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RECOVERY OF VANISHING CYCLES BY LOG GEOMETRY
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Abstract. We first construct compatible actions of the product of the unit interval and
the unit circle as a monoid on a semi-stable degeneration of pairs and on the associated log
topological spaces. Then we show that the log topological family is locally trivial in piecewise
smooth category over the base, i.e., the associated log topological family recovers the vanish-
ing cycles of the original semi-stable degeneration in the most naive sense. Using this result
together with the log Riemann-Hilbert correspondence, we introduce two types of integral
structure of the variation of mixed Hodge structure associated to a semi-stable degeneration of
pairs.

Introduction. Kato and Nakayama [KN] constructed a ringed space (X'°¢, O])?g) over
a given fs log analytic space (X, M) and proved a log version of the Riemann-Hilbert cor-
respondence on them (cf. (1.2), (1.3), (1.4)).

In the case where the fs log analytic space (X, M x) is the one corresponding to a divisor
D with normal crossings on a complex manifold X, i.e., My := {f € Ox| f is invertible
outside Dreg} (cf. (1.1.4)), the projection tx : X log _, X is nothing but the real oriented
blowing-up of X along Dyeq (cf. (1.2.1)).

Let us consider a relative case. Let f : X — A be a proper surjective flat morphism
of a complex manifold onto an open disc such that f is smooth over the punctured disc
A* := A — {0} and that the central fiber Xo := f~!(0) is a reduced divisor with simple
normal crossings. Let Y be a divisor on X, flat with respect to f. We assume that Xo + Y is
also a divisor with simple normal crossings. Then, by [KN], we can construct a map f'°8 :
X8 . Alog and a subspace Y'°2 of X'°2 over the given ones and we have a commutative

diagram:
(x'og, ylogy 2, (X, )

(0.1) fmgl fl

Alog . Al

The main result in the present paper is that the family

(02) ;log . (Xlog _ YlOg) N Alog
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of open spaces is locally piecewise C™ trivial over the base A'°¢ (Theorem (5.4)). As a
consequence, we see that the family (0.2) is the one which recovers the vanishing cycles, in

the most naive sense, of the degenerating family f: (X —Y) — A.

This implies, in particular, that Lz := RY( } logy.Z is a locally constant sheaf of
Z-modules on A8, On the other hand, Steenbrink and Zucker [SZ] showed that V :=
R4 f82% /A (log(Xo + Y)) is a free O p-module with the Gauss-Manin connection V, filtered
by the W (Y)-relative monodromy weight filtration M. We thus have

V= (14):(O5E ®c L) on A

(Theorem (6.2)), under the log version of the Riemann-Hilbert correspondence established in
[KN]. As a corollary, we have two types of integral structure of the degenerate variation of
mixed Hodge structure on V (Theorem (6.4)).

We prove the main theorem (5.4) in a manner analogous to that in Clemens [C]. We first
construct a suitable family of multi-valued C* global equations of the components of the
divisor X¢ + Y (Propositions (3.2), (4.3)) and with its aid we introduce compatible actions of
the monoid S := [0, 1] x C on the diagram (0.1), so that [0, 1] acts as shrinking and C acts
as rounding (Theorem (5.2)).

The author wishes to express his gratitude to Professor Chikara Nakayama for stimu-
lating discussions, from which the author was able to add Section 2 and fill in the gaps in
Steps 1 and 3 of the proof of Proposition (3.2) in a draft of this paper. The author also wishes
to express his gratitude to the referee for his careful reading and valuable suggestions and
comments on presentations.

Convention. In this paper, for every partition of unity {ow }weyy subordinate to a cov-
ering W of a manifold, the closure of supp pw is assumed to be contained in W for every
W e W.

1. Preliminary: Log geometry. We summarize here the definitions of the notions
and results in log geometry introduced and proved by Kato and Nakayama [KN], for our later
use.

(1.1) A commutative semigroup with unity is called a monoid. A homomorphism of
monoids is assumed to preserve the unity.

A monoid P is called an fs monoid if the following three conditions are satisfied:

(1.1.1) P is finitely generated.

(1.1.2) Ifa,b,c € Pandab = ac,thenb = c.

(1.1.3) Ifa € PSP and a”" € P for some positive integer n, then a € P. Here P®P is
the abelian group associated to P.

Let X be a ringed space and Oy its sheaf of rings. A pre-log structure on X is a sheaf of
monoids M on X endowed with a homomorphism of sheaves of monoids

a: M- Oy,
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where Oy is regarded as a sheaf of monoids with respect to multiplication. A morphism
f (X, Mx) — (Y, My) of ringed spaces with pre-log structures is a pair (f, ¢) consisting
of a morphism f of ringed spaces and a homomorphism ¢ of pre-log structures which make
the following diagram commutative:

My —4— My

l l

oy —L oy,
A pre-log structure M is called a log structure if « induces an isomorphism
a! O%) = Ox .
where O is the subsheaf of Oy consisting of invertible elements. In this case, we regard O%

as a subsheaf of M via the above isomorphism.
If M is a pre-log structure on X, the log structure M? associated to M is defined to be

the push out of the diagram
a N (OF) —— M

Ox
in the category of sheaves of monoids, endowed with the induced homomorphism o? : M? —
Ox.

Note that, in this case, we have M?/O% >~ M/a~1(O%).

A log structure M = (M, ) on X is called an fs log structure if locally on X there
exists an fs monoid P and a homomorphism 8 : P — Oy, where P is regarded as a constant
sheaf on X, such that (M, «) is isomorphic to the associated log structure (P2, 2). In this
case, (P, B) with an isomorphism P? ~ M is called a chart of M. Charts exist locally on X.

Note that if M is an fs log structure, the stalk (M / O)X( )x is a torsion free fs monoid.

(1.1.4) EXAMPLE. If X is a complex manifold and D is a reduced divisor on X with
normal crossings, then

M :={f € Ox | f is invertible outside D} <> Oy

is an fs log structure, which is called the log structure corresponding to D. In fact, locally on
X, D is defined by I—[lsisr z; = 0, and M is associated to

a:N" = Ox. am:= [] "7, where n=(n(1).....n().
I<i<r
Here zy, ..., z, is regarded as a part of local coordinates on X.

(1.2) LetC := {u € C*||u| = 1} be the unit circle and let R >( be the set of all non-
negative real numbers. We consider R>o x C| as a monoid by multiplication. The monoid
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homomorphism R>¢ x C1 3 (r, u) — ru € C makes
T := (SpecC,R>o x C1)

alog point. Let X be an fs log analytic space. Then the associated log topological space X'°%
is defined to be the T -valued points

X'°8 := Hom(7T, X)
as a set. This can be identified with the set
{(x,h) € X x Hom(M¥ ., C )| h extending f > f/|f], (f € OF)}.

The topology on X'°¢ is introduced as follows. Working locally on X, let @ : P — Ox be
a chart of Mx. Then, by using the homomorphism P& — MY, X'°8 is identified with a
closed subset of X x Hom(P®P, C ). The topology of X'°¢ is given by this identification. It is
independent of the choice of a chart of My, and defined globally. The projection 7 : X'°8 —
X, (x, h) — x, is surjective, continuous and proper.

For x € X, t~'(x) is isomorphic to (C)" where r = rank(MEP/Ox),. In fact, since
(/\/lg(P /(9;) x 18 a free abelian group, the exact sequence

1> Of, —> MF S MEP/0%) - 1

has a splitting o with 7 o 0 = id. Hence we have an isomorphism

Hom(M¥ . C) > Hom(O} , C1) x Hom((M§ /O3),. C1).
hi— (hot,hoo).

A morphism f = (f,¢) : X — Y of fs log complex spaces induces a continuous map
flog: xlog 5 ylog (x, h) > (f(x), o).

(1.2.1) EXAMPLE. Let f : X — A be a proper surjective holomorphic map of a
d-dimensional complex manifold X to an open unit disc A such that f is smooth over the
punctured disc A* and that X := f~!(0) is a divisor with normal crossings. Then, as in
Example (1.1.4), X and A carry the fs log structures corresponding to the reduced divisor
(X0)red and the origin {0}, respectively. The map f can be regarded as a morphism of log
complex manifolds which is described, in terms of local charts, as follows:

r ax m(i)
N —— Oy m +— [[i<i< 2

A

N —25 04 1 — t
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where Hlsisr zl'."(i) = 0 and ¢ = 0 are local equations of X in X and {0} in A, respectively.

This induces f1°8 : X9 — Al°2, These are locally described as follows:

locall
X8 "2 (g ui)1<ir € CT % (C1) |20 = |zi|ui for all i} x €4~

S (R20)" x (C) x €T,
(@i, uidi<i<r, @)r+1<j<d) = ((zil, uidi<i<r, @))r+1<j<d) -
A ~ ((t,u) e Ax Cy |t =|tlu}>[0,1) x C,,
(£, u) = (|t], u).

flog . Xlog N Alog,

((zis ui)i<i<rs @ri1<j<d) P> (t,u) = ( [T T1 u,f"m) :

I<i<r I<i<r

Note that the first local identifications of X'°8 and A!°¢ show that zx : X'°¢ — X and

Ta @ A8 — A can be regarded as real oriented blowing-ups along X and {0}, respectively

(cf. [Mj]), and the second local identifications show that X'°2 and A!°g can be regarded as

products of manifolds with corners, compact tori and complex manifolds (cf. [AMRT]).
(1.2.2) EXAMPLE. Let

2m/—1z ,

w:h—> A*, > t=e

be the universal covering of the unit open disc. We add a point at infinity oo to R and extend
the topology of R to R := R U {00} so that a fundamental system of open neighborhoods in
R of the point oo is given by

U,:={yeR|y>n}, nrunningover all positive real numbers .
We introduce the product topology on 6 := R + +/=1R. Then, by addition, Z acts on 6
continuously and freely and we have
&ih—>h/Z~A% x+J1y— (e_z”y,eh‘/jx),
which can be regarded as the universal covering of A!°2 in (1.2.1).

(1.3) Let X be an fs log analytic space. Then X is endowed with a sheaf of rings (’)]}?g
which is an enlargement of ! Oy by adding the ‘logarithms’ of local sections of 7~ ! M¥.

