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Abstract. We classify singularities of lightlike hypersurfaces in Minkowski 4-space
via the contact invariants for the corresponding spacelike surfaces and lightcones.

1. Introduction. The objective of this paper (and [5–9]) is to link the differential ge-
ometry of lightlike hypersurfaces in Minkowski 4-space with the modern theory of Legendrian
singularities. Lightlike hypersurfaces are ruled3-manifolds whose induced first fundamental
forms are positive semi-definite. Extending these ruling lines defines a natural completion
which contains (non-immersive) singular points. The generic intersection of such a hypersur-
face with a spacelike 3-plane is an immersed 2-manifold that encodes the local differential
geometry of lightlike hypersurfaces [9, 10]. However, this approach does not efficiently adapt
to more general spacetimes. As an alternative we will use Montaldi’s characterization of
submanifold contacts in terms ofK-equivalent functions, which provides a technical link-
age to Legendrian singularity theory. As a consequence, we provide a local classification of
lightlike hypersurface singularities in terms of algebraic invariants (anR-algebra) and differ-
ential geometric invariants (the lightcone indicatrix). In [3, 4], lightlike hypersurfaces have
been studied from the viewpoint of the general theory of relativity. In this paper we study
the detailed differential geometric properties of lightlike hypersurfaces (and corresponding
spacelike surfaces).

In Section 2 we begin by describing Cartan’s frame method adapted to spacelike surfaces
as well as lightlike hypersurfaces (see [7] for a more detailed discussion.) This is used to de-
fine the lightcone indicatrix. In Section 3 we describe the (multivalued) Legendrian distance
squared function whose discriminant is a given lightlike hypersurface. The given hypersurface
is now the wave front set of this function, as described in Legendrian singularity theory [1].
Section 4 applies Montaldi’s theorem to the description of generic contact between a given
lightcone and a spacelike surface. Singularities in the hypersurface are now characterized as
points of higher-order contact. We can also consider the contact of spacelike surfaces with
other pseudo-spheres (i.e., hyperbolic spaces or de Sitter spaces). However the most inter-
esting case is to consider the contact with lightcones. Moreover, from the point of view of
physics, lightlike hypersurfaces are of importance because they are models of different types
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of horizons studied in relativity theory [2, 14]. Therefore, we only consider the singularities
of lightlike hypersurfaces in this paper. In Section 5 we present the classification of lightlike
hypersurface singularities and tangent lightcone indicatrices, which is based on the theory
of Legendrian singularities [1, 19]. (See Appendix for a brief description.) As a source of
examples and motivation, Section 6 indicates that generic lightlike hypersurface singularities
occur in the level surfaces of solutions to the eikonal partial differential equation (PDE) on
Minkowski 4-space. Section 7 indicates how these methods can be locally adopted to some
curved spacetimes. Finally, we remark that many arguments in this paper can be directly gen-
eralized to higher-dimensional Minkowski spaces. However, from the viewpoint of physics,
Minkowski 4-space (i.e., space-time) is the most important and we would need a much larger
paper for writing the higher-dimensional cases, so that we only consider four-dimensional
Minkowski space here.

We assume throughout the paper that all manifolds and maps areC∞ unless otherwise
stated.

2. Local differential geometry of spacelike surfaces. In [7], we introduced the basic
geometric tools for the study of spacelike surfaces in Minkowski 4-space. Here we briefly
review a part of the theory relevant to this paper.

Let R4 = {(x1, x2, x3, x4) | x1, x2, x3, x4 ∈ R} be a Cartesian 4-space. For any vectors
x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) in R4, the pseudoscalar product of x and y is
defined by〈x, y〉 = −x1y1 +x2y2 +x3y3 +x4y4. We call(R4, 〈, 〉) aMinkowski 4-space and
simply write it asR4

1 instead of(R4, 〈, 〉).
We say that a vectorx in R4

1 \ {0} is spacelike, lightlike or timelike if 〈x, x〉 > 0,= 0 or
< 0, respectively. The norm of the vectorx ∈ R4

1 is defined by‖x‖ = √|〈x, x〉|.
Let X : U → R4

1 be a regular surface (i.e., an immersion), whereU ⊂ R2 is an open
subset. We identifyM = X(U) with U through the immersionX.

