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Abstract. We prove that a half dimensional, totally real and totally geodesic submani-

fold of a compact Riemannian 3-symmetric space is expressed as an orbit of a Lie subgroup of

the isometry group of the ambient manifold. Moreover, we associate such submanifolds with

graded Lie algebras of the second kind.

1. Introduction. It has been known, for instance see Kobayashi and Nomizu [KNo],

that a (complete) totally geodesic submanifold of a homogeneous Riemannian manifold is

also homogeneous. In particular, a totally geodesic submanifold of a Riemannian symmetric

space is expressed as an orbit of a Lie subgroup of the isometry group. However, unless the

ambient manifold is a symmetric space, such property does not hold in general (cf. [To3]).

Let (G/K, (,)) be a Riemannian 3-symmetric space such that G is compact and (,)

is a bi-invariant metric on G. The purpose of this paper is to describe a class of totally

geodesic submanifolds which are expressed as orbits of Lie subgroups of the isometry group

of (G/K, (,)). In particular, we shall prove that a half dimensional, totally real and totally

geodesic submanifold of (G/K, (,)), with respect to the canonical almost complex structure,

is expressed as an orbit of a Lie subgroup of G (see Proposition 3.2 and Proposition 3.3).

To be more precise, let g* be a noncompact simple Lie algebra and g* = α + m* a Cartan

decomposition, where α is a Lie subalgebra. Take a gradation

5* = fl*-i +9*o + 9*i

of the first kind so that the characteristic element Z is contained in m*. Then σ =

Ad(expπ V—ΪZ) is an involutive automorphism of the compact simple Lie algebra g = α+m

(m = y^Tm*). Let G and A be Lie groups whose Lie algebras are g and α, respectively.

Then Takeuchi [T] proved that the Λ-orbit through {K} e G/K (K is the fixed point set of σ)

is a half dimensional, totally real and totally geodesic submanifold of the compact Hermitian

symmetric space G/K and that all such submanifolds are obtained in this way.

By a similar method we shall construct, in this paper, a half dimensional, totally real and

totally geodesic submanifold of a compact Riemannian 3-symmetric space (G/K, (,)) (see

Section 5). Moreover we shall classify such submanifolds in the case where rk G = rk K and

the dimension of the center of K is not zero (see Theorem 5.5).
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2. Preliminaries. Let G be a Lie group and K a closed subgroup of G such

that Ad(X) is compact. Then G/K admits a G-invariant Riemannian metric (,). We call

(G/K, {,)) a Riemannian Asymmetric space if it is not isometric to a Riemannian symmetric

space and there exists an automorphism σ of order 3 on G such that the following properties

are satisfied:

(i) Gσ

0 C K C G σ , where Gσ is the set of fixed points of σ and Gσ

0 the identity

component of G σ , and

(ii) the transformation of G/K induced by σ is an isometry.

Let (G/K, (,)) be a Riemannian 3-symmetric space with an automorphism σ, which

we denote by (G/K, {,), σ). Define an isometry J of the tangent space (TO(G/K), {,)) at

o = {K} by

1 V3
σ = — Id + — / (Id = the identity map of T0(G/K)).

Then it is known that J induces a G-invariant almost complex structure on G/K (denoted

by the same symbol as / ) , which is called the canonical almost complex structure (see Gray

[G]).

Let g and ϊ be the Lie algebras of G and K, respectively. Choose a subspace p of $ SO

that g = ! + p is an Ad(K)- and σ-invariant decomposition. Under the canonical identification

of p with TO(G/K) we have the following (see [G]).

LEMMA 2.1. For X, Y e p, we have

[JX, JYh = [X, Yh, [JX, Y]P = -J\x, Y]P.

Next we shall describe an inner automorphism of order 3 on a compact simple Lie

algebra. Let QC be a semisimple Lie algebra over C and ϊ)c a Cartan subalgebra of gc Let A

denote the set of non-zero roots of gc with respect to ί)c and 77 = {a\,... , α/} a fundamental

root system of Δ for some lexicographic order. We choose root vectors {Ea} (a e Δ) so that

for of, β e Δ

1 } B(Ea, E.a) = 1,

[Ea, Eβ] = Na,βEa+β , Na,β = -N-a^-β € # ,

where B is the Killing form of $c Then it is known (cf. [H]) that

(2.2) Na%β = Nγ,a (a + β + γ=0).