The precise definition of Ol)?g is as follows. First, define a sheaf £ of logarithms of local
sections of T~ M ip on X' as the fiber product of

—1 A 48P
T MY

!

Mape( , R+/—1) —2— Map.( ,C)),

where Map.( , ), for a topological space Y, denotes the sheaf of continuous maps into Y, and
the vertical arrow comes from the definition of X'°2. We denote the projection £ — 7! /\/l%(p
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by exp. Then we have a commutative diagram of sheaves on X'°® in which the horizontal
rows are exact:

0 Z(1) =10y LN oy —— 1
| o| |

0 ZQ) L Y A——
| | |

0 Z(1) Map.( , Rv/—=1) —2— Mape(,C;) —> 1.

Here Z(1) := Z - 2m+/—1, and 6 is induced from the map t~'Ox — Map.( , Rv/—1),
f = (f — £)/2, and from the composite map r"Oxﬂ))r"O; — r_l/\/lip.
We define
Ol)?g = (t7'0x ®z Symz L)/,
where Symz £ denotes the symmetric algebra of £ over Z and 7 is the ideal of 77! Ox ®z
Symgz L generated by local sections of the form f ® 1 — 1 ® 8(f), f € Ox.

For y € X2 and x = 7(y), the stalk ((’)l)?g)y is described as follows. Let r :=
rankz (Mip/(’);)x and let (/;)1<;<, be a family of elements of £, whose image under the
composite map

Ly B M)y = ME - (MBPJOF)x
is a Z-basis of (/\/t%(p /O%)x. Then, (I;)1<;<, are algebraically independent over Ox , and

O%E)y =171 Ox, 1, -+, 1],

Note that this is not a local ring.

For an fs log analytic space X, let a)}( be the sheaf of differential forms on X with log
poles defined by
(1.3.1) wy = (2x ® (Ox ®z MP)/N,
where §2 )'( is the usual sheaf of Kahler differential forms on X, and N is the Oy -submodule of
the direct sum generated by local sections of the form (da(f), 0) — (0, ¢(f) ® f), f € My.
For a local section of Mip, the class of (0, 1 ® f) in w}( is denoted by d log(f).

Let w} be the g-th exterior power of w} over Oy, and let

g.log . _x g __ mnlog -1,49
wy T =Ty =0y @10, T Wy .

We have derivations d : Ox — a)}(, f = df,as well as
d: Ol)?g — w;(’log, df :=dlogexp(f) for feL.

These derivations are extended to de Rham complexes in a natural way:

d 1 d 2 d
Ox — wy — wy — -+,

log d lLLlog d_  2log d
Oy- —wy “—wy ~—> .
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(1.4) We consider the following condition on a log analytic space X.

(1.4.1) X is covered by open sets of type (Spec C[P]/(X))an, Where P is an fs monoid,
X is an ideal of P,i.e.,a € P and x € X imply ax € ¥, (X) denotes the ideal of C[P]
generated by X', and (Spec C[P]/(X))an is endowed with the log structure associated to P —
Ox.

If (1.4.1) is satisfied, then w }( is a locally free Ox-module of finite rank and the de Rham
complex w}"og on X'°¢ is a resolution of the constant sheaf C (cf. [KN]).

It is proved in [KN] that if a log analytic space X satisfies the condition (1.4.1), then the
following two categories Lynip(X logy and Dhilp(X) are equivalent.

(1.42) Lunp(X log): The category of locally constant sheaves L of finite dimensional
C-vector spaces on X'°2, which have, locally on X'°2, a finite filtration 0 = Lo C L C
-+« C L, = L consisting of locally constant C-subsheaves of L such thateach L;/L;_ is the
inverse image of a locally constant sheaf of C-vector spaces on X.

(1.4.3)  Dyitp(X): The category of locally free Ox-modules V of finite rank on X en-
dowed with an integrable connection V : V — w;( ® V, which have, locally on X, a finite
filtration 0 = Vy C V} C --- C V, = V consisting of Ox-submodules of V such that
VvV C a))'( ® Vi, Vi/Vi-) is locally free and V on V; /V;_; has no pole for all i.

The equivalence Lypip(X logy _, Dyilp(X), L — V and its inverse V > L are defined as
follows:

Vi= 1,05 ®c L),
L := Ker(z*V <, a);(‘log ® loe ™)),
X

where 7*( ) := Ol;(’g ®-10, T

2. Some lemmas. In this section, we prove some elementary but non-trivial lemmas,
which will be used in the proof of Proposition (3.2) in the next section.

(2.1) LEMMA. Let ¢ be a C*® function in & := (&1, ... ,&,) defined on a convex
subset U of R". Then there exist C™ functions V; in &, &' definedonU x U (i = 1,...,n)
which satisfy the following conditions:

@M o) —pE) = Y Gi—E)ViE £,
I<i<n
.. d¢
(i1) wi(§,§)=a——(§).
Xi

PROOF. Since

Ydo(t(s - &) +8)

0(€) — o(&) =/ -

0
: d
= [ X So0E —8)+8)E — ).
Xi

0 1<i<n
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we are done by taking
Iy
wxa$w=/‘5fa@—sv+$wn 0
0 Xi

(2.2) Let X be a complex manifold, and let D be a compact complex submanifold of
X. Let V be a finite family of open sets of X, which covers D. We assume that each V € V
has coordinates

2.2.1) [(Zi‘v)lsisr] ’

(wjv)i<j<s

arranged vertically, such that (z; ,)1<i<, are local equations of D. Here d := dim X and
s:=d-—r.

For V € V, by using local coordinates (2.2.1) on V, we define a column vector of
functions

(222)  Av(p.x) = Wiv0) —wiv@)isjss eV, xeDNV).

If we fix x, then these functions of y induce a regular system of parameters of the local ring

Op x-
Forx € VNV’ N D, we denote the Jacobian matrix for the change of parameters

o = Ay (¥, X)|yevinp > @ = Ay (y, X)|yevnp

aty = x by

day/day -+ day/de
(2.2.3) Jyyi(x) := : .. :

8‘15/30‘/1 T ao‘s/ao!; y=x
Let
(2.2.4) {ovaplvey

be a C* partition of unity on D, which is subordinate to the covering {V N D}ycy. We
modify the Ay (y, x) as

(2.2.5) By (y,z) = Z pvinp(X)Jyy (x)Ay(y,x) (yeV,xeVND).
VeV

By the definition (2.2.5), we see easily that, foreach x € VN V"N D and y in a
neighborhood of x,

(2.2.6) Byr(y,x) = Jyry(x)By(y,x) in (Ox)*.

(2.3) LEMMA. For each fixed x € V N D, (z;,v(¥))i<i<r and By (y, x) forms a
regular system of parameters of Ox .
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PROOF. For this, it is enough to show that By (y, x)|yevnp is a regular system of pa-
rameters of Op , = Ox x/((zi,v(¥))1<i<r). This follows from

d(By(y, x)|lyevnp)
d(Avy (y, x)lyevnp)

= D pvnp@ vy Jyy (@) = L. O

y=x V'ey

(2.4) LEMMA. In the situation of (2.2), there exists an open neighborhood U of D
such that the following is a well-defined map:

(2.4.1) w:U— D, definedby n(y)==x ifandonly if By(y,x) =0
for some (hence, any) V € V containing x and y.

PROOF. Denote zy := (z;,v)i<i<r. For each x € D, choose V € V containing x and
set

(2.4.2) Fy(x):={yeV|By(y,x) =0}.

Claim 1. For each x € D, we can find a neighborhood V, of x in X contained in the
intersection of all those V € V with V > x and a small number ¢ > 0, so that Fy (x") N {y €
Vi |zv(y) = c} contains only one point or is empty for every x’ € V, N D and for every
constant vector ¢ € C” with norm |c| < ¢.

We prove Claim 1. Define a function on D by

u(x) ;= max uy(x) .(x € D), where
xeVeV
py(x):= sup (distance from x to the complement of W) .
xewWcVv
Here, in the second equation, W runs over those neighborhoods of x on which zy and
By (y, x) form local coordinates.

By Lemma (2.3) and the compactness of D, we see that the function u(x), x € D, is
bounded away from 0. Suppose that there exist sequences of points {x,}, and {x,}, on D
with x, # x,,, so that x;, € Fy(x,) for some V € V for each n, and that the points x, and
x,, approach each other as n — oo. Then u(x,) — 0 as n — oo, which contradicts the
boundedness of u. Hence, for each x € D, we can find a neighborhood V; in X contained
in some V € V such that Fy(x’) NV, N D = {x'} forevery x’ € V. N D. Let V, € V] be
a neighborhood of x in X with the closure V, compact and with V, C V.. Then it is easy to
see that there exists a small number ¢ > 0 so that, for every x’ € D N V, and every constant
vector ¢ € C" with norm [c| < &, Fy(x') N{y € V. |zv(y) = c} consists of one point or
empty. This proves Claim 1.

Let V” be a finite open covering of a neighborhood of D consisting of those open sets V,
in Claim 1. For each x € D, we define a slice by

(2.4.3) Fy= (J eV’ |Bv(y.x)=0).
xeVbelP

Here, on the right-hand-side, V € V is chosen so as to contain V®. Note that it is independent
of the choice of V by (2.2.6).
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We choose an open neighborhood U of D so that U is covered by V’.

Claim 2. If U is small enough, then for each y € U, there exists at most one slice
F (x) passing through y.