We callM a spacelike surface if the tangent planeTpM of M is a spacelike plane (i.e.,
consists of spacelike vectors) for any pointp ∈ M. In this case, the normal spaceNpM is a
timelike plane (i.e., Lorentz plane) (cf. [17]). Let{e3(x, y), e4(x, y)} be an orthonormal frame
of TpM and{e1(x, y), e2(x, y)} a pseudo-orthonormal frame ofNpM, wherep = X(x, y).
Heree1(p) is a timelike vector andei , i = 2,3,4, are spacelike vectors.

In order to establish the fundamental formula for a spacelike surface inR4
1, we define

some notions similar to those of Little [11]. As usual, define the formsωi = δ(ei )〈dX, ei〉
andωij = δ(ej )〈dei , ej 〉, where

δ(ei ) = Sign(ei ) =
{

1 , i = 2,3,4 ,

−1 , i = 1 .

Here〈dX, ej 〉 denotes the pseudoscalar product of the vector valued one-formdX and the
vectorej . Then we havedX = ∑4

i=1ωiei anddei = ∑4
j=1ωij ej , i = 1,2,3,4. We have
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the Codazzi type equations:


dωi =
4∑
j=1

δ(ei )δ(ej )ωij ∧ ωj

dωij =
4∑
k=1

ωik ∧ ωkj ,

whered denotes exterior differentiation. Also, we have

ωij = −δ(ei )δ(ej )ωji .(∗)

In particular,ωii = 0 for i = 1,2,3,4.
It follows from the fact〈dX, e1〉 = 〈dX, e2〉 = 0 that

ω1 = ω2 = 0 .

Therefore we have


0 = dω1 =
4∑
j=1

δ(e1)δ(ej )ω1j ∧ ωj = −
4∑
j=3

δ(ej )ω1j ∧ ωj = −ω13 ∧ ω3 − ω14 ∧ ω4 ,

0 = dω2 =
4∑
j=1

δ(e2)δ(ej )ω2j ∧ ωj =
4∑
j=3

δ(ej )ω2j ∧ ωj = ω23 ∧ ω3 + ω24 ∧ ω4 .

By Cartan’s lemma, we can then write{
ω13 = aω3 + bω4, ω14 = bω3 + cω4 ,

ω23 = eω3 + fω4, ω24 = fω3 + gω4

for appropriate functionsa, b, c, e, f andg. We define that〈d2X, ei〉 = −〈dX, dei〉, i =
1,2, then we have a vector-valued quadratic form:

−〈d2X, e1〉e1 + 〈d2X, e2〉e2 = (aω2
3 + 2bω3ω4 + cω2

4)e1 − (eω2
3 + 2fω3ω4 + gω2

4)e2 ,

which is called thesecond fundamental form of the spacelike surface. It follows from (∗) that

d




e1
e2
e3
e4


 =




0 ω12 ω13 ω14
ω12 0 ω23 ω24
ω13 −ω23 0 ω34
ω14 −ω24 −ω34 0







e1
e2
e3
e4


 ,

from which we also get the following equations:

d




e1 − e2
e1 + e2

e3
e4


 =




0 −ω12 ω13 − ω23 ω14 − ω24
ω12 0 ω13 + ω23 ω14 + ω24

ω13 − ω23

2

ω13 + ω23

2
0 ω34

ω14 − ω24

2

ω14 + ω24

2
−ω34 0







e1 + e2
e1 − e2

e3
e4


 .
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On the other hand, we define

LCp =
{
x ∈ R4

1

∣∣∣∣ −(x1 − p1)
2 +

4∑
i=2

(xi − pi)
2 = 0

}

and

S2+ = {x = (x1, x2, x3, x4) ∈ LC0 | x1 = 1} ,
wherep = (p1, p2, p3, p4) ∈ R4

1. We callS2+ the(future) spacelike unit sphere andLC∗
p =

LCp \ {p} thelightcone with deleted vertex atp. We also define

LC∗+ = {x = (x1, x2, x3, x4) ∈ LC∗
0 | x1 > 0}

and call it afuture lightcone at the origin. For any lightlike vectorx = (x1, x2, x3, x4), we
have

x̃ =
(

1,
x2

x1
,
x3

x1
,
x4

x1

)
∈ S2+ .

