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ON BRUMER'S FAMILY OF RM-CURVES OF GENUS TWO
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(Received June 30, 1997, revised May 16, 2000)

Abstract. We reconstruct Brumer's family with 3-parameters of curves of genus two
whose jacobian varieties admit a real multiplication of discriminant 5. Our method is based on
the descent theory in geometric Galois theory which can be compared with a classical problem
of Noether. Namely, we first construct a 3-parameter family of polynomials f(X) of degree 6
whose Galois group is isomorphic to the alternating group Λ5. Then we study the family of
curves defined by Y = f(X), showing that they are equivalent to Brumer's family. The real
multiplication will be described in three distinct ways, i.e., by Humbert's modular equation,
by Poncelet's pentagon, and by algebraic correspondences.

Introduction. In his article [Brl], Brumer refers to his paper [Br2] where the fol-

lowing family CφfCid) of curves of genus two with three independent parameters b, c, d is

constructed:

c{b,c,d): r2 + α + x + x 3 + c(x + x2))y
= -bdX4 + (b-d- 2bd)X3 + (1 + 3b - bd)X2 + (1 + 3b)X + b.

He claims that for generic values b,c,d e β, the jacobian variety of Cφ,c,d) has the real

multiplication of discriminant 5, i.e., it admits the action of the ring Z[(—1 + Λ/5)/2] as

endomorphisms of its jacobian. Moreover, this action is claimed to be defined over Q. As is

easily seen, this family is transformed into the normal form of hyperelliptic curves:

Y2 = X6 + 2cX5 + (2 + 2c + c2 - Abd)X4

(2) +(2 + Ab + 2c + 2c2 -Ad- 8bd)X3 + (5 4- 12b + Ac + c2 - Abd)X2

+(6+ 12b + 2c)X + Ab+ 1.

It turns out that equations (1) and (2) are remarkably interesting objects in various aspects.

Firstly, this family contains a 2-parameter family of Mestre [Mesl] having similar proper-

ties, which was constructed by using 5-isogenies of elliptic curves. More recently, Kondo

[Ko] showed that the splitting field of the sextic in (2) gives an A5-extension over the rational

function field Q(b, c, d) of independent variables b, c, d. He made use of this result to con-

struct an unramified A5 -extension of quadratic fields. We shall also make use of this family to

find various curves with special properties which are interesting in connection with a possible

generalization of Shimura-Taniyama conjecture (cf. [HHM], [Hg], [Ha]).

Unfortunately, however, neither the full paper [Br2], nor its abstract [Br3], seems to have

been published yet. Thus we did not know at all how Brumer found (1), until recently there
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appeared a book [CF] where we find a short comment on (1) on page 164, which is still too

simple to recover the detail.

The purpose of this note is to reconstruct (2) and prove the properties mentioned above.

Our method is completely different from the original one indicated in [CF]. Namely, we shall

start from the 3-parameter family of 6-tuples which symmetrically satisfy Poncelet's pentag-

onal relation, and on which the alternating group A5 acts. Then we show that, the family

of curves corresponding to these 6-tuples admits the pair of algebraic correspondences which

induces on their jacobian the endomorphisms satisfying X2 + X — 1 — 0. We next study on its

geometric Galois descent, i.e., to obtain a system of invariants which represents the quotients

of the initial family by Λ5. We thus recover the family (2) of Brumer by suitably adjusting

parameters. This result may be compared with an important work of Maeda [Mae] on geo-

metric Galois theory, which solves the Noether's problem for Λ5. Namely, our result shows

that the subfield of k(s, t, z), the function field on three variables over a field of characteristic

0, under certain action of A 5 (see Lemma 1.1) is again purely transcendental.

The author thanks Professor T. Kondo for drawing his attention to the Galois theoretic as-

pect of Brumer's polynomials, as well as for showing deep interests in this work with valuable

conversation.

1. A5-action on 6-tuples with 3 parameters. Let f(s, t, z) be either one of the fol-

lowing rational functions

/f Λ -l+s + tz
f\(s, t, z) := ,

n ) -l+s(t + z) + stz
} . , -l+t + z-stz

f2(s, t, z) := .
-s + tz + stz

These functions have, besides the obvious symmetry f(s, z, t) — f(s, t, z), the following

remarkable properties:

f(f(s,t,z),t,z) = s9

(4) f ( z , f ( s , t , z ) , t ) = f ( t , z , s ) ,

nt,z,f(s,t,z)) = nz,s9t).