We set Ha = [Ea, E-a] and denote by Δ+ the set of positive roots of A with respect to the

order. Let β -\- na (p < n < q) denote the αr-series containing β. Then

(2.3) (Λ^)2 = q(l~P)a(Ha).
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(2.4) g = f) + ^(Ea + E.a))
aeΔ+

is a compact real form of Qc Here rj =

1,...,/) by

We define //, e ί)c (j =

= 1,... ,/.

Assume that g is simple. Let G be a Lie group with Lie algebra g. Then the following is

known (cf. Wolf and Gray [WG], Helgason [H]).

LEMMA 2.2. Let σ be an inner automorphism of order 3 on G. Then σ is conjugate

to Aά(g), where an element gofG has one of the following forms:

(1) 0O = e x p ( W = ϊ / 3 ) / ί k , (m* = 3),

(2) 91 = exp(2πV^ϊβ)Hi, (m/ = 2),

(3) #2 = exp(2τr</=ϊ/3)(Hi + / / ; ) , (mf = my = 1),

(4) g3=εxV(2π^Λβ)Hn, (mn = 1).

//ere <S = Σi=\ miai is tne highest root of A.

REMARK 2.3. (1) In the case (4), we can see that the pair (0, g σ) is (Hermitian)

symmetric.

(2) Let i be the center of gσ. If σ = Ad(#;) (/ = 0, 1,2), then the dimension of 3 is

equal to /.

3. Totally geodesic submanίfolds. In this section we shall give several examples of

totally geodesic submanifolds of a compact Riemannian 3-symmetric space (G/K, (,), σ),

which are expressed as orbits of some Lie subgroups of G.

Throughout this section we use the same notation as in Section 2 and suppose that G is

compact and (,) is a G-invariant metric induced from a bi-invariant metric of G. Moreover

we assume that g = ϊ + p is an orthogonal decomposition with respect to (,). Let V denote

the Levi-Civita connection of (G/K, (, >).

LEMMA 3.1. An afβne connection V of G/K defined by the following identity is

canonical (see [KNo]for the definition of the canonical connection):

where J is the canonical almost complex structure of (G/K, ( ,), σ).

PROOF. For X e p w e define a vector field X* around o = {K} by

o = dexpx(X),
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where x e p and |JC| is small enough. Since (,) is bi-invariant, we have (Vχ^Y*)o =

(1/2)[X, Y]p (cf. Nomizu [N]). Hence it follows from Lemma 2.1 that

= 0.

This completes the proof. D

PROPOSITION 3.2. (1) Let TVbe a maximal connected totally real {with respect to J)

and totally geodesic submanifold of (G/K, (,), σ) such that 2 dim TV = dim(G/K). Then TV

is expressed as an orbit of a Lie subgroup ofG.

(2) The same property holds in the case where TV is a maximal almost complex and

totally geodesic submanifold.

PROOF. Let TV be a connected totally real and totally geodesic submanifold with

2 dim TV = άim(G/K). We may assume that o e TV. For vector fields X, Y of G/K which are

tangent to TV at any point of TV, the vector field VXY is tangent to TV and (VχJ)Y is normal

to TV. Therefore it follows that V^y is tangent to TV.

Let T and R be the torsion and the curvature tensors of V at o, respectively. Then the

above argument implies that

T(V,V)CV, R(V,V)VCV (V = ToNcp).

As is well-known, for X, Y, Z e p, we have

T(X, Y) = -[X, Y]p , R(X, Y)Z = -[[X, Y]h Z].

Thus we can see that α = V + [V, V]ι is a Lie subalgebra of g. Let A be the connected Lie

subgroup of G corresponding to α. Since A o is totally geodesic (cf. Sagle [S], [Tol]) and

TV C A - o, we get the proposition.