Let e1 = (a1, a2, a3, a4) ande2 = (b1, b2, b3, b4). Clearly, we have

d(e1 ± e2) = d(a1 ± b1)(ẽ1 ± e2)+ (a1 ± b1)d(ẽ1 ± e2) .

Finally, we get the following fundamental formula:

d




ẽ1 − e2

ẽ1 + e2
e3
e4




=




0 −ω12 − d(a1 − b1)

a1 − b1

ω13 − ω23

a1 − b1

ω14 − ω24

a1 − b1

ω12 − d(a1 + b1)

a1 + b1
0

ω13 + ω23

a1 + b1

ω14 + ω24

a1 + b1
ω13 − ω23

2

ω13 + ω23

2
0 ω34

ω14 − ω24

2

ω14 + ω24

2
−ω34 0







ẽ1 + e2

ẽ1 − e2
e3
e4


 .

For a given normal vectorv = ξe1 +ηe2 ∈ NpM, we havedv = dξe1 + ξde1 +dηe2 +
ηde2 and hence

〈dv, e3〉 ∧ 〈dv, e4〉 = [(aξ + eη)(cξ + gη)− (bξ + f η)2]ω3 ∧ ω4

= [(ac− b2)ξ2 + (ec + ag − 2bf )ξη + (eg − f 2)η2]ω3 ∧ ω4 .

We define a functionKl as follows:

Kl (v)(p) = Kl (ξ, η)(p) = (ac − b2)ξ2 + (ec + ag − 2bf )ξη + (eg − f 2)η2 .

We also define themean curvature vector H by

H(p) = 1

2
(a + c)e1 − 1

2
(e + g)e2
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and

Hl(v)(p) = Hl(ξ, η)(p) = 〈H(p), v〉 = 1

2
(a + c)ξ + 1

2
(e + g)η .

We now consider a symmetric matrix

A± =
(
a ± e b ± f

b ± f c ± g

)
.

Let κ±
i (p), i = 1,2 be the eigenvalues ofA± which we callprincipal lightcone curvatures of

M atp. By definition, we have

κ±
1 (p)κ

±
2 (p) = detA = (ac− b2)± (ce + ag − 2bf )+ (eg − f 2) = Kl(1,±1)(p)

and

2Hl(1,±1)(p) = ±e ± g + a + c = κ±
1 (p)+ κ±

2 (p) .

We say thatp ∈ M is an umbilic point if κ±
1 (p) = κ±

2 (p). An umbilic point is flat if
Kl(1,±1)(p) = 0. On the other hand, we define a pair of hypersurfaces

LH±
M : M × R → R4

1

by

LH±
M(p, u) = LH±

M(x, y, u) = X(x, y)+ u ˜(e1 ± e2)(x, y) ,

wherep = X(x, y). We callLH±
M thelightlike hypersurface alongM.

In general, a hypersurfaceH ⊂ R4
1 is called alightlike hypersurface if it is tangent to a

lightcone at any point. It is known that any lightlike hypersurface is given by the construction
above at least locally (cf. [10] and Section 6).

3. Lorentzian distance-squared functions on spacelike surfaces. In this section we
introduce the notion of Lorentzian distance-squared functions on spacelike surfaces, which is
useful for the study of singularities of lightlike hypersurfaces.

First we define a family of functionsG : M×R4
1 → R on a spacelike surfaceM = X(U)

by
G(p,λ) = G(x, y,λ) = 〈X(x, y)− λ,X(x, y)− λ〉 ,

wherep = X(x, y). We callG the Lorentzian distance-squared function on the spacelike
surfaceM. For any fixedλ0 ∈ R4

1, we write g(p) = Gλ0(p) = G(p,λ0) and have the
following proposition.