It follows that the set of six functions

Rf(s, t, z) := {s, ί, z, f(s, /, z), f(t, z, s), /(z, J, 0}

is stable under the substitution φ : 0, ί, z) !-• ( / 0 , t, z), t, z), as well as the permutations of

variables s, t, z.

LEMMA 1.1. Two substitutions φ and ψ : (s, t, z) ι-* (t, z, s) generate a transitive

subgroup of the symmetric group on the set Rf(s, t, z), which is isomorphic to Λ5.

PROOF. Using the natural ordering of R/(s, t, z), we see from (4) that φ = (14)(56),

ψ = (123)(456) so that φ o ψ = (12346), as elements of 56. They satisfy

φ2 = ^ = (φ o ψ)5 = 1 .
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Then the assertion is a consequence of the well-known fact that A5 is isomorphic to the group

0(2,3,5):

(5) D(2, 3, 5) := (σ, τ | σ2 = r 3 = (στ) 5 = 1).

D

Let Aut(Rf(s, t, z)) be the group consisting of automorphisms of the field Q(s, t, z)

which map Rf(s, t, z) onto itself. Clearly φ and ψ are elements of Axxi(Rf{s, t, z)).

PROPOSITION 1.2. Aut(Rf(s, t, z)) = A5.

PROOF. Since the action of A5 described above is easily shown to be doubly transitive,

we see that the action of Aut(Rf(s, t, z)) on the set Rf(s, t, z) is also doubly transitive. Now

we observe that if η e Aut(R/(s, t, z)) fixes s, t, then either η is the identity, or η = -ψ~xφψ :

(s, t, z) ι-> (s, t, f(z, s, t)). It follows that the order of Aut(/?/(s, t, z)) is twice the number

of the pairs (x, y) such that x, y e Rf(s, t, z), x Φ y, hence it is 6 5 2 = 60. D

The next equalities show that the two systems Rfx (s, t, z) and R/2(s, t, z) are dual to

each other:

LEMMA 1.3. We have

Rf, (fi(s, t, z), / 2(ί, z, s), f2(z, s, t)) = Rf2(s, t, z),

Rf2(/1 (s, t, z), /1 (ί, z, s), fx (z, χ,y)) = R/{ (s, t, z).

2. Geometric Galois descent. We denote /?/, (s, t, z) simply by R(s, t, z):

R(s,t,z)

(6) ί -l+s + tz -1+t + sz -l+z + st

— 1 4- st + sz + sίz — 1 + ̂ ί + tz -f ^̂ z — 1 + sz 4- ίz -f stz

We shall frequently refer the elements of R(s, t, z) as xx,... , x§ with the natural ordering.

Let F(X; s, t, z) be the sextic polynomial in X defined by

(7) F(X;s,t,z):= f ] (X-JC/).
Xi£R(s,t,z)

Here we shall derive an expression H(X\ a, b, c) of F(X; s, t, z) in terms of the symmetric

parameters which are A 5-invariant. As will be shown, it turns out that we thus recover the

family (2) of Brumer.

Let w, p, q be the elementary symmetric polynomials of s, t, z:

w \ = s + t + z , q := s ( t + z) + t z , p : = s t z .

Then CβF(X; s, t, z) is the product of

(X - xχ)(X - x2)(X - x3) = X3 -wX2+qX-p

and the second cubic polynomial

cβ(X - x*)(X - X5)(X - χβ) = cβX3 + w2X
2 + q2X + p2 ,
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where cβ = cβ(s, t, z) is the G.C.D. of the denominator of JC4, JC5, xβ, i.e.,

c 6 = ( - 1 + st + sz 4 m ) ( - l + Jί 4- tz 4- J i z ) ( - 1 + sz + tz 4-

= - 1 4 - 3 / 7 - 4/72 + /73 4 2̂ r - 4/74 + 2/72<? - q2 4- P 4 2 4- (-/? 4- p2 +

and

iϋ2 = 3 — 3/7 — 3/72 — 5g 4- 5/74 — p2q 4 3^ 2 — 2pq2 — q3

— w; 4- pw 4- /72ιt; + qw 4- /74W — /7tι>2 ,

q2 = — 3 4- 3/7 — 6/72 4- 3g — 2g 2 + 2w; + /?u; 4 p2w — 2qw
2 2

4- 2pqw + q w — 2pw ,

/?2 = 1 — 4/7 — /7 + 2/7g — ̂ 2 — w 4- 3/7w; + qw — /7ic .