We prove Claim 2. For simplicity of notation, we denote py := pynp in the proof of this
claim. In order to prove Claim 2, it is enough to derive a contradiction from the assumption
that there exist sequences of points {x,}, and {x,}, on D with x,, # x,, which approach each
other as n — oo and the corresponding slices F(x,) and F(x,) have a common point yj,
which approaches D as n — oco. Taking subsequences, by the compactness of D and Claim
1, we may assume that the sequences {x,}, and {x,,}, converge to a common point xo € D.
By Claim 1, the sequence {y,}, also converges to the unique point xo of D N F(xg). Take
and fix a pair of open sets V° C V with V®> € V*, V € V and xg € V°. We denote z := zy,
w = wy and B := By in this proof for simplicity of notation, and write the change of local
coordinate as

(2.4.4) wy =ay +byz+cyw+hy (V' eV),

where ay is a constant vector, by, and cy are constant matrices and sy is a vector whose
entries are holomorphic functions of order > 2 in z, w. Then we have

_dw®) | fowy | )
Jyy(x) = Ty () e = ( 3w (y) y:x>
(2.4.5) = (cyr + Wy, () = gyr(x)e,! . where
ohy
Ry (x) == E%yy)) vogyr(x) = Z(—c;,'h’v/(x))’"‘
y=x m=>0

Note that gy (x) converges to a matrix consisting of holomorphic functions in w(x) for x near
xo. Hence, by (2.2.6), we have

0 = B(yn, Xn) — B(yn, %)
= Y [ovi @) vy (xn) Avs (ns Xn) = oy (xp) Ty v (xp) Ays (9, X))
VeV
= Y Loy () gv ey by z(ym)ey (w(yn) = wx) + (hy (yn) — hys (x))
VeV
— pvi (e gy (p)ey H{byrz(n) + cyr(w(yn) — w(x,)) + (hyr(ya) = by )1
(w(xp) — w(xn))

+ D Hov ) (=cy! iy (k) gvr Cen) (W (yn) — w(xn))
Vey

— pvr () (—cy By () gy (X)) (w(yn) — w(x))))
+ {pv ) gv )yt by z(yn) + (Byr(y) — By (x2)))
— pvr () gy (xpey) by z(yn) + (hy (yn) — by ()N
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= (w(x,) — w(xy))
+ ) =y ey (hy ) gy (xa) = By () gy () hw (o)
vey
— {pvr(xn) = pyr ey By (xp) gy () w(yn)
+ pyr(xn)ey! {hy (o) g v Gen)w () — by () gy () w ()}
+ {pv: () = pvr (e iy () gvr () w(x,)
+ pvr ) gy (xn) — gvr(xp)}ey by z(m) + hy ()
+ {pv () — pv (DY () ey by z(m) + by ()
— pv ) {gvr (en)ey hyr (xn) — gvr (x))ey hy(x))

—{ovi(xn) — v DY gv eyt iy ()]

Since V is a finite covering, the extreme right-hand-side of the above equation contains only
a finite number of terms. Moreover, by Lemma (2.1) applied to the C* function py/(x,) —
pvi(x;), we can find C* functions tp(,,,j(x,,, x;,) and 1/f(;/,j(xn» xp) in w(x,), W(x,), wix,)
and w(x,) (1 < j <) so that

oy (xn) —pv’(x,/,)
= Z[{wj(xn) = w;i QW (s X)) + {0 (n) — 0 o)Wy Gy )]
j

Substituting this to the previous equation and dividing it by the norm |w(x,) — w(x,)|, we
can observe that the first term does not converge to O, whereas the other terms converge to O.
This contradiction finishes the proof of Claim 2.

Claim 3. If U is small enough, then for each y € U, there exists a slice F'(x) passing
through y.

We prove Claim 3. By Claim 1 and the result of the ‘only one’ part, there exist open
neighborhoods U € U’ of D in |Jy»cy» V" such that the boundary of F(x) N U’ is contained
in the boundary of U’ for every x € D and different slices do not intersect in U’. Here
U @ U’ means that the closure of U is contained in U’. Let U and F(x) be the closures of
U and of F(x) N U in U’, respectively. Then U* := U — ({J,cp F(x)) is open in U. In
fact, let y € U* and consider the function My (x) = distance(y, F(x))inx € D. Since D is
compact, y(x) attains its minimal value which should be positive because of the choice of
y. Hence U* is open in U. Take a slice F(xo) which passes through a boundary point yo of
the set U*, take V® € V* and V € V with F(xg) C V° C V, take a small neighborhood W
of x¢ contained in VP, take a constant vector ¢ with small enough norm and consider the map
p:WND — {ye V’ z(y) = c} defined by ¢(x) := F(x) N {z = c}, where z := zy as
before. By construction, ¢ is a C* injective map and hence its Jacobian determinant vanishes
at at most isolated points of W N D. It follows that ¢ is an open map and that its image
intersects U* N {y € V°|z(y) = ¢}, a contradiction. This proves Claim 3.
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If the neighborhood U is small enough, then zy (y) is defined for y near F(x) in U with
x € supp pvnp- In fact, since V is a finite covering and, for each V € V, the distance from
x to F(x)N (complement of V), considered as a function in x € supp pynp, is bounded away
from O, our condition is fulfilled for a small enough neighborhood U. This proves Lemma
2.4). O

3. A family of normal projections. In the notation of (0.1), we construct in this
section a family of ‘normal projections’ onto the strata of the divisor Xo + Y with normal
crossings on the complex manifold X. Our method is analogous to that of Clemens [C, §5],
but since we have to modify the argument in [C] to fit our situation and since it seems to the
author that there are some points which are not clear in the proof of [C, Theorem 5.7] (cf.
Remarks (3.4), (4.4)), we give here a complete proof for the readers’ convenience.

(3.1) Let

(.1.1) fiX—->A

be a proper, surjective, flat, holomorphic morphism from a d-dimensional complex manifold
X onto an open disc in the complex plane C with center 0. Let

(3.1.2) Y=Yy

be a reduced divisor on X with simple normal crossings, where each Y; is a prime divisor. We
assume that Y is flat with respect to f. Let ¢ be a coordinate of A. Let

(3.1.3) O =Xo= )Y mHX;

1<i<a

be the central fiber of f. We assume that f is smooth over the punctured disc A* and that the

sum
domOXi+ Y Y,

1<i<a 1<j<b

of the central fiber X and Y is a divisor with simple normal crossings.

We denote
D - {Xi if1<i<a,
i = ] .
(314) Yl—a lfa+1§l§a+b’
Dy ¢=ﬂDi for I C{1,...,a+b},
iel
and
(3.1.5) I@):=1IN{l,...,a}, I®B):=IN{a+1,...,a+b}.

Let V be an open neighborhood in X of a point of Dy, carrying coordinates

(3.1.6) [ (zi,v)iel ]

(W), v)i<j<d—|I]
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arranged vertically, such that

(3.1.7) [1 @@ =@ofHIV and { [ zv =0| =Ynv.

iel(a) iel(b)
We call such local coordinates (3.1.6) standard local coordinates and such local equations
(zi,v)iel standard local equations, respectively. We call such open set V endowed with stan-
dard local coordinates a standard local coordinate open set.
For open subsets U and U’ of a topological space Z, we denote

UsU
if U contains the closure of U’ in Z.

(3.2) PROPOSITION. In the above notation, shrinking A, if necessary, we have a
Jamily {U;} of open tubular neighborhoods U; of Dy in X and a family {rs} of C* nor-
mal projections w; . Uy — Dy with holomorphic fibers, where I runs over all subsets of
{1,...,a+ b} with D; # @, which have the following properties:

O U nU;=U;
(i) mwjomy|Uy =my forl D J;
(i) IfIC{l,...,a) thenn[ (D;NY;))=UNYjforj=1,...,b.

PROOF. We prove the assertion by descending induction on the cardinality |/| of a

subset I C {1, ..., a + b}. Since the proof is long, we divide it into five steps.
Step 1. Let
3.2.1) I :=max{|I|| D; # 0},

andlet/ C {1,...,a+ b} with |I| =/ and Dy # @.

Choose first a finite covering V; of an open neighborhood of Dy, consisting of standard
coordinate open sets. Applying Lemmas (2.3) and (2.4) to D = D; and V = V), we have
B",(y, x) := By (y, x), open neighborhoods Ui(zl) of D; (1 <i < a+b), and a C*™ projection

(3.2.2) ar U > D, wi(y) =x & Bl(y,x)=0.
Here Ul(m = Nies Ui(zl). Shrinking the Ui(zl), if necessary, we may assume that Ul(zl) is
covered by V;. Put

(3.2.3) Wi = (v nUuPy e,
(3.2.4) pwnp,; = pyw)np, for WeW,
(3.2.5) Bl (y,x) = B",(W)(y, x)|W

for WeW;,xe WNDy, andyeWnearn,_](x).

Here V(W) is the element of V; defining W = V(W) N Ul(zl”). We add a remark here. If
there are different V, V' € V; which define the same W = V N U1(2I1|) =V'n U,(ZIII), then
we throw away one of them. Going on with this process and shrinking Ul(zlll), if necessary,

we may assume that W; > W — V(W) € V is a well-defined map.
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Step 2. By the induction hypothesis, we assume that, for a positive integer m < [ and
asubset K C {1,...,a+ b} with |K| > m and Dk # @, the following data (3.2.6)—(3.2.11)
have been constructed:

(3.2.6) The sequence of open neighborhoods Ul-m) 3 U,-(zl_]) =) Ui(z'") of D;
(1<i<a+b)

(3.2.7) The finite family Vg of standard coordinate open sets which satisfies the con-
ditions that

Vg covers U,(?'Kl) - U Uz(v?wl)» and that
M>K
IMI=TK|+1
any element of Vg does not intersect U yiM=n,
MSK
IM|=|K|+1

U,(?'KI), whose member W € Wy carries the

(3.2.8) The finite, open covering Wk of
standard local equation zx w of Dy in W (k € K);

(3.2.9) The C partition {pwnpy }wew, of unity on D subordinate to the covering
Wk;

(3.2.10) For W € Wk and x € W N Dk, the column vector B‘{f, (y, x) of holomorphic
functions of y near each fixed x € X, which induce a regular system of parameters of Op, «;

(3.2.11) The C®° projection 7g : U,(<2|K|) — Dk such that mg (y) = x is equivalent
to Bv’f,(y,x) = 0 for some W € Wg. They satisfy n; o mx = 71 on U22IL|) (L O K,
L] = |K|+ D).

Now fix I C {l,...,a+b}sothat |I| =m — 1 and D; # @. If D; N Dy = @ for any
k ef{l,...,a+b}—1,then we apply for this / the construction in Step 1. Otherwise, choose
kefl,...,a+b}—Isothat Dy N Dy # 0. Put K := I L {k}.