PROPOSITION 3.1. LetM be a spacelike surface andG : M×R4
1 → R the Lorentzian

distance-squared function on M . Suppose that p0 �= λ0. Then we have the following.

(1) g(p0) = ∂g/∂x(p0) = ∂g/∂y(p0) = 0 if and only if p0 − λ0 = µ ˜(e1 ± e2)(p0)

for some µ ∈ R \ {0}.
(2) g(p0) = ∂g/∂x(p0) = ∂g/∂y(p0) = detH(g)(p0) = 0 (detH(g)(p0) is the

determinant of the Hessian matrix) if and only if

p0 − λ0 = µ ˜(e1 ± e2)(p0)
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for some µ ∈ R \ {0} which is the inverse of a non-zero principal curvature κ∓
i (p0), i = 1,2.

PROOF. (1) The conditiong(p) = 〈X(x, y) − λ0,X(x, y) − λ0〉 = 0 means that
X(x, y)−λ0 ∈ LC0. We can observe thatdg(p) = 〈dX(x, y),X(x, y)−λ0〉 = 0 if and only
if X(x, y)− λ0 ∈ NpM. Hence,g(p0) = dg(p0) = 0 if and only ifp0 − λ0 ∈ NpM ∩ LC0.

This is equivalent to the condition thatp0 − λ0 = µ ˜(e1 ± e2)(p0) for someµ ∈ R \ {0}.
(2) By a Lorentzian motion, we may assume thatp0 is the origin ofR4

1. We can choose
local coordinates such thatX is given by the Monge form

X(x, y) = (f1(x, y), f2(x, y), x, y)

with f1x (0,0) = f1y (0,0) = f2x (0,0) = f2y (0,0) = 0, so that we havee1(p0) = (1,0,0,0)
ande2(p0) = (0,1,0,0). In this case we have

f1xx (0,0) = −a(p0) , f1xy (0,0) = −b(p0) , f1yy (0,0) = −c(p0) ,

f2xx (0,0) = e(p0) , f2xy (0,0) = f (p0) , f2yy (0,0) = g(p0) .

Under the condition (1), we have the following calculations:

∂2g
∂x2 = gxx = 2(〈Xxx,X − λ0〉 + 〈Xx,Xx〉)

= 2(〈(f1xx , f2xx ,0,0), µ ˜(e1 ± e2)(p0)〉 + 2〈(f1x , f2x ,1,0), (f1x , f2x ,1,0)〉) ,
∂2g
∂x∂y

= gxy = 2(〈Xxy,X − λ0〉 + 〈Xx,Xy〉)

= 2〈(f1xy , f2xy ,0,0), µ ˜(e1 ± e2)(p0)〉 + 2〈(f1x , f2x ,1,0), (f1y , f2y ,0,1)〉 ,
∂2g
∂y2 = gyy = 2(〈Xyy,X − λ0〉 + 〈Xy,Xy〉)

= 2〈(f1yy , f2yy ,0,0), µ ˜(e1 ± e2)(p0)〉 + 2〈(f1y , f2y ,0,1), (f1y , f2y ,0,1)〉 .
It follows that

gxx(0,0) = −2µa(p0)± 2µe(p0)+ 2 ,

gxy(0,0) = −2µb(p0)± 2µf (p0) ,

gyy(0,0) = −2µc(p0)± 2µg(p0)+ 2 .

Therefore,

detH(gλ)(p0) =
∣∣∣∣−µa ± µe + 1 −µb ± µf

−µb ± µf −µc ± µg + 1

∣∣∣∣ (p0) = 0

if and only if

(ac+ eg ∓ ag ∓ ce− b2 − f 2 ± 2bf )µ2 + (±e± g − a − c)µ+ 1 = 0 ,

which is equivalent to

Kl(1,∓1)µ2 − 2Hl(1,∓1)µ+ 1 = 0 .