Expanding the product, we express the coefficient c/ of X1 in c^F{X\ s, t, z) by w, p, q:

co = — p 4- 4/72 + /73 — 2/72g + /7<?2 + (/7 — 3/72 — pq)w 4 /72w;2 ,

c\ = 3/7 - 3/72 + 6/73 4 4 - 7/7# - /724 + 4pq2 - q3

4 (-2/7 - p2 - p3 - q 4- 5/74 - 2/72g + q2 - pq2)w 4- (2/72 - pq)w2 ,

C2 = — 3/7 + 3/72 4- 3/73 —3q + Spq — IIp2q 4 p3q + 3g 2 — 3/?42

+ 2p2q2 - 2q3 4- pq3 4- (-1 + 5/7 - p3 4 2^ - 2pq - q2 4 2/7^2 4- 4 3)w

+ (1 - 3/7 + /72 - 4 - 2pq)w2 4 /7W3 ,

C3 = 1 — 3/7 — 4/?2 4- 4/73 — /74 + 34 — 3/74 + /724 — 2/734 — 04 2 + 6pq2

- 2p2q2 + 34 3 - 2pq3 - q4 + (2 4- 7/72 - /73 - 34 4 /?4 4 34 2 4 /742)w

4 (-2 - 2/7 - /72 4 24 - 3/74 - 4 2 )w 2 4 2/7w3 ,

C4 = — 3 + 3/7 — 6/72 4 24 4- 3/?4 — 4p2q 4 p3q — 4pq2 4 2/7242 — 4 3 + pq3

4- (-1 4 4/7 + 4/72 + 3^ - 4/7^ 4- 2p2q - 2q2 4 3pq2 4 ^3)w;

+ (1 — 3/7 — /72 — q — pq)w2 4 /7tϋ3 ,

c 5 = 3 - 3/7 - 3/72 - 5^ 4 5pq - p2q + 3^ 2 - 2pq2 - q3

+ (-2/7 + 5/72 - p3 - q 4- 5 W - 2p2q + q2 - pq2)w + {-p2 - pq)w2 .

We want to eliminate w, p,q from these expressions, to obtain a system of relations among

(d). In order to settle this problem, we first try to find quadratic relations. Thus denoting the

generic quadratic polynomial in t/o, U\, . . . , Uβ by

Rq(U0,... ,t/ό) = μ o + μiί/θ + + μ7t/6

H- μ8ί/o + M9£/0i/l + 4

we try to find out the condition for (μ,/) that Rq(co, . . . , C6> vanishes identically in Q [w, p, q\.

Since this condition is a system of linear equations of (μ z ), it is not difficult to solve it and
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obtain the following three relations which are independent to each other.

Rq\ := 3uo — u2 + U4 + us = 0,

(8) Rq2 :=3uo-u{ + M 5 + 3 W 6 = 0 ,

Rqs := 2u\U4 - u\us -2uius + «o("i - 3«3 + 5«5) - (5MI - 3^3 + M5)W6 = 0.

A generic system of solution of (8) is given easily by three independent parameters a, b, c as

follows:

«o = a + 1,

«i = 4 -\- 3a + ac,

U2 = 2 + 3a + ab -\- ac ,

(9) M3 = 2 + α + 4£ + lab - ac - ac2 ,

«4 = 1 +ab,

u5 = -2 + αc,

M6 = 1 .

It is now quite easy to show, by counting the number of variables, that the above three relations

(8) are a system of generators of the kernel of the specialization homomorphism:

Q[uo,... , u β ] - + Q[w9 p , q], # O o , . . . , u 6 ) f-> R(CQ, . . . , c 5 , 1 ) .

Replacing a, b, c by c, (l+2b + b2 — ac)/c, (—2 — 2b — 3c)/c respectively, we finally obtain

the following expression of F(X\ s, t, z):

F(X;5,ί,z) =H(X;a,b,c)

:= X6 - (4 + 2b + 3c)X5 + (2 + 2Z? + Z?2 - ac)X4

-(6 + 4a + 6b-2b2 + 5c + 2ac)X3

+(1 + b2 - ac)X2 + (2 - 2Z7)X + c + 1.

Namely, we have the following theorem which is the first main result of this paper:

THEOREM 2.1. Let a,b,c be three independent variables. Then the Galois group of

the splitting field of H(X; a, b, c) over Q(a, b, c) is isomorphic to A5, where the action of A$

on the roots R(s, t, z) of F(X; s, t, z) = H(X; a, b, c) is described in Lemma 1.1.