We define a multi-valued function {kK (y, X) in y near x € Dg by

(3.2.12) D= [ apo) e,
WEWK

This definition is justified in the following way. Let g, y - be the transition function of the
standard local equations of Dy:

Zk,W = gk‘WW/Zk‘W/ (W, W/ (S WK) .
Then, for a fixed W € Wk, we have

o= [ zpo oo
WEWK

=exp( Z anDK(i)IOg(Zk'W()’)))
WeWg
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=e><p( Z Pvvnp, ) 10g(g; iy (¥)) +log(zk,v~v/(y)))>
WEWK

= exp ( Z ’OWODK (x) IOg(gk_WW/(y)))Zk‘W/(y) .
WGWK
The last equation is well-defined if we choose a branch of log(g; i (»)). The ambiguity of
the choice of a branch is the choice of a multiple

(3.2.13) [] exp@rngpynp, V-1 (g €Z).
WEWK
Claim 1. Let W € Wg. For each fixed ¥ € W N Dk, (z; (¥)ies, {& (v, %) and
B g} (y, X) form a regular system of parameters of Oy ;.
In order to prove this claim, it is enough to show that (Zi,W( ¥))ies and {kK (y, x) induce

a regular system of parameters of Oy ;/(B "i(/ b, x)~O P For simplicity of notation, we
assume / = {1,...,m — 1} and k = m. By the definition (3.2.12), we have

(z; W(Y))iel] )/ > l:lm—l 0 ]
) L 0((z. i = = ~ = |
( ([ gnlz((y’i) Vi (( ij(J’))jeKl_VeF) - 0 g,l,(,’w(xvx)
where gi.w(i,i) = [Twrewy gkww,yw()?)pw/mk(x). Since grlrf,w(i,f) # 0, Claim 1 is
proved.
Let I, k and K be as above. For W € Wk, % € Dk NW, x € n,;'(f) N D; N W near x,
and y € W near %, we define

Ky o -k, f)}

1 ——
(3.2.14) AW(y, X) = [ Bvlé(y, %)

Choose a family of small enough open neighborhoods Ui(zm"l) of D; such that

(3.2.15) Ul o Ul (1<i<a+b).
We define a C* projection
(3.2.16) wf UKD & y@KI=D A p,

by @[ (y) = x if and only if Bv’f/(y, %) =0and ¢X(y, %) — X (x, %) = 0 for some (hence,
any) W e Wk containing x and y. Here X := mg (x). Obviously, we have

(3.2.17) nxowf =ng on UFHKI™D,

Step 3. Letm <landI C {1,...,a+ b} be as in Step 2. Choose a family of open

neighborhoods Ui(zm—z) of D; such that

(3.2.18) vV s ulf? (1<i<a+b)
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and choose a finite family V; of standard coordinate open sets which satisfy the following
conditions:

V; covers Ul(z'”) — U UI((ZlKl);

!KII£IDIII+1
(3.2.19) . QIK|-1)
Any element of V; does not intersect U Ug .
K>I
IK|=T1]+1
Let
) -
(3.2.20) Wi =(vnuMya, o | o M,
K>1I
IK|=I11+1
Choose a C* partition of unity
(3.2.21) towsnp hwsept

on D; which is subordinate to the covering {W* N Di} sy and satisfies the following
1
compatibility condition: If L D K D I, |[K| =1|I|+ 1and V € V, then

2|K|—1
(3.2.22) Y pwinp, = . Pwnp, ok on USKITV D,
WHEVV;I W%W}(
V(Wh=v VW)=V

where V (W¥) (resp. V(W)) is the unique element of UM:)I Vum containing wh (resp. W). By
the construction of the V), M D I, and the same reasoning as that just after (3.2.5), V( wh)
and V (W) are indeed determined uniquely by W¥ and W, respectively. As in [C, (5.14)], such
a partition of unity (3.2.21) can be constructed descending inductively by using the properties
(3.2.6), (3.2.15), (3.2.18), (3.2.7) and (3.2.19).

Divide each W = W N Ul(2I1|) (W € Wkg) into two parts

wiwy=wn| | vy [nu?,

M1
(3.2.23) MI=111+

wany =l U (0 - ug) | o,

Mo
IM|=]1]+1

Here the overline denotes the closure. We define a covering

(3.2.24) Wi = {vnUuP ey, U | (M), WaW)h e, -
K>l
IKI=I31I+1
We denote
(3.2.25) Wy = (vnu My, v (W2 W)}y, -

K>I
[K|=|11+1
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which is obtained from W; by throwing away the open sets of ‘type Wi( )’.
Let W € Wy and x € W N Dy. As aregular system of parameters of Oy ., we take
(3.2.26), (3.2.27) and (3.2.28) below, according to the following types:

Typel: W = Wi (W) for W e Wg with K DI and |[K|=|I|+1.
Type 2 : W = Wo(W) for W € Wk with K D1 and |[K|=|I|+1.
Type3d: W= VﬂU,(zm) for VeVy.

Type 1. When W = W (W) for W € Wk with K D I and |K| = |I| + 1, we put
K = I u {k} and define

(zi,w(¥)ier (Z; wOier
2.2 ’ = ’ W).
(3220 [ Aly(y.0) ] {A;V(y,x)} bew

Here A&/ (y, x) is the column vector of functions in (3.2.14).

Type 2. When W = Wy (W) for W € Wx with K as above, starting from W, we
follow backward the construction process of W, ( ) (v = 1,2) by descending induction,
and take W* := W*(W) € W« which is just the previous open set belonging to W?* (cf.
(3.2.25)). More precisely, let WO .= w. 1f WO ¢ W;, we define /* := K and W*(W) :=
WO, Otherwise, there exist W) € W) (1 < j < n) such that WU=D = wy (W)
(1<j<n)yand W ¢ W;(,,). Then we define I* := K™ and W*(W) := W™, Putting
K = I u {k}, we define

G@i,w(Y)iel@)
Gi,w(Y)ier )
Aty (y. x)

A\ Vi @lm@)
(3.2.27) (z,»,w(y)( I1 (zj,W(y))'"(’)> )

jer*(ay—1(a)
@ w)ierw)
A&,(y, X)

iel(a) (y c W)

Here I (a), 1(b), I*(a) are as in (3.1.5). Note that the precise definition of z; w(y) (i € I(a))
is as follows:

> m(j)logz,,v-v(y)) (yew).

ziw(y) == z; \y(y) exp (—-——
W (H@Im(@) ;6w

Although, globally on W, (W), these are multi-valued functions, they make sense as elements
of Oy, up to the choice of roots of unity.
Type 3. When W =V N Ul(zlll) for V € V;, we define

[(Zi,W(y))iel] . [ (zi,v(M)ier

3.2.28 =
( ) Al (. x) (wjv(y) —wjvx)i<j<d—|i|

] yew).
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Choose a C* function x; on Ul(zlll) which is constant on each fiber of w,’( , for every
K D I with |K| = |I| + 1, and takes values in [0, 1] so that

(1 on U U,({lel—z),
K>l
IK|=11+1
0 outside U U,(?'K'_l) N Ul(zl”).
K>1I
(K|=[1]+1
We define a C* partition of unity on Dy, subordinate to the covering {W N D;}wewy,, by
taking a refinement of (3.2.21) in the following way:

XI* Pwinp, if W= WI(W) for some W ¢ Wk,
(32300 pwnp, i= { (L= Xx1) - pwinp, if W= Wa(W) for some W e Wk,
PWND; ifwW=vn Ul(zl”) for some V € V.

Here we denote W* := W N U,(zl”) eWr.

For W, W e W;andx e WN W' N Dy, let
(3.2.31) Ty (%)
be the Jacobian matrix at y = x of the change of the parameters of Op, , induced by the
A{V(y, x) in (3.2.26), (3.2.27) and (3.2.28). Modifying the A{)V(y, x) as before, we define
(3.2.32) Bl (y,x) = Z PwnD, () Ty () Al (v, x) .

W'eWw,;

As in Step 1, shrinking the open neighborhoods Uj(-zlll) (1 < j < a+ b) and the disc A, if
necessary, we define a C* projection
(3.2.33) a: UMY 5 Dy 7)) =x e BlL(y,x)=0.

Step 4. In this step, we prove that 7r; in (3.2.33) is well-defined. In fact, in the proof
of Lemma (2.4), the arguments in the proofs of Claim 1 and Claim 3 work well for D;, Wy,
(zi,w(y))ier and B{V(y, x). In order to show Claim 2 in the proof of Lemma (2.4) in the
present situation, we divide its proof into two cases by (3.2.19): Let x € Dj.

Case 1. If W € Wy contains x, then W is of Type 1 or Type 2.
{Case 2. There exists W € W; of Type 3 which contains x .

Case 1. If W € Wy contains x, then we can take W € Wk, K = I U {k}, so that
W=W,(W)(v=12).Lety € US'" and % := ng(x) € Dg. Then, by using (3.2.33),
(3.2.32), (3.2.30), (3.2.22), (3.2.26) and (3.2.27), we have

0=Bj(y.x)= Y pwnp, Jiyy () Al (y. x)
W’ eW;
= > Pinng Oy AL (1, %) = MEOA (. %),
W/EWK
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where

M) = ) (~)[1 0 Ml 0 } [1 0]
X) = PwrAap . X K ~ K ~ = .

irowe T Tew @0 pe® ] L ek
Here we use (3.2.14). Since det M(x) = 1 # 0, BéV(y, x) = 0is equivalent to A%/(y, x) =0,
and hence equivalent to Bvli(/(y’ x) = 0 and ;‘kK (y, x) — ;kK (x,x) = 0. Thus our assertion is
verified in Case 1.