This means thatµ �= 0 and 1/µ is one of the lightcone principal curvaturesκ∓
i (p0). �



SINGULARITIES OF LIGHTLIKE HYPERSURFACES 77

Thus, Proposition 3.1 means that the discriminant set of the Lorentzian distance-squared
functionG is given by

DG = {λ | λ = X(p)+ u ˜(e1 ± e2)(p), p ∈ M,u ∈ R} ,
which is the image of the lightlike hypersurface alongM. Therefore, a singular point of the

lightlike hypersurface is a pointλ0 = X(p0) + u0 ˜(e1 ± e2)(p0) at whichu0 = −1/κ∓
i (p0),

i = 1,2.
We now explain the reason why such a correspondence exists from the point of view

of contact geometry. Letπ : PT∗(R4
1) → R4

1 be the projective cotangent bundle with its
canonical contact structure. We next review the geometric properties of this bundle. Consider
the tangent bundleτ : TPT∗(R4

1) → PT∗(R4
1) and the differential mapdπ : TPT∗(R4

1) →
TR4

1 of π . For anyX ∈ TPT∗(R4
1), there exists an elementα ∈ T ∗(R4

1 such thatτ (X) =
[α]. For an elementV ∈ Tx(R4

1), the propertyα(V ) = 0 does not depend on the choice of
representative of the class[α]. Thus, we can define the canonical contact structure onPT∗(R4

1)

by

K = {X ∈ TPT∗(R4
1) | τ (X)(dπ(X)) = 0} .

Via the coordinates(v1, v2, v3, v4), we have the trivializationPT∗(R4
1)

∼= R4
1 × P 3(R)∗,

and call

((v1, v2, v3, v4), [ξ1 : ξ2 : ξ3 : ξ4])
homogeneous coordinates of PT∗(R4

1), where[ξ1 : ξ2 : ξ3 : ξ4] are the homogeneous coordi-
nates of the dual projective spaceP 3(R)∗.

It is easy to show thatX ∈ K(x,[ξ ]) if and only if
∑4
i=1µiξi = 0, wheredπ̃(X) =∑4

i=1µi∂/∂vi . An immersioni : L → PT∗(R4
1) is said to bea Legendrian immersion if

dimL = 3 anddiq(TqL) ⊂ Ki(q) for anyq ∈ L. The mapπ ◦ i is also calledthe Legendrian
map and the setW(i) = imageπ ◦ i, thewave front of i. Moreover,i (or the image ofi)
is called theLegendrian lift of W(i). In Appendix, we give a quick survey of the theory of
Legendrian singularities. For additional definitions and basic results on generating families,
we refer to [1, Chapter 21]. By the preceding arguments, the lightlike hypersurfaceLH±

M is
the discriminant set of the Lorentzian distance-squared functionG. We have the following
proposition (see Appendix for the definition of a Morse family).

PROPOSITION 3.2. Let G be the Lorentzian distance-squared function onM . For any
point ((x, y),λ) ∈ G−1(0),G is a Morse family around ((x, y),λ).

PROOF. Denote

X(x, y) = (X1(x, y),X2(x, y),X3(x, y),X4(x, y)) and λ = (λ1, λ2, λ3, λ4) .

By definition, we have

G(x, y,λ) = −(X1(x, y)−λ1)
2 + (X2(x, y)−λ2)

2 + (X3(x, y)−λ3)
2 + (X4(x, y)−λ4)

2 .
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We now prove that the mapping

∆∗G =
(
G,
∂G

∂x
,
∂G

∂y

)

is non-singular at((x, y),λ) ∈ G−1(0). Indeed, the Jacobian matrix of∆∗G is given by
 2(X1 − λ1) −2(X2 − λ2) −2(X3 − λ3) −2(X4 − λ4)

A 2X1x −2X2x −2X3x −2X4x
2X1y −2X2y −2X3y −2X4y


 ,

where

A =

 2〈X − λ,Xx〉 2〈X − λ,Xy〉

2(〈Xx,Xx〉 + 〈X − λ,Xxx〉) 2(〈Xx,Xy〉 + 〈X − λ,Xxy〉)
2(〈Xy,Xx〉 + 〈X − λ,Xyx〉) 2(〈Xy,Xy〉 + 〈X − λ,Xyy〉)


 .