PROOF. Note first that //(X; a, b, c) is irreducible over the field generated (over Q) by

its coefficients, which is Q(a, b, c). Since we regard a, b, c as independent parameters, it is

clear that the Galois group of//(X; α, b, c) over Q(a, b, c) is a subgroup of Aut(/?(5, ί, z)) =

As (cf. Proposition 1.2). On the other hand, from (10) a, b, c are obviously invariant under

Aut(R(s, t, z)), because they are expressed rationally in elementary symmetric functions of

x\,... , JC6 £ R(s,t,z). The assertion follows from this remark. G

The expressions of a, b, c as rational functions in s, t, z, or in their elementary symmetric

polynomials, are described as follows:

a = A/(4D), b = B/(2D), c = C/D,
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with

A = 8 - 16/7 + lip2 + 6/73 + /74 - 24g + 34/?g - 34p2q + 4/73<? + 21^ 2 - Πpq2

4 6/7 V - lθq3 + 4pq3 + / + (-4 + 8/7 - 4/72 - 4p3 + 4q + 6pq - 6p2q

- 2q2 + 2g3)u; + (4 - 4/? + 4/72 - 4q - 4pq + q2)w2 ,

B = - 2 + 3/7 - 5/72 - 4p3 + 3q - pq + 5/72# - 2# 2 - 2pq2 + ^ 3

+ (3/72 + p 3 + ^ - 3pq + 2/?2(? - q2 + M 2 ) ^ 4- (-2p 2 + pq)w2 ,

C = 1 - 4/7 + 8/?2 - 2q + 4/?^ - 4p2q + q2 + (2/7 - 4/72 - 2pq)w -h /72ιt;2 ,

D = - 1 + 3/7 - 4/72 + /73 + 2q - 4pq + 2/72<? - g 2 + /7^2 + (-p + p2 + p^)ιy .

We can restate the above result as follows, which may be compared with an important

work of Maeda [Mae] on geometric Galois theory where Noether's problem for Λ5 is solved

affirmatively. This means that the subfield of invariants of k(X\,... , X5) under the action of

Λ5 by permutations of variables, is purely transcendental.

COROLLARY 2.2. Let k(s, t, z) be the function field on three variables over an arbi-

trary field k of characteristic 0, on which the group A 5 acts as in Lemma 1.1. Then the subfield

of invariants under A5 is again purely transcendental.

REMARK 2.3. The polynomial H(X; a, b, c) is actually equivalent over Q to that of

Brumer (2). Indeed, the former is transformed into (2) by replacing the parameters α, b, c by

3 4- 9b + 3c + J, - 2 - 6b - c, 4b. Thus, Theorem 2.1 is a restatement of that of Kondo's

[Ko]. His proof is based on the computation of a resolvent of degree 15:

(11) Fl5(X) := Y\ (X- (xiιxh 4- */3JC/4 4- */5*/6))
{/ i , . . . , i 6 }={U.,6}

with the observation that this has two irreducible factors over Q (a, b, c) of degree 5, and 10.

It can be said that our proof is less computational, but more conceptual. Moreover, once

we have equality (10), it is not difficult to check Kondo's observation. Indeed, from Lemma

1.1, we can easily show the following

LEMMA 2.4. The roots of the degree 5 factor of F\s(X) over Q (a, b, c) are

y\ = X\*2 4- *3*6 4- -X4-X5 ,

3>2 = X\X6 4- *2*4 + X3X5 ,

V3 = *1*5 4 X2*6 4

J4 = X\X3 + *2*5 4

V5 = X\X4 4 X2*3 4

and φ, ψ act on [y\, ... , y5] as φ = (12)(34), ψ = (154), φ o ψ = (15342).
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Finally we remark that our family contains as degenerate ones the following 2-parameter

families which correspond to the dihedral group Dio of order 10: Namely, putting

(12) R0(s, t) := R(s, t, z) \z=0 \ {0} = L, ί, 1 - st, - ? - ^ - , ^ - }

(13) R'0(s, t) := R(s, r, z) \z=(l_s)/t \ {0} = {*, f,
z=(l_s)/t

we see easily that Aut(Ro(s, t)) = Aut(R'0(s, t)) = Dio These sets are identified with the

roots of the quintic polynomial

H(X; a, b) := —H(X; a, b, -1)
x.