In the case where TV is almost complex, we can prove the proposition by a similar argu-

ment. D

Let TV be a totally real and totally geodesic submanifold of (G/K, (,), σ) such that

o e N and 2 dim TV = άim(G/K). As above we set V = T0N c p and α = V + [V, V] t.

PROPOSITION 3.3. Suppose that G is semisimple and G/K is almost effective. Then

(g, α) is a local symmetric pair.

PROOF. Let U denote the orthogonal complement of [V, V]e i n t with respect to (, >.

Set m = JV + U. Then we have an orthogonal decomposition g = m + α. Because (,) is

Ad(G)-invariant, we get

(3.1) [α, m ] c m , [t, p] C p .

Since g is a compact semisimple Lie algebra, it is sufficient to show that [m, m] C α.

First it follows from Lemma 2.1 that

[JX, JY] = [JX, JY]t + [JX, JY]P = [X, Y]t - [X, Y]P (X, Y eV).
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So we have [J V, JV] C α.

It is clear that p -f [p, pie is an ideal of g. Since G/K is almost effective, there is no

nontrivial ideal contained in I. Thus [p, p]g = t. Also, by Lemma 2.1 we obtain

Moreover, we have by (3.1)

([JV,V]t,[V,V]t)=0.

Therefore we get

(3.2) U = [JV,V]t.

From Lemma 2.1 and (3.2) it follows that

([[JV, V]t, JV], JV) = ([JV, V]t, [JV, JV]t)

= ([JV,V]t,[V,V]t)=0,

that is,

(3.3) [U,JV]cV.

Finally it follows from (3.1), (3.2) and (3.3) that

[U, U] = [[JV, V], U]t C [[U, V], JV]t + [[U, JV], V]t

C[JV,JV]t + [V,V]t = [V,V]t.

Hence we obtain the proposition. D

EXAMPLE 3.4. Let g be a compact simple Lie algebra as (2.4) and G a Lie group

whose Lie algebra is g. Let σ be an inner automorphism of order 3 on G. Then by Lemma

2.2 we may assume that there is an element \f—VH in rj such that σ = Ad(exp y/—\H). We

set t = gσ and A+{H) = {a e Z\+; a(H) e 2πZ}. Then the orthogonal complement p of gσ

with respect to the Killing form B is written as

(3.4) p= Σ (R(Ea-E.a)+R^{{Ea + E-a)).
aeΔ+\Δ+(H)

Now we consider a Riemannian 3-symmetric space (G/Gσ, —B). Let A be the con-

nected Lie subgroup of G corresponding to a Lie subalgebra

aeΔ+

It is easy to see that

J(Ea - E-a) = εV^Ϊ(Ea + E-a) (ε = 1 or - 1, a e A+ \ A+{H)).

Therefore we see that A o is a totally real and totally geodesic submanifold of (G/Gσ, —B)

with 2dim(Λ o) = dim(G/G σ).

4. Isometry groups. Let G be a compact simple Lie group and (,) a bi-invariant

metric on G. We assume that (G/K, (,), σ) is a Riemannian 3-symmetric space and σ is an
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inner automorphism of type (2) or (3) in Lemma 2.2. We devote this section to the proof of

the following theorem.

THEOREM 4.1. IfG/K is effective, then G is isomorphic to the identity component of

the isometry group of a Riemannian ^-symmetric space.

According to Theorem 3.6 of [To2], if (G/K, (,)) is not isometric to a Riemannian

symmetric space, then the theorem is true. So we shall prove that (G/K, (,)) is not locally

symmetric.

As in Example 3.4, we have

(4.1) p= Σ (RAa+RBa),
a<EΔ+\Δ+(H)

where Aa = (Ea — E-a) and Ba = y/^ϊ(Ea -f E-a). Therefore we get

(4.2) t=t) +
aeΔ+(H)

We denote the Levi-Civita connection of (G/K, (,)) by V and its curvature tensor by R.

LEMMA 4.2. If there exist roots a, β of Δ+ \ Δ+(H) such that

a + β e A+ \ Δ+(H), β ± lot <£ Δ , ±(a - β) £ Δ+ \ Δ+(H),

then VRφO.