SinceX is an immersion, the rank of the matrix(
2X1x −2X2x −2X3x −2X4x
2X1y −2X2y −2X3y −2X4y

)

is equal to two. Moreover,X − λ is lightlike, so that it is linearly independent of tangent
vectorsXx,Xy . This means that the rank of the matrix

2(X1 − λ1) −2(X2 − λ2) −2(X3 − λ3) −2(X4 − λ4)

2X1x −2X2x −2X3x −2X4x
2X1y −2X2y −2X3y −2X4y




is equal to three. Therefore the Jacobi matrix of∆∗G is non-singular at((x, y),λ) ∈
G−1(0). �

SinceG is a Morse family, we can define a Legendrian immersion

L±
G : Σ∗(G) → PT∗(R4

1)

by

L±
G(x, y,λ)=(λ, [(X1(x, y)−λ1) : (λ2−X2(x, y)) : (λ3−X3(x, y)) : (λ4−X4(x, y))]) ,

where

Σ∗(G) = (∆∗G)−1(0) = {(x, y,λ) | λ = LH±
M(x, y, u) for someu ∈ R} .

We observe thatG is a generating family of the Legendrian immersionL±
G whose wave front is

LH±
M (cf. Appendix). Therefore, we might say that the Lorentzian distance-squared function

G onM gives a Minkowski-canonical generating family for the Legendrian lift ofLH±
M .

4. Contact with lightcones. In this section we describe Montaldi’s characterization
of submanifolds contact in terms ofK-equivalence [13]. It is then adapted to lightlike hyper-
surfaces and their indicatrices. We begin with the following basic observations.

PROPOSITION 4.1. Let λ0 ∈ R4
1 and M a spacelike surface without umbilic points

satisfying Kl(1,∓1) �= 0. Then M ⊂ LCλ0 if and only if λ0 is an isolated singular value of
the lightlike hypersurface LH±

M and LH±
M(U × R) ⊂ LCλ0.
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PROOF. By definition,M ⊂ LCλ0 if and only if gλ0(x, y) ≡ 0 for any (x, y) ∈ U ,
wheregλ0(x, y) = G(x, y,λ0) is the Lorentzian distance-squared function onM. It follows
from Proposition 3.1 that there exists a smooth functionµ : U → R such that

X(x, y) = λ0 + µ(x, y) ˜(e1 ± e2)(x, y) .

Therefore, we have

LH±
M(x, y, u) = λ0 + (u+ µ(x, y)) ˜(e1 ± e2)(x, y) .

Hence, we haveLH±
M(U × R) ⊂ LCλ0. Moreover, it follows that

∂LH±
M

∂u
= ˜(e1 ± e2)(x, y) ,

∂LH±
M

∂x
= µx(x, y) ˜(e1 ± e2)(x, y)+ (u+ µ(x, y)) ˜(e1 ± e2)x(x, y) ,

∂LH±
M

∂y
= µy(x, y) ˜(e1 ± e2)(x, y)+ (u+ µ(x, y)) ˜(e1 ± e2)y(x, y) ,

from which we obtain(
∂LH±

M

∂u
∧ ∂LH±

M

∂x
∧ ∂LH±

M

∂y

)
= (u+ µ(x, y))2 ˜(e1 ± e2) ∧ ˜(e1 ± e2)x ∧ ˜(e1 ± e2)y .

By the assumption, we have

X − λ0 = µ(x, y) ˜(e1 ± e2)(x, y) .