Case 2. As in the proof of Claim 2 in the proof of Lemma (2.4), let {x,}, and {x}}, be
the sequences on Dy which converge to the common point xg, and let y, be the common point
of the slices F(x,) and F(x,) so that y, — xp as n — oco. Take W € W; of Type 3 which
contains xg, and take V € V with W = VﬂUl(zlll). Letz := (zi,v)iel, W := (W) v)i<j<d—|I|
and B := B‘fv. Then the change of local coordinates (2.4.4) becomes

(3.2.34) Bl (y, x) = aw(x) + bw ()2(y) + cw () w(y) + A (y, x)

for W € Wy. Here aw'(x), by (x), cw(x) and hy(y, x) are C*® in x. In z and w, aw/(x) is
a constant vector, by (x) and cy-(x) are constant matrices, and ky(y, x) is a vector whose
entries are functions of order > 2. As in (2.4.5), the Jacobian matrix Jyw'(x) := JVIVW,(x)
becomes

w(y) dBL,(y,x) -
J / = — = -
ww' (x) 9B (v.x) x ( wy |,
(3.2.35) = (cw(x) + h’W,()c))_l =gwew (x)~', where
’ oh /(yax) —lp/ m
Wy (x) i= Tww(_yT n gw(x) 1= ’;)(—cwlhw/(x)) .

Put oy := pwnp, and Ay := A{,V,. Since Ay (x, x) = 0, the argument proceeds as

0 = B(yn, Xn) — B(yn, x},)

= > Low ) Tww Cn){Aw: On: Xn) — Awr (X, Xn)}
W eW,
— ow () Iww () (Awr (Yns %) — Awr (%, X))

> low Gn)gw Gn)epr {bwrz(3n)
W'eWw,;

+ ewr (W(yn) — w(xn)) + (hw(yn) — hwr (xn)))
— pw G gw () ey {bw z(n)
+ e (w(yn) — w(x))) + (hwr(yn) — hwr ().

The rest of the argument works well and we get our assertion in Case 2.
Step 5. The descending induction is now completed. Finally we take

(3.2.36) U=U® (I1<i<a+b).
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Thus we obtain a desired family of C* projections
(3.2.37) mp:Uy— Dy (ICA{l,...,a+b})

with holomorphic fibers, which have the properties (i), (ii) and (iii). O

(3.3) REMARK. We use the notation in (3.1) and in Proposition (3.2) and its proof.
Ifxe DN U,(?”I) and if W € Wy contains x, then W is of Type 1 or Type 2, because of
(3.2.19) and (3.2.23). Hence the proof in Case 1 in Step 4 in the proof of Proposition (3.2)
shows the following:

Let/ C K :=1uf{k} C{l,...,a+ b} and assume Dy # @. Let x € D; and let
X := mg(x) € Dg. Then, the fiber nl_l (x) is a submanifold of the fiber n,}l (x) defined by
G0 D) = gl @ B =00 e g (B

(3.4) REMARK. In the proof of [C, Theorem 5.7], the argument to show the well-
definedness of the projections 7y is missing. We prove this in Step 4 in the proof of Proposi-
tion (3.2). Section 2 and the constructions in Step 3 in the proof of Proposition (3.2) is needed
for this proof.

4. A family of global equations. By using the results in the previous section, we
construct in Proposition (4.3) below a C* family of holomorphic coordinates of the fibers
of the family of normal projections in Proposition (3.2), which fits to the original morphism
f X — Ain (3.1.1). The argument in this section is a refined version of the proof of the
latter half of [C, Theorem 5.7] (cf. Remark (4.4)).

(4.1) Letf:X — A, XoandY be asin (3.1). We freely use the notation in Section 3,
especially the notation in Proposition (3.2) and in its proof.

Before stating the main result in this section, we refine the compatibility condition
(3.2.22) of the families of C* partition of unity {Pwinp, }wﬂewf introduced in (3.2.21) into
a form suitable for the proof of Proposition (4.3) below.

In Step 3 of the proof of Proposition (3.2), we have first constructed the covering W,
in (3.2.20), of the tubular neighborhood U,(“l) of Dy, and then refined it into Wy in (3.2.24).
The family Wl,) in (3.2.25) is obtained from W; by throwing away the open sets of Type 1.
Let W € W,;. We recall the notation W*(W) introduced just before (3.2.27), i.e., when we
follow backward the construction process of W € W, by descending induction, W*(W) is
just the previous open set belonging to W;,, forsome M C {1, ... ,a + b} containing /. We
understand here that W*(W) = Wif W € Wt;

ForI c M C{l,...,a+ b}, we denote

(4.1.1) Wi (M) == {W € W | W*(W) e Wi}
Then, these form a division of W :

(4.1.2) Wr=| | wi).
M>DI
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By the definition (3.2.30) of the partition of unity {pownp,}wew,, it satisfies the following

refined compatibility condition induced from the one in (3.2.22) for the partition of unity

{pW“ﬁDl}WﬁeW“: IfM>KDI,|K|=|I|+1and W* € Wi,,, then every W € W) (M) is
1

of type Wi( ) and, on U,?IKH) N D;, we have

(4.1.3) Y. pwon, = D X Pyinpg O TK -
WeW, (M) WeWg (M)
W*(W)=w* W*(W)=W*

Here the x; is the functions in (3.2.29) and the 7k is the projections in Proposition (3.2).
We prove a lemma, which will be used in the proof of Proposition (4.3) below.

(4.2) LEMMA. We use the above notation and also the notation in the proof of Propo-
sition (3.2). Let J C K = JU{k} C M C {1, ... ,a+b} withk < a. Letx € D;nUZ*I7D,
F = JTJ_I (x) and x := g (x). Then, for y € F, we have

4.2.1) l_[ Zk,w (y)PWnPk @ — l_[ Zk‘w(x)PWﬂDK(})
WeWg (M) WeWg (M)

Here we regard zy w ()" Pk ® .= exp(pwnpyg (X) log zx, w(y)) etc. as usual.

PROOF. Takeachain K =: Ky C K, C--- C Ky := M with |Kj|+1=|Kj;|. We
have XK (x) = XK, (y) (1 < j < n) for x and y in the Lemma, since the function Xk; on

Ug (le’ D in (3.2.29) is constant on each fiber of the projection w,’f /*!' in (3.2.16) by definition,

K; 20K
since the projections wK_+' and 7k ; coincide on UI((I b

(2|K,|)

by Remark (3.3), and since the

projections 7k, and 7k, are compatible on Uy Hence the assertion (4.2.1) follows

from the followmg assertions (4.2.2) and (4.2.3).
For K, M, k, y and x in the Lemma,

4.2.2) l_[ 2k w(y)PWOPk x) — ko()% ﬂM(y))(IMXK" ONXKy_y )Xk XK )
WeWg (M)
For M, k, y and x in the Lemma,
(4.2.3) e (o () = G (. Tm (x))

By taking product over W* € W;)w and using the definition (3.2.30) of the partition of
unity {ow*npy, }wrewy» (4.2.2) follows from the following assertion (4.2.4).

(4.2.4) l—[ 2w (D) Pk D = (74 e (y)PWH DM G Dy XKy W) Xie, (D XKy )

WeWg (M)
W (W)=W*

We prove (4.2.4) by induction on the length of the chain n. Whenn = 1, ie., K = M,
(4.2.4) is obvious. When n > 1, by the induction hypothesis, we have

P (X) " Yo
(4.2.5) 1—[ Zk,W(y) wnDg, 7 (zk. w+ (y)PW 0Py (ﬂM(y)))XK,,_,()) Xk3MXK (¥)
WeWg, (M)
W*(W)=w*
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Then, using (4.2.5), the definition of the standard local equations (3.2.26) and the compatibil-
ity (4.1.3), we have

l_[ zew ()R ) = l—[ ziwe ()" PK
WeWk, (M) WeWk, (M)
WH(W)=W* W (W)=W*
= Zk,W*(}’)ZWEW’(l 0. wewy=w= PWnDg, (1)

Dewy., (). wriy=w= XKy Neyjp, )
= zk,w*(¥) K 2

XKy (¥)

PwAD (j)
= [l @™
WeWk, (M)

W*(W)=w*
= (zx.w* ()W Oy (ﬂM(y)))xK,,_l(y)~--x1<2(y))u<l o

Thus, (4.2.4) and hence (4.2.2) is proved.

We prove (4.2.3). For any set L with K C L C M and M = L u {k}, we have, by the
compatibility of the projections 7, and the result in Remark (3.3), that

F Cryl(mp(x)
=1, () Ny 157 (3, em () = M (L), T (x))}
This, together with x € 71[1 (mp(x)), implies
G () = G L), e () = &Y (x, T (x)) -

Thus, (4.2.3) is proved. O

We now prove the main result of this section:

(4.3) PROPOSITION. We use the notation in (4.1), in Lemma (4.2) and in Section 3.
Shrinking the open neighborhoods U; of D; (1 < i < a + b) and the disc A, and restricting
the projections wy to the shrinked U, we have multi-valued C* functions

zi(y) onX (1<i<a+b),

which satisfy the following conditions:
(i) Foreachl <i <a+b,z; is a global equation of D; in X, which is multi-valued
as a global function on X with branches determined by the choice of multiples

[1 ex@rniwyiewnp, TiGHV=1 (niweZ,yeX).
Isi,WeW;
) IfJ C {1,...,a} and F is the fiber n;l(x) over x € Dy, then the restricted
Sunctions zj|F, j € J, which are now single-valued after choosing branches, form a system
of holomorphic coordinates on F.
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(iii) LetJ,xand F be as in (ii). Fork € {1, ... ,a+ b} — J, the functions zj is constant
on the fiber F, if it is defined.
(iv) Letx € Xo.LetJ :={j|1<j<a,Dj>x}andlet F := n]l(x). Then

I—[ z'f(j) = (constant)t o f on F,
jeJ
where the (constant) depends on the choice of x, the choice of z; (1 < i < a) and the choice
of their branches.
PROOF. We continue to use the notation in the proof of Proposition (3.2). Let U i(z) be
the open neighborhoods U; of D; in Proposition (3.2) (1 < i < a + b). We choose smaller
open neighborhoods U,.(l) of D; (1 <i <a+ b)sothat

(4.3.1) vV eu®.