PROOF. Let X* (X e p) be a local vector field of G/K defined in Lemma 3.1. Then

we have

(4.3) (VχJ*)o = ^[X,Y]P (X,Yeρ).

Now, we compute (V^aj|c/?)0(Aailt, Ba^, AβJ. As is well-known, the space (G/K, {,))

is naturally reductive. So R is expressed as follows (cf. [KNo]).

(R(x, Y)Z)O = - [ [x , Y]h z ] - l [ [ x , y ] p , z]p

(4.4) ^
+ -[X, [7, Z]p]p - -[Y, [X, Z]p]p (X, F, Z G p) .

From (4.1), (4.2), (4.3) and the condition of the lemma, we get

(VAamAa,)o = (V^BaJo = 0 , (VAa^AβJ0 = (l/2)NaφAa+β .

Therefore it follows from (4.3) that

R)o(Λ^, #<**, AβJ = {VAa^(R(Aa, Ba)Aβ)*}o - R(Aa, Ba)(VA^AβJo

= -[Aα, R(Aa, Ba)Aβ]p - -R(Aa, Ba)[Aa, Aβ]p .



TOTALLY REAL TOTALLY GEODESIC SUBMANIFOLDS 137

Considering (2.1), (2.2) and (4.4) together with the condition of the lemma, we can see

R(Aa, Ba)Aβ = -[[Ac, Ba], Aβ] + -[Aa, [Ba, Aβ]p]p - -[Ba, [Aa, Aβ]p]p

= -[2^\Ha, Aβ] + -Na,βNa-(a+β)Bβ + -Na<βNa-{a+β)Bβ

= -^a(Hβ) + -(Na,p.

Similarly, we obtain

R(Aa, Ba)[Aa, Aβ]p = l-2a(Ha + Hβ) + 1-{N^

Consequently, we have

a(Hβ) + -(Na,βy I [Aα, Bβ]p

-a(Ha + Hβ) + ^(Na,β)2\ Na,βBa+β

α , , Bam, Aβm) = -

(Ha) - l-(Na,β)
2 j Ba+β .

It follows from (2.3) that (Na%β)
2 = ((1 - p)/2)a(Ha) (p = 0 or -1). We have thus obtained

the lemma. D

By the assumption on σ, we can set

(i) σ = Ad(exp(2πΛ/=:Γ/3)(//l + Hj)) (ί < j , mi = rrij = 1) or

(ii) σ = Ad(exp(27ΓΛ/^T/3)//^)) (mk = 2),

where Σa=\ maaa is the highest root. So we have

.2^naaaeΔ+ Λ / = 1 or nj = 1

in the case (i), and

\^+(//)= \γ = Ynaaa ez\+
l<nk<2\

in the case (ii).

It is easy to see (by a case-by-case check) that there exist a, β satisfying the condition of

Lemma 4.2. For example, in the case (i), it is immediate to see that

a = a\ H 4- α/_i , β = oίj H (-or/

satisfy the condition of Lemma 4.2.

We have thus obtained Theorem 4.1.



138 K.TOJO

REMARK 4.3. Suppose that σ is an inner automorphism as in (1) of Lemma 2.2. Then

we can also check that there are roots a and β satisfying the condition of Lemma 4.2, exclud-

ing (G2/SU(3)9 ( , } , σ).

5. Classification. Let (G/K, (, >, σ) be a compact irreducible Riemannian 3-sym-

metric space, where σ is an inner automorphism of type (2) or (3) in Lemma 2.2. Then we

may assume that G is a compact simple Lie group (cf. [G]) and (,) is equal to —B. In

this section we shall classify a half dimensional (maximal), totally real and totally geodesic

submanifold N of (G/K, (,), σ). In the following, we call a pair ((G/K, -B, σ), N) a TRG

pair for simplicity.