( 1 4 > =X5 - (2b + 1)X4 + (a + Z?2 + 2b + 2)Z 3 + (2^2 -6b-2a- \)X2

whose Galois group over g(α, fe) is isomoφhic to

3. RM-curves with D = 5. Let C(s\ ί, z) be the hyperelliptic curve defined by

(15) 2

We call (s,t,z) generic if F ( X ; s, t, z) has no multiple zero. We always assume this condi-

tion, in which case C(s, t, z) is of genus two. Our primary object is that C(s,t,z) has the

real multiplication of discriminant 5. Namely, the jacobian variety of C(s, t, z) admits as its

endomorphisms the action of the ring Z[(—1 + V5)/2]. Call such curve simply an RM-curve

with discriminant 5. Now the second main result of this paper is the following

THEOREM 3.1. For generic (s,t,z), the curve C(s,t, z) is an RM-curve with discrim-

inant 5.

We shall give three distinct proofs for this assertion. The first and simplest one is to

check the modular equation of Humbert:

LEMMA 3.2 (Humbert [Hum]). Let C be a curve of genus two defined by

(16) Y2 = (X - ax)(X - a2)(X - a3)(X - a4)(X - a5).

Then C is an RM-curve with discriminant 5 if and only if Ds(a\, ... ,as) = 0 holds for a

suitable ordering of at's. Here

D5(a\,... ,a5)

:= 4{(fli - a2)aj + (a2 - a^)a\ + (α3 - a*)a\ -f (a* - a5)aj + (a5 - a\)a\}

x{(a\ - a2)a3a5al + (a2 - a^)a\a^d\ Λ h (a5 - a ^

-{{a\ -a2)(a3 -f a5)aj-\ h (a5 - a\)(a2 + a4)a2}2 .

R E M A R K 3.3. The geometric interpretation of the above lemma is as follows. A curve

C of genus two is regarded as a double cover of a plane conic Co. Denote by P i , . . . , Pβ the

image on Co of the Weierstrass points. Then C is an RM-curve with discriminant 5 if and
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only if there exists another conic C\ passing Pβ and is inscribing to the pentagon P\,... , P5,

for a suitable ordering of these points. In the lemma, we assume that Pβ = (0,1, 0) and Co is

the conic YZ = X2. The pentagon P\,... , P5 is called Poncelet's pentagon.

We also refer to [HM] for a proof of this fact in modern terminology. In order to check

the condition (17) for our curve C(s, t, z), we send x\ = s to 00 by the fractional linear

transformation, and put u>z := l/(x/ — s) (2 < i < 6):

1 1 1 — st — sz — stz
ll>2 = , tt>3 = , W4 =

z- s ' 1 - 2s + s
2
t + s

2
z - tz + s

2
ίz '

1 — st — tz — stz 1 — sz — tz — stz

Obviously, our curve C(s,t,z) is isomorphic over the field Q(s,t, z) to the curve Y2 =

(X-w2)'-(X-w6).

LEMMA 3.4. We have

3, W5, W4, We) = D^(W2, W 4̂, ^ 3 , W 6̂, 1^5) = 0 .

This result is easily verified even by PC using any symbolic algorithm. We omit the

detail.

4. Algebraic correspondences. Here we study certain algebraic correspondences on

C(s,t,z) which are naturally associated with Poncelet's pentagon as remarked in 3.3. This

leads us to the second and third proofs of Theorem 3.1. Let Pz := (xi,xf, 1) be the point on

the conic Co : YZ = X2 corresponding to X[ e R(s, t, z), (1 < / < 6). From Lemma 3.4,

we see that the pentagons V\ = P2P1P5P4P6, V2 = P2P4P3P6P5 are Poncelet's pentagons,

so that there is another conic C\ (resp. C2) on the plane inscribing to V\ (resp. V2). Now

the condition that the chord joining the points (JC, x2, 1), (y, y2, 1) on Co touches a conic is

described by a symmetric quadratic equation in X, Y, which we denote by Λ(Z, Y) = 0 with

(18) Λ(Z, Y) := λxX
2Y2 + λ2XY(X + Y) + λ3(X + Y)2 + λAXY + λ5(X + Y) + λ6 .