Foreach I C {1, ..., a + b}, we denote

(4.3.2) Uy :=U® - (U U,f‘)) :
k¢l

PutU® := Ui <i<a+s Ui- Note that these open sets U; form a covering of U®. Let

(4.3.3) {(U1}icq,... .a+b)

be a C™ partition of unity on U@ which is subordinate to the above covering and has the
following property:

Forall J Cc I cC{l,...,a+b}andallx € Dy,
(4.3.4)

Yy is constant along the set th_l x)N Uﬁl) .
Such a partition of unity can be constructed easily by descending induction on |/|.
We restrict the projections ; to

(4.3.5) m: UMY > Dy for IC{l,...,a+b}.

We shrink the disc A, so that X is covered by Ui(l) (1 <i<a).
By using the {i’ in (3.2.12), we define for each 1 < i < a + b, a multi-valued C*®
function z; on X by

(4.3.6) zi(y) = 1_[ {il (y, 71 (y))llfl(.\’) .

I>i

Like (3.2.12), this definition is justified in the following way. For I C {1,...,a + b}, put
x = m(y), if defined, and take W; € W; satisfying pwnp,(x;) # 0. Let g; ww, be the
transition function z; w = gi,ww,;zi,w;, (W € Wi, WN W; # 0). Put W; := Wj;. Let
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9i,w; w; be the transition function z; w, = ¢; w,w;, zi,w;. Then we have

vr(y)
zi(y) = l—[{il(y, JT[(y))‘/"(Y) = H ( 1—[ zi.w (y)PWPs (m))

I3i Isi \WeW;
vi(y)
=11 (z;;w, O T giww )P “”)
VE) wew;
1216
=zwOM[] (( [T giww ()¥or (x’)> 9i, W, (y))
'ET) WeW,;

= zi,w;(y) exp (Z Z Y1 () pwnp, (x1) log(gi ww, (¥)gi,w, w; (y))) .
Isi WeWw;

The last equation is well-defined if we choose a branch of log(g; ww, (¥)gi w,w; (¥)). The

ambiguity of the choice of a branch is the choice of a multiple

(4.3.7) [ exp@rniwyiownp, ripDV=1) (weZ).

I13i,WeW;

Thus, (i) is proved.
We prove (ii). Let J C {1,... ,a},x € Dy and F := nj_l(x), as in (ii). First, note that

(4.3.8) ifIc{l,...,a+b}andsuppyyy NF # @, thenl D J.

This follows from F C Uﬁl), supp¥; C U, and the definition (4.3.2) of U;. Hence, for
y € FNU;, we have

(4.3.9) wi(y) =mjomy(y) =m(x)

by the compatibility in Proposition (3.2) (ii). This, together with the property (4.3.4) of the ¥,
and the definition (4.3.6) of the z;, implies that the restricted functions z;|F, j € J, which
can be regarded as single-valued functions, form a system of holomorphic coordinates on F.
(ii) is proved.

We prove (iii). Let J, x, F and k be as in (iii). Put K := Ju{k}. If Dx = @, then zj is not
defined on the fiber F. So, we assume Dg # #. Forany M with K ¢ M C {1,... ,a + b}
and Dy # @, the function {,(M(y, mp(y)) is constant in y € F by (4.2.3) in the proof of
Lemma (4.2). Hence, by the definition (4.3.6) of the function z; and by the definition (4.3.3)
of the Yk, zx is constant on the fiber F. (iii) is proved.

We prove (iv). Let x, J and F be as in (iv). By (4.3.6), (iv) follows if we prove the
following assertion:

For/ D Jandy € F — Xo, we have

Vi (y)
4.3.10 .
@10 (H 5w, m(y))’"(”) = (constant) (1 o f(y)¥',

jeJ
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where both sides are considered as single-valued functions on F after choosing their branches.
In fact, taking the products, over all I containing J, of the both sides of (4.3.10), we have

vi(y)
[ [ constanty o fy)"'” = T (H &iw (. m(y))"“f))

1DJ IDJ \jeJ
m(j)
=1 (H ¢ m(y))‘/”(y))
jeJ \IDJ

for y € F — Xp. Applying (4.3.8) to both sides, we have (iv) on F — X, and hence on F by
the identity theorem.
In order to prove (4.3.10), we divide the problem into two cases according as / = J or
ID>J.
Case 1. I = J: In the present case, by using the division (4.1.2) of Wy, and the
definition (3.2.12) of the ¢ jJ the assertion (4.3.10) follows from Claim 1 below.
Claim 1.
H l—[ (ijw(y))m(j)pwm)] (x)
jed WeW, (M)
= (constant)(t o f(y))ZWEWJ(W PWOD; ) for y e F — X .

We prove this by induction on |M — J|.

When (M — J| = 0, we have W; (M) = W; (see the definition (4.1.1)). Then, by the
descending-inductive constructions (3.2.27) and (3.2.28) of the standard local equations on
W € Wy (M) = W), we have
4.3.11) [TGwonN™@ =10 f(y) foryeF.

iel
This implies Claim 1 in this case.
If M —J| >0, wechoose k € M — J and set K := J U {k}. By (3.2.23), we may

assume that such k is chosen so that U,(?lk'_l) contains x. The induction hypothesis yields
ey (¥)
[T TI Gaon™ ot

(4.3.12) jeK (@ wewy (M)
= (constant)(t o f(y))ZWEWKW’pW”DK @ for y € F — Xo,

where ¥ := mg(x) and F := nEl(i).

If k > a, Claim 1 follows directly from (4.3.12) and the compatibility (4.1.3) of the
partition of unity p,.

Now we assume k < a. Taking the x;(x)-th power of the right-hand-side of (4.3.12),
and using the compatibility (4.1.3), we have

((constant)(z o f (y))=Wewktn ook ©yx )

(4.3.13)
— (constant)? @ (z o f(y))Z=Wewsin WD, B for e X
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Put C := ]_[WEWK(M)(Z,(’W(y))m(j)pW”DK XX Then, Lemma (4.2) shows that C is con-
stant in y € F. Taking the x;(x)-th power of the left-hand-side of (4.3.12), using the fact that
the elements of Wk (M) and of W, (M) are of Type 1 (see (4.1)), and using the compatibility
(4.1.3), we have

Doy (x
l—[ 1_[ (Z]‘W(y))m J anDK X)xJ(x)

JEK(a) WeWg (M)

= Cn 1_[ l_[ (Zj,w*(y))m(j)anDK(f)XJ(x)

J&) wrew,, WeWg M)
(4.3.14) W*(W)=W*

= CH l_[ l_[ (Zj,w(y))m(j)pwnDJ(X)

Il wecwl, WeWsan

— Cl—[ l—[ (Zj,w(y))m(j)PwnDj ™ for yeF—Xp.
Jj€J WeW; (M)

Combining (4.3.13) and (4.3.14), and denoting the new constant also by (constant), we have
Claim 1 in this case.

Case 2. I D J: Inthis case, we prove (4.3.10) by induction on [/ — J|.

If |I — J| = 0, our assertion is the result in Case 1.

Now we assume that (4.3.10) holds forevery I D J with [I —J| < m. Let J =: J'u{j},
x' € Dy, F' .= th_/l(x’) and X := m;(x"). Since supp ¥; C U}, the assertion (4.3.10) for J’
follows from:

Claim 2. ¢ jI (y, X) is constant for y € F' N U}, where we choose and fix a branch of
the function.

Note that the projections wy, M C I, are compatible on U,;. Let I’ :== I — {j}. Then
I>1I'>J and

F crp' &), where ¥ :=mp(x').
Hence, Claim 2 follows from Remark (3.3), that is, Jrl',l(i/ ) is the submanifold of 711_1()2)
defined by
(. 5 — ¢ (%, %) =0.
This completes the proof of (4.3.10) and the assertion (iv) is verified. O

(4.4) REMARK. Theargument of Clemens to prove [C, Theorem 5.7 v)] (= our Propo-
sition (4.3) (iv)) breaks down. This point is rescued by our subdivisions (3.2.23) and their
resulting constructions in Step 4 in the proof of Proposition (3.2).

5. Monoid actions and recovery of vanishing cycles. In this section, by using the
multi-valued C* global equations z; of the components of Xg in Proposition (4.3), we lift
the natural action of the monoid S = [0, 1] x C on the disc A of the base compatibly to all
spaces of the diagram (0.1) (Theorem (5.2)). Our argument here is a variation of the one in
[C, Section 6]. As an application of this, we prove our main theorem (Theorem (5.4)).

(5.1) Letf:X — A, XpandY be asin (3.1).
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As in Example (1.2.1), let
(5.1.1) flog . xlog _, Alog

be the log family induced by the flat family f : X — A endowed with the fs log structures
My, M, asociated to (X¢)req and {0}, respectively. Let Y'°8 be the log topological space,
defined by the fiber product

Y]og Xlog

(5.12) 7y l l

Y — X.

Let
(5.1.3) S:=10,1] x C,

be the product of the closed unit interval [0, 1] and the unit circle C; with center O in the
complex plane. S is regarded as a monoid by multiplication. We consider the following
actions of the monoid S on the disc A and on the associated space A!°g:

(s,v)-t=svt on A,

(5.1.4) .
(s,v) - (t,u) = (svt,vu) on A°8, where t = |t|u.

(5.2) THEOREM. We use the notation in (5.1) in Section 3 and in Section 4. Shrinking

the disc A, if necessary, the actions (5.1.4) of the monoid S lift to piecewise C* actions on X,
on Y, on X'°¢ and on Y'°8 with the following three properties.

(i) The actions of S are compatible with the inclusions X O Y and X'°8 D Y'°¢, and

with the diagram

floglv fJV
Alog T2 AL

(i1) The action on X of each element (s, v) € S is homotopic to the identity.
(iii)  The action of S on X is compatible with the projections

g (U; - U UIu{k]) - (DI - U Ulu{k))

k¢l k<a k¢l k<a

forany I C {1, ..., a}, where a is the number of irreducible components of the central fiber
Xo.

PROOF. We divide the proof into two steps.