In order to construct a TRG pair we recall the notion of graded Lie algebras. Let g* be

a noncompact simple Lie algebra whose complexification is simple. Let τ denote a Cartan

involution of g* and

(5.1) g* = α + m*, τ | α = l , τ | m * = — 1 ,

the corresponding Cartan decomposition. Now let us take a gradation of the second kind on

0*:

0* = 0*-2+0*-l+0*O + 0*l+0*2 (0*1

τ(a*p) = a*-P, P = O,±I,±2.

Then there is a unique element Z e 0* such that

(5.3) {Xeg*\[Z,X] = pX} = Q*p, p = 0,±l,±2.

The element Z is called a characteristic element. From (5.1), (5.2) and (5.3) we see that

Z G m* Π g*o Moreover we have

0*o = 0*o Π α + 0*o Π m* ,

0% + 0 % = (0% + 0 % ) Π α + (9% + g % ) Πm* , p = 1,2.

We define a Lie subalgebra I and a subspace p of the compact simple Lie algebra g =

α + \/~Tnα* as follows.

0% + 0 % ) n α + V-1((0% + 0 % ) n m*)}.

Noting (5.3) and (5.4), the following lemma is easy to see.

LEMMA 5.1. σ = Ad(exp(2π «J— 1 /3) Z) is an automorphism of order 3 on g. More-

over, I equals gσ, the set of fixed points of σ, and g = I + p is a σ-invariant orthogonal

decomposition with respect to B.

By Lemma 5.1 it is immediate that

2
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is a complex structure on p. Now we write / explicitly. For

X+ + Z_ e (g*! + g*_!) Π α, X± G g*± 1 ,

it follows from (5.1) and (5.2) that τ(X±) = XT. Therefore, by a straightforward computa-

tion, we have

/(X+ + X-) = v / ΓT(X+ - * - ) € V^ϊίίfl*! + g*_i) n m*).

Similarly, for X+ + X_ € (g*2 + g*_2) Π α we get

7(X+ + X-) = - Λ / ^ T ( Z + - X_) e V^Tίίfl^ + fl*-2)
 n m * )

Hence we have an orthogonal decomposition p = V + JV(V = a(Ίp) with respect to B.

Note that α = V + [V, V]e.

Let G be a Lie group whose Lie algebra equals g, and ^ the set of fixed points of an auto-

morphism σ defined in Lemma 5.1. Moreover we denote by A the connected Lie subgroup of

G corresponding to α. Then by the above argument we get a TRG pair ((G/K, — B,σ), A-o).

In what follows, we call ((G/K, — B, σ), A o) thus obtained a TRG pair corresponding to

a graded Lie algebra ($*, τ, Z) of the second kind with the characteristic element Z. Since

K is a centralizer of a toral subgroup of G, the group K is connected and G/K is simply

connected.

Conversely, let ((G/K, (,), σ), N) be a TRG pair. We assume that o e N and set

V = TON. Then by Proposition 3.3, (g, α) (α = V + [V, V]t) is a local symmetric pair, let

g — α + m denote the canonical decomposition of g. As in the proof of Proposition 3.3, we

have

m = m n p + m n e = /V + [V, JV]t.

LEMMA 5.2. L^ί g* = α + m* (m* = \l — lm) be f/ze noncompact dual ofg and3 ί/ie

center oft. Then there exists an element \/—\Z in [V, 7 V]$ Π $(= m Π 3) such that

σ = Adίexp—Λ/^

and the eigenvalues ofad(Z) : g* —> g* tfre 0, ±1

PROOF. Note that dim 3 = 1 or 2. First, we suppose dim 3 = 1. Since σ is inner,

there is a maximal abelian subalgebra f) of g, which is contained in ϊ. Let A be the set of

nonzero roots with respect to (QC, f)c) a n d Π = {a\,... , α/} a fundamental root system. Let

5 = X)/=i Jn/of/ be the highest root. From Lemma 2.2 together with Remark 2.3 it follows

that

σ = Ad ( exp —V--ΪHi 1 for some / with the property ra; = 2 .