Applying this to the chords P2P3, P3P5, P5P4, P4P6, P^Pi, we obtain a system of linear

equations for λ; 's which is not difficult to solve. We thus obtain the following solution for V\:

x\l) = (l + s)(-l +s + st -s2t + sz- s2z + tz + stz - s2tz + s3tz

~st2z-s2t2z-stz2-s2tz2),

λ(

2

l) = 1 - st - s2t - s3t + s2t2 + s3t2 -sz- s2z - s3z -tz- stz + s2tz

+ 2s3tz + 2s4tz + s2z2 + A 2 + st2z2 + 2s2t2z2 + s3t2z2 ,

λ^1} =s(-l +s +st - s2t + sz - s2z + tz + stz - s2tz + s3tz - st2z
— S I Z — S t Z — 5 TZ ) ,



BRUMER' S FAMILY OF RM-CURVES OF GENUS TWO 4 8 3

= - 1 4- 2s - As
2
 + 2s

3
 + 2st - A + 3s

3
1 - A - st

2
 - s

2
t
2
 + s

3
t
2

- s
4
t
2
 4- 2sz - s

2
z + 3s

3
z - s

4
z - 2stz - 2s

2
tz + 2s

3
tz - 2s

4
tz

= 5(1 - 5 - 5f2 4- s2t2 - 2tz - stz - s2tz + s3tz + t2z

+ Λ 2 z - 5z2 + ^ 2 z 2 + tz2 + *rz2 + s2tz2 - t2z2 + , 2 r 2 z 2 ) ,

= - st + s2t + s/2 - Λ 2 - JZ + ̂ 2z + tz + 2s2tz - 2s3tz - t2z

Similarly, applying to the chords P2P4, P4P3, P3P6, PβPδ, ̂ 5^2, we obtain for P 2

λ{2) = s(2 + s - 2s2 - 2st - 2s2t + s3t + s2t2 + s3t2 - 2sz - 2s2z + s3z

- 2tz - Astz + 3s3tz + st2z + 3s2t2z + 2s3t2z + ^ 2 z 2 + s3z2 + sίz

+ 3s2tz2 + 2^3ίz2 + 5ί2z2 + 2 s V z 2 + s3t2z2),

λψ =-l-2s + 2s
2
 +st + 3s

2
t - s

3
t - s

2
t
2
 - s

3
t
2
 +sz + 3s

2
z

- s
3
z + tz + 3stz 4- s

2
tz - 4s

3
tz - 2s

2
t
2
z - 2s

3
t
2
z - s

2
z
2
 - s

3
z
2

- 2s
2
tz

2
 - 2s

3
tz

2
 - st

2
z
2
 - 2s

2
t
2
z
2
 - s

3
t
2
z
2
 ,

λ
{2)
 = 1 - s - st + s

2
t - sz + s

2
z- tz- stz + s

2
tz - s

3
tz 4- st

2
z 4- s

2
f

2
z

+ st
z

2
+s

2
tz

2
,

λf = 1 4- 2s - As
2
 4- 2s

3
 - 2st - 3s

2
t + 3s

3
1 - s

4
t + st

2
 + A

2
 + s

3
t
2

- s
4
t
2
 - 2sz - 3s

2
z 4- 3s

3
z - s

4
z - 2stz 4- As

2
tz + 6s

3
tz - 2s

4
tz

_ t \ _ 5 ί 2 z + Λ 2 Z _ 2 / ί 2 z + ^2 + 2̂̂ 2 + 3̂̂ 2 _ 4̂̂ 2

_ ,,2 _ 5 ί z 2 + s h z 2 _ 2sAn2 + f2z2 + ^ 2 ^ + ^ 2 ^ 2 _ ,4,2^2 ^

λ^2) = - 2 4- 3s - s2 + 2sr - 2s2ί - A 2 + A 2 + 2sz - 2s2z 4- 2ίz - 3Az

4- s3tz + s4tz - st2z - s2t2z + s3t2z - s2z2 + s3z2 - stz2 - s2tz2

+ s3tz2-st2z2+s3t2z2,

χ{2) = (-1 4-s){-\ +s+st -s2t + sz- s2z + tz + stz - s2tz + s3tz

- st2z - s2t2z - stz2 - s2tz2).

Let Λi(X, Y) (resp. Λ2(X, K)) be the symmetric quadratic polynomial in X, Y corre-

sponding to the solution ( λ ^ ) (resp. (λ^2))), and define a skew symmetric bi-sextic polyno-

mial Hs (X, Y) in X, y by

(19) HS(X, Y) := (X - j)(y - J ) ( X - Y)A\(X, F)A2(X, y ) .

Then we have

LEMMA 4.1. For each i = 2 , . . . , 6, HS(X, JC/) w « constant multiple of F(X; s, t, z)

inQ(s,t,z)[X).
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PROOF. We prove this for / = 2, since other cases are similar. Since the zeros of

A\(X, JC2), A2(X, xi) are {x^, x§}, {̂ 5, X4}, respectively, we have

Ai(X, JC2) = Const.(Z - JC3)(X - JC6),

A2(X, JC2) = Const.(Z - x5)(X - JC4) .