Step 1. First we introduce ‘hyperbolic polar coordinates’ and an action of the monoid
[0, 1] on them. Recall the notation Xy = leis o m(1) D; for the central fiber of f.
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Let
C :=1[0,1]* the unit cube in R%,
Cs:= {(ri)eC > r{’"")=a} for0<8<1,
(5.2.1) 1<i<a
Es:= |J Cy= {(ri) ec| [ ¥ = 5] .
8'€[0,5] I<i<a
Let A := {1, ..., a}. We choose a real number
(5.2.2) O<e<l.

In the following, we assume that all the cuboids contained in C are parallel to the cube C.
Let G be the cuboid in C with the two points B := (¢, ... ,¢) and (1, ..., 1) as the extreme
vertices. We construct a family of projections from each face of G containing the vertex B to
the union of the faces of C containing the origin O as follows:

For I C A, we denote by B(/) the vertex of the cuboid G whose i-th coordinate is 1
for i € I and the other coordinates are €. Let G(I) be the face of G with the two points B
and B([) as the extreme vertices, and let C () be the face of C passing through O, parallel to
G (1) and of the same dimension as G (/). For each point Q € G(I), let G(I)* + Q be the
affine subspace which is the orthogonal complement of G (/) passing through Q, and let pg
be the projection in G (1 )L + Q from the point Q whose rays are in the cuboid in G (1 Y +0
with the two points Q and (G (1 )L + Q) N C(I) as the extreme vertices. We denote by p; the
collection of the projections pg (Q € G(I)). We thus have a family {p;};ca of projections.

Choose a positive number §y < 1 so small that

(5.2.3) (ri)iea € Es, implies r; < /2 forsome i € A.

Then, for a fixed non-negative number § < 8o and any fixed point (r;) € Cs,, the hypersurface
C; and the unique ray of the family of projections {p;};c4 passing through the point (r;)
intersect at one point and, moreover, the intersections are transversal except at the points of
the singular locus of Cy. Denote this intersection point by

(5.2.4) (r,(ri)), where r:=46/8y and (r;) € Cs,,

and call this hyperbolic polar coordinates of the point in E;.
We define a continuous action of the monoid [0, 1] on Ej,

(5.2.5) R:[0,1] x Esy — Es;, by R(s, (r, (ri))) := (sr, (ri)) .
Then, this action has the following properties:

(5.25.1) R is piecewise C*.

(5.25.2) R(s, Cs) = Cys for § € [0, &o] .

(5.2.5.3) R(1, )=id.

(5.2.5.4) R(s, )|lc, =1id forany s € [0, 1].
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Since 4 is chosen to have the property (5.2.3), we see that
(5.2.6) {(ri) € Csy | rj <€/2}j=1...a
is an open covering of Cs,. Take a C* partition of unity
(5.2.7) {Ajlj=1....a
on Cs, subordinate to the covering (5.2.6), and extend this over Ej, by
(5.2.8) Aj{r, (rj))) == A;((r;)) forall r € [0, 1].
Step 2. We define here actions of the monoid S on X and on X2
Let
(5.2.9) ri(y) =1zl and ri(Mui(y):=zi(y) (A1 =<i=<a),

where z;(y) is the equation of D; on X, constructed in Proposition (4.3). Note that the r; (y)
are single-valued functions, whereas the u;(y) are multi-valued. We may assume that the
positive number ¢ in (5.2.2) are chosen so small that

(5.2.10) eXlriy)<e}CclUs (I1<i=<a),
where U; is the open neighborhood of D; in Proposition (4.3). We shrink A so that the U;
(1 <i <a)cover X, thatr;(y) < 1forally € Xandalli € {1,...,a}, and that the radius
of A is not greater than §¢ which is chosen in Step 1.

Fory € X, let

I'={i|l<i<aU>y}, xw=m(), Fi=nr;"(),

(5.2.11) |
F'°2 : the closure of 7y '(F — F N Xo) in X',

Note that F'N X is a divisor with normal crossings on F, and hence F has the fs log structure
M induced by (F N Xo)req (see, (1.1.4)). F°¢ — Fin (5.2.11) is nothing but the one
defined by M as in (1.2). Now for each u; (i € I), we choose a branch and regard u; as a
single-valued function on F'°2. We thus have coordinates (r;( ), u;( ))ie; on F°¢. Now we
define an action of the monoid S = [0, 1] x C on F°2

[ri((s, v) - 1) == R(s, )i

. e,
ui((s,v) - m) = /MOy, () Gel)

(5.2.12) S x Flog _ Flog

where
neFe, x(n=yeF,

(5.2.13) R(s,y) = (R(s, y)j)i<j<a = R(s, (rj(¥)1<j<a) »
A () == Ai((rjOMi<j<a) -

Claim 1. The action (5.2.12) is compatible with the restricted morphism f1°¢ : Flog —
Alog_
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In fact, by (5.2.12) and Proposition (4.3) (ii), we have, for (s, v) € S and n € F'°8, that

ro f°8((s, v) - n) = (constant) (s ]—[ri(ﬂ)m([)) =s-ro f%m)),

iel
uo f°((s, v) - n) = (constant) (v nui(n)m(i)) =v-uo fl8(p).
iel
Claim 2. The monoid actions (5.2.12) on the fibers F'°¢ fit together to give a continu-

ous action on X'°8.
In fact, in the notation in Section 4, it follows from (5.2.10) that

ri(y) > ¢ foryeUi(z)—U,- (1<i<a).

Therefore, for each pair I C M C {1, ..., a}, by construction, especially by the property of
hyperbolic coordinates, we have

R(s,y)j =rj(y) and A;(y)=0
forall s €[0,1], all y € Uy N (U —Uy) andall j € M —1.

From this together with (5.2.12), we get Claim 2.

By Proposition (4.3) (iii), we see that the S-action on X log preserves the subspace Y log
Now, it is obvious that S-actions on X'°& and on Y'°2 drop down to induce S-actions on X and
on Y and that these S-actions satisfy the other conditions in the theorem. O

(5.3) We assume that the family f : X — A, in Section 3, is reduced. Using the action
of the monoid S in Theorem (5.2), we introduce a horizontal projection of the family of log
topological spaces f'°8 : X'°8 — Al°¢ in (5.1) in the following way. We denote

(5.3.1) 08 :=7;'0) >~ C, .
For (0, 1), (s, 1) € S, we define a continuous map
(5.3.2) X8> X8 by 7(n):=(0,1) 5= lim(s, 1) 7.
S>>
Note that, by Proposition (4.3) (iii), 7 is compatible with the inclusion ¥'°¢ ¢ X'°8,

(5.4) THEOREM. We use the notation in (3.1) and in (5.1). We assume that the family
f X — Alis reduced. Then, the family of pairs of log topological spaces

flog . (Xlog, Ylog) - Alog
is locally piecewise C™ trivial over the base. In particular, the family of open spaces
;log . (Xlog _ Y]og) - Alog

e}
is also locally piecewise C* trivial over the base. This means that the above family f1°8

[e]
recovers the vanishing cycles of the given degenerating family f: (X —Y) — A in the most
naive sense.
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PROOF. Let7 = (t,u) € A€ and 7y = (0, 1) - 7 = (0, u) € 0'°8. The theorem follows
from the remark after (5.3.2) and the following:

Claim. The restricted map 7 : X :f)g — X}Zg is bijective.

First, note that

(5.4.1) U{’::U,—( U Uk> (IcCfl,...,a})

k¢l k<a
form a subdivision of X = Uls j<a U;. Hence, by Theorem (5.2) (iii), it is enough to examine
the above claim on each U;. Letx € D; N Uy, F := n,‘l(x), and let F'°% be the proper
transform of F by tx as in (5.2.11). By Claim 2 in the proof of Theorem (5.2), it is enough
to examine the claim even on each F!°%, Here, by Definition (5.2.12), our restricted map
becomes

. o8, plog [ri(n) = (@D ) =RO.M
! o ui(m) = ui (0, 1) - n) = ui(n)
Here y := mx(n). This is obviously bijective by construction. O

(5.5) COROLLARY. In the situation of Theorem (5.4), we have the surjective homo-
morphism of fundamental groups

w1 (Xy = Yp) - mi(Xo — Yo),

induced by the restriction of the shrinking map from the general fiber X; — Y; = (f Yy~L(t) to
the central fiber Xo — Yo = (f)~1(0).
PROOF. Lett € A, f € rA_l(t) and fp ;= (0,1) - f € rA_l(O). The assertion follows

immediately from the observation that the composite map tx o 7 of the shrinking map (5.3.2)
and the projection induces a continuous surjective map

X, — Y, = X8 _yloe =, xloe_yloe _, x, vy,

fo fo

whose fibers are products of circles, in particular connected. g

6. Integral structure of limit of variation of mixed Hodge structure and its local
monodromy. In this section, we introduce two types of integral structure and local mon-
odromy on the variation of mixed Hodge structure associated to a semi-stable degeneration of

pairs, as an application of the local topological triviality of the family } log . (xlog _ ylogy
Al°2 in Theorem (5.4) and the log version of the Riemann-Hilbert correspondence by Kato-
Nakayama.

(6.1) Let f:X — A, Xoand Y be as in (3.1). In this section, we assume moreover
that X € PV x A, for some N, and f is the restriction of the second projection, and that X,
is reduced.

Let

6.1.1) Mx(Xo+Y) — Ox
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be the fs log structure on X corresponding to the divisor with normal crossings Xo + Y (cf.
Example (1.1.4)), and let

Wy (Y)
be the sheaf of differential forms on X with log poles associated to the fs log structure
Mx(Xg + Y) (cf. (1.3.1)). We denote by

(6.1.2) wxalY) = 0 (Y)/f o)

the sheaf of relative differential forms on X with log poles along X + Y, and by o} /alY)
its de Rham complex. In the present case, w§, / AY) = 25 /A (log(Xo + Y)) in the classical
notation.

(6.2) THEOREM. In the notation in (6.1), (5.4) and (1.4), let V = qu*w;(/A(Y)
and L¢ = Rq(}log)*Cfor any integer q. Then we have

()  Le~Ker(V:(ta)*V —> )" ®pioe (12)'V) on A%,
or, equivalently,

() V= (@a)(OF&c Le) on A.