Clearly the eigenvalues of ad(///) are 0, ±1 and ±2. So it is sufficient to prove that 3 =

—lHi is contained in [V, JV]%. To see this, we decompose \Γ—\H[ as

Since

/ e 3 , [m, m] = α, [α, m] = m,



140 K. TO JO

we see that A\, A2 e 3. Because dim3 = 1, either A\ or A2 is zero. Now we suppose that

Λi = 0 (namely 3 c α). Since [α Π {?, V] c V, it is easy to see that for X e V

which is a contradiction. Hence we conclude that 3 c [V,

Next, we assume that dim3 = 2. In this case we can set

= Ad ί exp — V^Ϊ(Hi + Hj)J ra; = rrij = 1), 3 = R ^

We define a subset Z\& (& = 1, 2, 3) of z\+ as follows:

Δx={ae Δ+\ α(J//) = 1, a(Hj) = 0},

(5.5) Δ2 = {a e Δ+; a(Hj) = 1, «(///) = 0},

Δ3 = {a e Δ+\ a{Ht) = 1, a(Hj) = 1}.

Then we have an orthogonal decomposition

(5.6) P = P

where

By an argument similar to the above, we see that 3 = 3 Π m + 3 ( Ί α and 3 <jt α. So we

may suppose that there are nonzero elements Z\ and Z2 subject to the following condition:

Set

Zi = V^Ϊ(aHi + Z7//7 ), Z 2 = ,

If c = d, since V~T(^i + ^/) ^ ^. this case reduces to the previous one. Hence we assume

that c φ d. For any l e p w e denote by Xk (k = 1, 2, 3) the pk-component of X. From (5.5)

and (5.6) we can see that for X e V

Ad(expίZ2)(X) = coscί X\ + sincί Y\ + cosdt X2

+ sin dt Y2 + cos(c + d)t X3 + sin(c + J)ί y3 G V ,

where

y3 = [ v ^ ϊ f t , x 3 ] ( = [V^Hj, x3]).

We note that

(5.9) J(Xk) = Yk (* = 1,2), 7(X3) = - ^ 3 .

If cJ 7̂  0 and c + J φ 0, then c, J and c + J are mutually distinct. So we have from (5.7)

that Xk, Yk e V (k = 1, 2, 3). However, by (5.9) the vectors Yk are in JV. Hence cd = 0 or

c + rf = 0.
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We assume that c = 0 and d φ 0. Then it follows from (5.7) and (5.9) that

(F2 + F 3 ) e V , and Yx , (Y2-Y3), (X2-Xτ)eJV.

So, since [Zi,X2 + X3] = bY2-\-(a-\-b)Y3 e [m, V]p = JV, we have 6 = -(a + b), namely
«sf-i(2Hi - Hj) € m. Set Z = (#7 - 2///). Then it follows that

Ad fexp ^ - Λ / ^ T Z ) = Ad fexp ^y=T(ff/ + #,-) J (= σ)

and the eigenvalues of ad(Z) are 0, ±1 and ±2. By making use of (5.5) and (5.8), for example,

we can check that

[Z, Xι ± V^

[z, (x2 + x3) ± V^i(Y2 - Ys)] = τ(^2 + X3) - v ^

[Z, (Y2 + y3) ± V ^ ί ^ - X3)] =

In the case that c φ 0 and d = 0, the vector Z = (//; — 2Hj) satisfies the condition of the

lemma.

Finally we consider the case c + d = 0. It follows from (5.7) and (5.9) that

X3, (X1+X2), σ i - ^ 2 ) € V , and y3 , (F1 + F2), (Xχ-X2)eJV.

Similarly, as above we can see that V—TZ = ^f-ί{Hi + i/7) is in m. We have thus obtained

the lemma. D

From Lemma 5.2 we have a graded simple Lie algebra (9*, τ, Z) of the second kind

0* = g*_2 + fl*_i + 0*0 + 0*i + g*2

with the characteristic element Z. It is easy to see that ((G/K, {,), σ), N) is a TRG pair

corresponding to (g*, τ, Z). Therefore we have

PROPOSITION 5.3. Any TRG pair is obtained as a TRG pair corresponding to a graded

simple Lie algebra of the second kind.