Hence Hs(X,Xi), F(X;s,t, z) have the same set of zeros, from which the assertion for / = 2

follows. D

Now put

(20) js(X) := (X - s)(sX + j - l)((j + 1)X - 1).

Then we have the following equality.

PROPOSITION 4.2. The polynomial HS(X, Y) satisfies the following identity for three

independent variables X, 7, W:

(21) js(W)2Hs(X, Y) - js{X)2Hs{W, Y) = js(Y)2Hs(X, W).

PROOF. This can be proved by direct a computation, and we omit the detail. D

The geometric meaning of this equality is as follows. We consider the following sym-

metric equation on C(s, t, z) x C(s,t,z) defined by the equation

(22) js(X2)Y\ =MXi)Y2

Then from Lemma 4.1 and (21), we see that it defines the algebraic correspondence on

C(s, t, z) which consists of three irreducible components Φ/ (/ = 0, 1,2), where Φo :

(Xi, Y\) = (X2, Yi) is trivial (diagonal) and Φ\, Φ 2 are defined locally by

(23) Φ/: A / ( X ! , X 2 ) = 0 (/ = l ,2) .

PROPOSITION 4.3. Let ψι be the endomorphism of the jacobian variety Jac(C(s, t, z))

induced by the algebraic correspondence Φf (/ = 1,2). Then we have

(i) Vi + Ψi = -id, Ψ\Ψi = -id, (i)* ψf + ψi - id = 0,

(ii) ψi is A$-invariant (cf. Lemma 1.1).

PROOF. Consider the function gs(x, y) := y/js(x) on C(s, t, z). Its divisor is easily

computed as

div(gs) = div(&)0 - divίgJoo

= (P2 + -- + P6)-(Pi + Q + Q' + R + R'),

where P; = (JC, , 0) (1 < / < 6) are the Weierstrass points of C(s, t, z) and Q, Qf (resp. R,

R') are the points such that x = (1 — s)/s (resp. x = l/(s + 1)). It follows that for a generic

point P = (x, y) of C(s, t, z) such that gs(x, y) = η, the polar part of div(#5 — η) is

div(<?5 - 17)00 = (A + Q + Q! + R + R'),

which is independent of η. On the other hand, putting

y\ yi
η :=

js(x\)
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we see from (21) that the support of the zero divisor div(gs — η)o corresponds to the image

of the point P = (JC, y) e C(s, t, z), under either one of the correspondences ψ\ + ψ2 + id,

Ψ\Ψi + id, ψ2 + ψi — id. Namely, we have

(25) Φ\ + Φ2 + id = Φ\Φ2 + id = Φf + Φ; - id :

p = (JC, 3;) H> div(#5 - η)o ~ div(#5 - 77)00 (linearly equivalent).

It follows from the above remark that ψ\ + ψ2 + *d, ^1^2 + *d, V'f + Ψi ~ id are all zero

map on the Picard variety Pic°(C(s, ί, z)) hence on Jac(C(s, t, z)). This proves (i) and (i)*.

The last assertion (ii) is a consequence of (i), (i)* and the continuity, since for generic values

of s, ί, z, the pair of endomorphisms of Jac(C(s, t, z)) satisfying X2 + X — 1 = 0 is unique.

To see this, it suffices to give a single example with this property. The modular curve Xo(23)

belongs to the family C(s, t, z) as we see that the defining equation of Xo(23) due to Fricke

is recovered as Co(—29, 17, —12):

Y2 =H(X- 1;-29, 17,-12)

= (X3 - X + 1)(Z3 - SX2 + 3X - 1).

As is well-known, the full endomorphism ring of /o(23) is isomorphic to the ring Z[(— 1 +

Λ/5)/2]. D

We now restate the above result as

THEOREM 4.4. Let Co(a, b, c) be the curve defined over Q(a, b, c) by the equation

Y2 = H(X; a, b, c), where α, b, c are independent parameters. Then Co(a, b, c) is an RM-

curve with discriminant 5, and every endomorphism of its jacobian is defined over Q(a,b,c).

The assertions in the above theorem can also be proved directly by computing the action

of ψi on the space H°(C(s, t, z), Ωι) of holomorphic 1-forms on C(ί, ί, z). More precisely,

taking ω\ = dx/y, ω2 = xdx/y as basis of H°(C(s, t, z), Ωι), one can prove:

PROPOSITION 4.5. The algebraic correspondences Φ[ induce the following action on

H°(C(s,t,z),Ωι):

-1 -l\/α,Λ

-1 OJW'
Hence they are independent of the parameters 5, t, z.