PROOF. Let N := logy be the monodromy logarithm of the locally free sheaf V|A*
on A* := A — {0} with the Gauss-Manin connection V. Choose a multi-valued, flat frame
{e1, ..., e} of V|A*. Modifying

(6.2.1) ¢ :=exp(—zN)-e;, z:=Quv/—1)"'logt,

we get an invariant frame {e|, ..., e,} which extends over A and induces a frame of the
canonical extension V of V|A*.

Let W be the weight filtration corresponding to Y. [SZ, Section 5] showed that there
exists a W-relative monodromy weight filtration M of the central fiber V(0), which is charac-
terized by the properties

(6.2.2) NM, C My_,, Nk grﬁ_k ger = gr?”_k gr}v.

We may assume that the basis of V(0) induced by {e|, ... , &} respects the filtration M. Then,
by using the frame {ey, ... , €.}, we extend M over V. Here we add some comments on (6.2.2)
for the readers’ convenience. For e; € My, we have

Véj =—dz @ N -exp(—zN) -e; = —dz @ exp(—zN) - Ne;

= —dz ®exp(—zN) - (Zaiei) = —(Zn\/—l)"dlogt ® (Za,-é,-) s

where ), aje; := Nej € My_,a; € C. Hence

V(h(1)é;) = dh(t) ® é; — Quv/—1)"'h(t)d logt ® (Zaié,-) €0l ® My.
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Note also that exp(—zN) and N commute. Hence we have
N = —27~/—1Reso(V)
under the identification
@*(V|A%) () — V), &) — &;(0),

where @ : h — A* is the universal covering and u € §.
Thus we see that )V endowed with V and M is an object of Dy;ip(A) in (1.4.3). Applying
the log Riemann-Hilbert correspondence (1.4), we get a locally constant sheaf

Ker(V : (74)*V — a)lA’]Og ® loe V)
X

on A'°8 of C-vector spaces.
On the other hand, since by Theorem (5.4) the family

}log . (Xlog _ Ylog) — Alog

is locally piecewise C®° trivial over the base, L¢ := R9( ; logy C is also a locally con-
stant sheaf on A!°8 of C-vector spaces. These two locally constant sheaves coincide over
(zA) "1 (A% S oAx by construction, and hence they coincide over all Alog,

The second isomorphism follows from the first by the inverse correspondence. |

(6.3) We use the notation in (6.1) and (6.2). Choose now a multi-valued, flat frame
(6.3.1) {e1,... . e}
of V| A* from the image of
(RI(F%9),2) | (12)"1(4%) = ((za)"V) | (za) "' (4% 5> V| A",
We regard (6.3.1) also as a multi-valued, flat frame of (74)*V, by abuse of notation. Putting
(6.3.2) ¢j:=exp(—zN)-e;, z:=Quv/—1)"'logt,
as before in the proof of Theorem (6.2), we have an invariant frame

(6.3.3) {er,.... e}

of V|A*, which extends over A and induces a frame of the canonical extension V of V|A*.
We use the same letters for the induced frame of V, by abuse of notation.

(6.4) THEOREM. In the notation of Theorem (6.2) and of (6.3), we have two types of
integral structure on V = R4 f*a);(/A(Y):
(1) The integral structure determined by the multi-valued, flat frame (6.3.1) of

(Ta)*V = 0% @7 RI(f18),Z on AE.

Here the local monodromy is induced by the C |-action on A8,
(ii) The integral structure determined by the invariant frame (6.3.3) of

V> 04 ®z (14)sRI(F0),(F8)1Z[2] on A.
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Here 7 = (27r\/r1_ )_1 logt as before, and the monodromy logarithm is given by
—2m+/—1Resp(V).
PROOF. We prove (i). By Theorem (6.2) and the universal coefficient theorem, we see
that
(ta)*V = O ¢ Lc ~ O ®c € @z RI(f'%).Z ~ O ®7 RI(f18),Z.
We prove (ii). We regard Z[z] as a sheaf of algebras on A°8.
Claim.  RI(f'8),((f')7'Z[z]) ~ Z[z] ®z R7(f'*8).Z.
Set ¢ =£1°8. For a small open set U C A!°€, we will prove, by the Cech method, that
(6.4.1) Hi(p7'U, 07 'Z[2]) ~ Z[2)(U) ®z H(¢~'U,Z).
In fact, let U be a suitable open covering of ¢~ !U. Then, by the property of the sheaf Z[z],
we have
FrWUon---NUs ¢~ 'Zz) ~Z[z2I(U) ®z T'WoN---NUy, Z).
Hence
ClU, 97" Z[2) ~ Z[2)(U) ®z CU (U, Z) .
This implies (6.4.1), and the Claim is proved.
By the Claim, we see that
Olzg ®z RIpZ ~ Oleg ®z1z) Z[z2]1 ®z RipZ
~ Oleg ®z1:) Ripsp™'Z[2]
~ (14) 7104 ®z Z[2] ®z1;) R1¢0™'Z12]
~ (14)"'Oa ®z Ripp~'Z[2].
This together with (i) yields
(ta)"'Oa ®z Ripup™'Z[2] = (1a)*V .
Taking (t4)«, We obtain (ii), by the projection formula.
The other assertions are obvious by construction. O

Note that the integral structures (i) and (ii) in Theorem (6.4) are independent of the choice
of a multi-valued, flat frame (6.3.1). However, the integral structure (ii) depends on the choice
of a coordinate t on A. Note also, in the case Y = {J, that the integral structure (i) in Theorem
(6.4) is the one in the limiting mixed Hodge structure of Schmid [Sc], whereas the integral
structure (ii) is the one in the limiting mixed Hodge structure of Steenbrink [St1].

(6.5) REMARK. (i) In this paper, we restrict ourselves to the case of one-dimen-
sional base throughout, and we use the log version of the Riemann-Hilbert correspondence
of Kato-Nakayama [KN] in the proof of Theorem (6.2). However, we note that our argument
can be generalized to the case of higher-dimensional base. We note also that Section 6 can
be rewritten by using the theory of canonical extensions of P. Deligne instead of the above
correspondence.
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(ii)) The author was informed by Morihiko Saito, on May 24, 1996, that there is a
correction of [St, (5.9)] in [Sa, 4.2].

(iii) When the base is 0'°% in (5.3.1) and Y = @, the assertion of type (ii) in Theorem
(6.4) is stated in [KN]. The proof of the Claim in the proof of Theorem (6.4) is due to C.
Nakayama.

(iv) Steenbrink [St2] introduced an ‘integral structure’ of the limiting mixed Hodge
structure by using the log structure associated to the pair X9 C X (cf. (1.1.4)). However,
he used fractions there and consequently neglected torsions. In this sense, his structure can
be regarded as a Q-structure. In contrast, in our formulation in Theorem (6.4) (i), we can

consider, for example, RY( ; logy_(Z /(1)) in the notation there, and hence /-adic cohomologies.

(v) After writing up this manuscript, Kazuya Kato and the author, we introduced in
[KU] a notion of polarized logarithmic variation of Hodge structure and a notion of polarized
logarithmic Hodge structure. The latter is the weaker notion obtained from the former by
forgetting the Griffiths transversality. Consider the case Y = (. Let Hz be one of the integral
structures in Theorem (6.4), F be the Hodge filtration on V = R f,w§% /a0 and (, ) be the cup
product modified by the Lefschetz decomposition. Then the result in this section shows that
(Hz, (,), T} F) is a polarized logarithmic variation of Hodge structure.

(vi) After writing up this manuscript, the author was informed by T. Matsubara and
by F. Kato, independently, that they obtained in [Mt] and in [K] the integral structure of type
Theorem (6.4) (i) in the case where Y = @ in our notation. Their method is different from
ours. They first proved a log version of the relative Poincaré lemma and then used it to obtain
the integral structure.

REFERENCES

[AMRT] A. AsH, D. MUMFORD, M. RAPOPORT AND Y. S. TAl, Smooth compactification of locally symmetric
varieties, Math. Sci. Press, Brookline, 1975.

[C] C. H. CLEMENS, Degeneration of Kéahler manifolds, Duke Math. J. 44-2 (1977), 215-290.

[F] T. Fusisawa, Log Riemann-Hilbert correspondence (after K. Kato and C. Nakayama), Proceedings,
Hodge Theory and Algebraic Geometry, 1995, Aug. 21-25, Kanazawa Univ. (1996), 27-38.

[K] F. KATO, The relative log Poincaré lemma and relative log de Rham theory, Duke Math. J. 93 (1998),
179-206.

[KN] K. KATO AND C. NAKAYAMA, Log Betti cohomology, log étale cohomology, and log de Rham coho-

mology of log schemes over C, Kodai Math. J. 22-2 (1999), 161-186.

[KU] K. KATO AND S. Usul, Logarithmic Hodge structures and classifying spaces, in Proc. NATO Advanced
Study Institute/CRM Summer School 1998: The Arithmetic and Geometry of Algebraic Cycles, Banff,
Canada, 1999.

[Mj] H. MAJIMA, Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes
in Math. 1075, Springer-Verlag, Berlin-New York, 1984.

[Mt] T. MATSUBARA, On log Hodge structures of higher direct images, Kodai Math. J. 21 (1998), 81-101.

[Sa] M. SAITO, Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988), 849-995.

[Sc] W. SCHMID, Variation of Hodge structure: The singularities of the period mappings, Invent. Math. 22
(1973), 211-319.

[St1] J. H. M. STEENBRINK, Limits of Hodge structures, Invent. Math. 31 (1976), 229-257.

[St2] J. H. M. STEENBRINK, Logarithmic embeddings of varieties with normal crossings and mixed Hodge
structures, Math. Ann. 301 (1995), 105-301.



36 S. USUI

[SZ] J. H. M. STEENBRINK AND S. ZUCKER, Variation of mixed Hodge structure, I, Invent. Math. 80 (1985),
489-542.

DEPARTMENT OF MATHEMATICS
GRADUATE SCHOOL OF SCIENCE
OSAKA UNIVERSITY

TOYONAKA OSAKA, 560-0043
JAPAN

E-mail address: usui@math.wani.osaka-u.ac.jp





