Using these charts (cf. [4], Section 2), we
easily see that

@.13)  xXHyR=x, 1k, (oh vt =—1g, v1E, (X5 ¢F1 = —[VX, 91"

forany X,Y € i(M,g) and ¢, ¥ € D2(M)o. On the other hand, in the same manner as in
[8], it is verified that

[xXLr yLrl=[X,YIEr, [ptr,ylr]=—[¢, 1t

4.14) [XLP, gLP] = —[VX, p]L7

for X,Y € ilM,g) and ¢, ¥ € D2(M)o. Since there exist uniquely X € i(M, g) and ¢ €
D2(M)g such that Z = XL + ¢L [4], it follows from formulas (4.13), (4.14), and Lemma 4.2
that ¥ is a homomorphism. Since ¥ satisfies Wsom) = W oW¥ray and Psomy = ¥ o Prayy,
the uniqueness of such homomorphism follows from that of the decompositions of the fiber
preserving Killing vector fields on (T*M, g5) and (SO (M), G). This completes the proof of
Theorem 1.1.

5. The case of dimension two. In this section we assume that (M, g) is two-dimen-
sional. Since the connection form of the bundle Q then vanishes, Theorem 2.1 says that G =
(g)* g3 and the mapping ¢ : (SO(M), G) — (T*M, g5) is an isometry. From Proposition
3.3, we can define the one-to-one homomorphism ¥ : (T*M, gS) — i{(SO(M), G) by
W(Z) = ZLe for Z € (T* M, ¢5).

To prove the first part of Theorem 1.2, we suppose that there exists a Killing vector field
Z on T* M which does not preserve fibers. Set J := (o)« (A1), which is a vertical Killing
vector field on T*M satisfying || J|| = A. For each positive integer /, let us define Killing
vector field W; on (T*M, g%) and open set U; of T*M as follows:

Wi=1J,2], Wi=[J, W, U={YeT"M;(W)y#0}.

Then, we have the following lemma.
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LEMMA S5.1. (i) W, isa horizontal Killing vector field on (T*M, g°), which satisfies
95 (Wi, WitD) = 0 and g5 (Wi, Wis1) = —g° (Wi, Wis2) forl > 1.

() U; =T*M,and ||W,| is a constant function on T*M forl > 1.

(iii) (Wl = A2(2(W;, Wi_1), Ay) forl = 2.

PROOF. (i) Put Wy = Z. Since Killing vector fields constitute the Lie algebra, it is
proved by induction that W; is a Killing vector field on ( T*M, ¢%). It follows from

1
ST W) = g5, 1, W) = —EW,_IgS(J, J)=0

that W, is horizontal on T* M. Hence we have

gS(Wi, Wig) = g5(Wi, [J, Wil) = =WigS (W, J) + gS((Wi, W1, J) = 0.

Since J is a Killing vector field on (T*M, ¢%), we have
g5 Wi, W) = T g5 (Wi, Wip) — g° (Wi, [0, Wil = —g5 (Wi, Wiga) -

(i1) Using the second formula of (i), it is proved by induction that U,, D U4 for
m > 1and Uy, C Uy for m > 2. It follows that U,, = U, form > 2.

We next show that U, is not empty. To do this, we suppose that U is an empty set, and
derive a contradiction. If Us is an empty set, that is [J, W] = 0 on T* M, the Killing vector
field W, preserves the fibers on T*M. Hence, by Corollary in [4], there exist X in i(M, g)
and ¢ in D2(M) such that

Wi =X+t =xH + (VX +¢)L.

Since W is horizontal by (i), we have VX + ¢ = 0. It follows that VVX = —V¢ = 0,
and hence R(Y,Y)X = Oon M for any Y, Y’ € X(M), that is (w(U}), g) is flat. But
this contradicts the fact that a Killing vector field Z|y,, which does not preserve fibers,
exists on U;. Because, if (w(Uj), g) is flat, then the distribution Hp is integrable, and
(@ | M)_l (m(Uy)), ¢%) is also flat, which can be easily seen from the formula for the cur-
vature tensor of (T*M, g5) (cf. Blair [1] and Section 3 of [4]). Hence there exists an open set
U/’ of U such that ((ﬂlTAM)_l(TT(Ul/)), gS) is isometric to an open set ofR3/F, where I"
is the free group generated by 2w Ae3 € R3, which contains a whole fiber. But, on such an
open set, there exists no Killing vector field which does not preserve fibers. On account of
these facts, we conclude that U is not empty.
Since W, and J are Killing vector fields, it follows that

Wi(IWil1®) = 2¢5((W;, Wi], W) =0,
(5.1 Wi (IW11%) = =2W, g5 (Wit Wi) + 295 (Wi, [Wy, Wi)) = 0,
J(IW %) = 2¢5(1J, Wil, W) = 25 (Wi, W) = 0.
So, ||W,,|l is a constant function on each connected component of U, for m > 2. Then,

because of the continuity of the vector field W, we see that U,, = T*M. Hence we conclude
that U; = T*M for any [ > 1. This proves the assertion (ii).
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(iii) Since W; and J are in i(T* M, gS), we have by Lemma 3.4 that
g5 Wir1, Wisr) = g5, Wil, Wign) = g5 (VS Wi, W) — g% (Vow, J, W)
= =S (VSw Wi, 1) + g5 (VSwp, I, W) = A2 (Q(Wigr, W), Ay).
This completes the proof of Lemma 5.1. g

It follows from (i) of Lemma 5.1 that ||W;41||/||W;] is independent of the number /.
Hence, from (ii) and (iii) of Lemma 5.1, we know that the Gaussian curvature of (M, g) is
equal to the constant ¢ = ||W;41]| - 2w 1)~! on M. We show that ¢ can be computed in a
different way.