Now, we say that two TRG pairs ((G/K, (, ) G , σ), N) and ((G/K, (, }Q, σ), N) are

equivalent if there exists an isometry / : (G/K, (, >G) -^ (G/K, (, )<~) such that /(Λ0 =

REMARK 5.4. Let 0 be an isomorphism between graded simple Lie algebras (g*, τ, Z)

and (jj*, f, Z), i.e., φ : g* -> g* is an isomorphism such that

φ(Z) = Z , x o φ — φ o τ .

Let g* = α + m* and g* = d + m* be the Cartan decompositions corresponding to r and

τ, respectively. We define an isomorphism φ' from g = α + m t o g = d + m(m = >/Γm*,

m = Λ/— lm*) as follows:

^ T
 / z l (X ea, Ye m*).
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Then it is easy to see that φf(a) = a and φf(ϊ) = \ (see (5.4) for the definitions of t and

I). Therefore an isomorphism between graded Lie algebras induces an equivalence between

TRG pairs.

Suppose that ((G/K, (, )G, σ), N) and ((G/K, (, )<-, σ), N) are TRG pairs correspond-

ing to (g*, τ, Z) and (g*, τ, Z), respectively. Moreover we assume that G/K and G/K are

effective, and oeN,δeN(δ = {K}). As before we set

a=ToN + [TON, TON], α = TδN + [7-^, Γ 5 t f] .

If t h e s e T R G p a i r s a r e e q u i v a l e n t , t h e n t h e r e e x i s t s a n i s o m e t r y φ : (G/K, ( , ) G ) -•

(G/K, (,)ό) such that

(5.10) φ(o) = δ, φ(N) = N.

Since G acts effectively on G/Λ', we can regard G as a Lie group of isometries. Then it

follows from Theorem 4.1 that ιφ(G) = G (ιφ(g) = φ o g o φ " 1 ) . So, by (5.10), we have

Lφ(K) = K , Lφ^(a) = 0..

Set V - Ϊ Z ' = ί^ (v^TZ). Then it is easy to see that

0 : 0 * ^ 9*; (X + Y) H> ^ ( X ) - V ^ T ^ ί V ^ T y ) (X € α, Λ / ^ T F G m*)

is an isomoφhism from ($*, τ, Z) to (g*, τ, Z ;).

If the dimension of the center of ϊ (and ϊ) is one, then \f^ΛZ' = \f^ΛZ or —Λ/—1Z.

Note that τ provides an isomoφhism between (g*, τ, Z) and (g*, τ, — Z). Summing up the

above argument together with Remark 5.4, we obtain

THEOREM 5.5. The above construction of TRG pairs from graded Lie algebras of the

second kind induces a surjection:

{A graded simple Lie algebra (g*, r, Z); g* c is simple}/ —

I
{TRGpairs}/ ~ .

In particular, we have a one-to-one correspondence:

{(g*, τ, Z); g* c is simple and άim(the center o/g*o) = 1}/ ~

I
{TRGpair ((G/K, (, ), σ), N); άim(the center of K) = 1}/ - .

REMARK 5.6. Kaneyuki [K] classifies the graded simple Lie algebras of the second

kind.

REMARK 5.7. The surjection in Theorem 5.5 is not injective. To see this, set

(g*, α) = (si(4, R), so(4)). Then it is known that g* is a normal real form of 5[(4, C) and

ί) = Σ^=\R(Eij — £/+i,/+i) is a maximal abelian subalgebra of g* contained in m*. Here,

we denote by E[ j a diagonal matrix whose i-th diagonal element equals 1 and the others are
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zero. Let <?/(//) (1 < / < 4) be the /-th diagonal element of H e t). Then {α?i, 0^2,̂ 3}

(oil = a — e +i) is a basis of the root system of g* with respect to ί).

Put

Z\ = H\ + H3 , Z2 = H\- 2//3 (see Section 2 for the definition of //;) .

Let (&*(ι\)-2<k<2 0 = 1, 2) be the gradation of g* whose characteristic element is Z/. Then

we have άim(^(l\) = 4, άim(^(2\) = 3 and

I 2π^Λ \
exp Z2 I .
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