PROOF. Writing

A/(Xi, X2) = Const. (x2

2 - W(X{)X2 + P(X{)) ,

we have x2

{l) + x2

{2) = W(x\), x2

{l)x2

{2) — P(x\), where the image Φ, (JCI, y\) consists of

two points (X2^\ y2^)Λx2^2\ J2 ( 2 )) Φi induces the map

dxx , dx2^ dx2W xχdχx ,
h^ ω\ := — — + — — , ω2 = h^ ω\ := — — + —

y\ yi
{λ)
 yi

{2)
 y\ y

2

( l )
 y

2

{ 2 )
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Here we have

dW

dx\ 2 ' * dx\

which implies

(dx2{X)\ _ 1 / X2{y)dΨldxx -dP/dxi \

{dX2(2)J ~ X2^-X2{2) \-X2{2)dW/dxl+dP/dxl)
dXl '

Putting

we thus have

2 ) i
dχ\

ω 2 = n \ m \ M \ ( x 2 ^ y 2 ) M 2 ( X 2 , y2)Γ
V2 ( 1 ) J2 ( } I dx\ dx\

Since the right hand sides of the last equalities are symmetric in JC2(1\ JC2(2) and J 2 ( l \ J2 ( 2 \

we can express them by JCI and y\ using (22). It is now easy to show that ω* = ψi*ω\,

oj>2 = ψi*a>2 are expressed linearly by ω\ and ω2 as asserted. •

REMARK 4.6. We notice that the subfamily Co(α, b, —1) of our curves is isomorphic

to that of Mestre [Mesl].

5. A family of curves covering β-curves. We shall specialize the parameters a,b,c

to obtain a family of curves with additional properties. We study the case where the curve

Co(α, b, c) has a non-hyperelliptίc automorphism of order two. A typical example of such

automorphism is given by x ι->- — l/x, in which case H(X;a,b,c) should satisfy the identity

X6H (—; a, b, c\ = dH(X; a, b, c)

for some d φ 0. It follows from this that either (a, b, c, d) = (-5/8, -1/2, 0, 1), or

o A 1 A ~(2b2 + 2b+ 3)
C — —2, d = — 1, and a = .

4

In the first case H(X\ -5/8, -1/2, 0) has multiple factors (X - 2)2, (2X + I) 2 hence it is not

interesting; in the latter case we obtain, after twisting by a quadratic character corresponding

to Q (\/2), a 1-parameter family of curves of genus two

(27) C0(b) : Y2 = {X3 - (2b - 3)X2 + 2X + 2}{2X3 - 2X2 -(2b-3)X-l).

PROPOSITION 5.1. For any b e Q such that b φ 13/4, C0(b) is of genus two, and

dominates a Q-curve defined over Q (̂ /—T).

PROOF. Recall first that a β-curve E is an elliptic curve defined over Q which is

β-isogenous to all of its Galois conjugates. Dividing Co(b) by the involution (x, y) ι->
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(1/jc, Λ / ^ T J / ^ 3 ) , we obtain a moφhism

which is defined over β (V^T), where £(Z?) is an elliptic curve over β (>/^T) which is defined

by the equation

E(b) : Y2 = (-1 + (1 + i)b)2X3 + 2((7 - 8ι) + (2 4- l l ι > - 3/

(28) +/((24 + 7i) + (-30 + 2i)b

The 7-invariant of E(b) is

= -8i((3 + 40/) - (48 + 40ί)b + 12b2)3

J ( - i + ( l +

It follows that Jac(Co(£)) is isogenous over Q(V^T) to the product E(b) x pE(b), where p

is the conjugation of Q(V^Ϊ)/{λ Moreover, since Jac(Co(fc)) admits the action of Z[(—1 +

Λ/5)/2], we see that E(b) is isogenous to pE(b). D

A more precise description of an isogeny (of degree 5) between E(b) and pE(b) has

been found by Hasegawa (cf. [Hg]). Using this, he gave another proof that Jac(Co(fr)) has

an endomorphism defined over Q corresponding to y/5. We also refer to [HHM] where the

modularity of the most of the members of our family E(b) is discussed. A more complete

study for the 2-parameter subfamily of Co(a, b, c) which cover Q-curves of degree 5 will be

given in the subsequent paper [Ha].
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