LEMMA 5.2. Foreachl > 1, we have
VSwWi =0 and gS(R(W;, Wip))Wig1, W) = (cAIWi]| - I Wig111/2)% .

PROOF. Since it follows from (5.1) and (i) of Lemma 5.1 that
52 SV wWL, W) =0, gV wW, W) =0, ¢(ViwW,J)=0,

we get VSy, W, = 0, which implies that (VSy,,, VSW) W11 = VS, , VSW;1 1 W,. Since
any Killing vector field W on (T*M, ¢5) satisfies the following differential equation

(VSyVSWY(Y) + ROW, Y)Y =0, Y, Y e X(T*M),
we have
SR, Wix ) Wi, W) = =5 (VSw,,, Vw, Wi, W) = IV w,,, W2,

where (5.1) is used. From the second identity of (5.2) together with the fact that W, is a Killing
vector field, we know that V5 w1 Wi are vertical on T*M, and hence it follows from Lemma
3.4 that

1 A cA
"VSWI+1 Wil = XQS(VSWM wi, J)‘ = ‘E(Q(Wl, Wit1), A = 7||W1ll~||Wl+1ll- u
On the other hand, by a formula of the curvature tensor of (T*M, gs ) (cf. Blair [1] and

Section 3 of [4]), we have the following: For an arbitrary point ¥ in M, put (7w |pap)(¥Y) =
Y? and (lrap)«((Wp)y) = X, for I > 1. Then it holds that

95 (ROW,, Wip) Wi, W)y

1
= g(R(X1, X1+ X141, X0) + Zg(R(Yb’ R(Xp41, Xi41)Y") X1, X))
1 1
+ Zg(R(Y", R(X;, Xi4)Y") X141, X)) + Eg(R(Y", R(X;, Xi41)Y") X141, X))
3
= W% - | Wig1 )12 (c - ch) .

From Lemma 5.2 and the formula above, we get ¢ = 0 or ¢ = 1/A2. However, in the proof of
Lemma 5.1, we see that if ¢ = 0, then there exists no Killing vector field Z which does not
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preserve fibers. Hence (M, g) is a space of constant curvature 1/A2, which proves the first
part of Theorem 1.2.

Now we decompose the Killing vector field Z and prove the second part of Theorem 1.2.
There exists a unique vector field S on T*M, called the geodesic spray on T*M, such that

Glpa)«(Sy) =Y, (Klppap)(Sy) =0 forany Y € T'M.

Since the mapping 7 is an isometry, Theorem E in [9] says that A - B(ez), which is the lift of
S, is a Killing vector field on SO (M). Indeed, we can see (7|71 1)« ({(m0)«(AB(e2))}y) =Y
foreach Y in T*M.

It then follows that both

1 1
By :=1J, S]= (m@)«(B(e1)) and Bj:= XS = (7)«(B(e2))

are in i(T*M, gs). Since W is horizontal, there exist functions b'; and % on T*M such
that W, = b';B; + b;B,. We show that both b'; and b?; are constant on T* M. In fact, for
m =1, 2, we have

0= g5V Wi, Bw) + ¢5(J. V55, W) = 8im(Jb')) + S2m(JbP)) ,
from which we get
(5.3) Jb" =0.
For any vector fields Y and Y’ on T*M, we have
0=g5(VSy W Y") + g5, VSy W)
= (Yb'))g5(B1. Y) + (Yb2)g5(Ba, Y') + (Y'b' ) g5 (Y. By) + (Y'b2))g5 (Y, By) .
Setting Y = Y’ = Bj (resp. Y = Y’ = B) in the formulas above, we get
(5.4) Bib', =0 (resp. Byb* =0).
Moreover, we have
0=g5(VSy Wi, Y) + ¢5(¥. VSy Wiy)
= g5(V¥y (V% 1B = b"1B)). Y') + g° (¥, V3 y/(b* By — b' 1 By))
= (Yb2)g5(B1, Y)) — (¥b')g5 By, Y') + (Y'b2)g5(B1. Y) — (Y'b' g5 (B, Y).
Setting Y = Y’ = B (resp. Y = Y’ = Bp) in the formulas above, we get
(5.5) Bib* =0 (resp. Bob'; =0).

These formulas (5.3), (5.4) and (5.5) imply that both b'; and b?; are constant on T*M, and
hence W) = (m0)«(B(bje1 + b%e2)).
Setting Z' = Z — W4, we have

[J,Z'] = W) — ()« ([A1*, [A1*, [A1*, [A1%, B(b'1e; + b*1e))1]]) =0,
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which implies that Z’ is a fiber preserving Killing vector field on 7* M. Tt follows that there
exist X in i(M, g) and ¢ in D2(M)g such that Z’' = XL + IIJL. Hence we decompose Z as

Z=Wis+Z =a-S+B-[J,S]+ Xt +yl,

where o = A72¢5([J, [J, Z11, S) and B = A~2¢5([J, [/, Z11, [, S)).
The following formulas for the bracket products are proved in the same manner as in [8].

LEMMA 5.3. (i) Let (M, g) be a connected, orientable two-dimensional Riemann-
ian manifold and A a positive number. Then for any X,Y € i(M, g) and ¢, ¢ € D2(M)y it
holds that

Xt yh1=1x 115, ¢hyt=0, (X' ¢f1=0.
Furthermore, if (M, g) is a space of constant curvature 1/A?, then for m = 1,2, it holds that

1
(Bi, B2l = ==/, (XY, Bul =0, [J, Bul=8imB1 —&mB>.

Accordingly, these facts and Corollary in [4] lead us to the second part of Theorem 1.2.
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