SinceX −λ0 is lightlike andXx,Xy are spacelike,X −λ0,Xx,Xy are linearly independent.
Therefore, we have

0 �= (X − λ0) ∧ Xx ∧ Xy = µ(x, y)3 ˜(e1 ± e2) ∧ ˜(e1 ± e2)x ∧ ˜(e1 ± e2)y ,

so that (
∂LH±

M

∂u
∧ ∂LH±

M

∂x
∧ ∂LH±

M

∂y

)
= 0

if and only if u+ µ(x, y) = 0 under the assumption thatKl(1,∓1) �= 0. This means thatλ0

is an isolated singularity ofLH±
M . The converse assertion is trivial. �

Motivated by the proposition above, we now consider the contact of spacelike surfaces
with lightcones in view of Montaldi’s theorem [15]. LetXi andYi , i = 1,2, be submanifolds
of Rn with dimX1 = dimX2 and dimY1 = dimY2. We say thatthe contact of X1 and
Y1 at y1 is same type asthe contact of X2 andY2 at y2 if there is a diffeomorphism germ
Φ : (Rn, y1) → (Rn, y2) such thatΦ(X1) = X2 andΦ(Y1) = Y2. In this case we write
K(X1, Y1; y1) = K(X2, Y2; y2). Since this definition of contact is local, we can replaceRn

by arbitraryn-manifold. Montaldi gives in [15] the following characterization of contact by
usingK-equivalence.
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THEOREM 4.2. LetXi and Yi , i = 1,2, be submanifolds of Rn with dimX1 = dimX2

and dimY1 = dimY2. Let gi : (Xi, xi) → (Rn, yi) be immersion germs and fi : (Rn, yi) →
(Rp,0) be submersion germs with (Yi , yi) = (f−1

i (0), yi). Then

K(X1, Y1; y1) = K(X2, Y2; y2)

if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

Turning to lightlike hypersurfaces, we now consider the functionG : R4
1 × R4

1 → R
defined byG(x,λ) = 〈x − λ, x − λ〉. Givenλ0 ∈ R4

1, we denotegλ0(x) = G(x,λ0), so
that we haveg−1

λ0
(0) = LCλ0. For any(x0, y0) ∈ U , we take the pointλ±

0 = X(x0, y0) +
u0(ẽ1 ± e2)(x0, y0) and have

gλ±
0

◦ X(x0, y0)) = G ◦ (X × idR4
1
)((x0, y0),λ

±
0 ) = G(x0, y0,λ

±
0 ) = 0 ,

whereu0 = −1/κ∓
i (x0, y0), i = 1,2. We also have relations

∂gλ±
0

◦ X

∂x
(p0) = ∂G

∂x
((p0),λ

±
0 ) = 0 ,

∂gλ±
0

◦ X

∂y
(p0) = ∂G

∂y
(p0,λ

±
0 ) = 0 .

These imply that the lightconeg−1
λ±

0
(0) = LCλ±

0
is tangent toM = X(U) atp0 = X(x0, y0).

In this case, we call eachLCλ±
0

thetangent lightcone ofM = X(U) atp0 = X(x0, y0).

We now describe the contacts of spacelike surfaces with lightcones. LetLHσ
M,i :

(U, (xi, yi)) → (LC∗+, vσi ), i = 1,2, be two lightlike hypersurface germs of spacelike sur-
face germsXi : (U, (xi, yi)) → (R4

1, pi), whereσ = ±. We say thatLHσ
M,1 andLHσ

M,2
areA-equivalent if there exist diffeomorphism germsφ : (U, (x1, y1)) → (U, x2, y2)) and
Φ : (R4

1,λ
σ
1 ) → (R4

1,λ
σ
2 ) such thatΦ ◦ LHσ

M,1 = LMσ
M,2 ◦ φ. If both of the regular sets of

LMσ
M,i are dense in(U, (xi, yi)), it follows from Proposition A.2 (see Appendix) thatLHσ

M,1
andLHσ

M,2 areA-equivalent if and only if the corresponding Legendrian lift germs are Leg-
endrian equivalent. This condition is also equivalent to that two generating familiesG1 and
G2 areP -K-equivalent by Theorem A.3, whereGi : (U × R4

1, ((xi, yi),λ
σ
i )) → R denotes

the Lorentzian distance-squared function germ ofXi .
On the other hand, if we denotegi,λσi (x, y) = Gi(x, y,λ

σ
i ), then we havegi,λ±

i
(x, y) =

gλ±
i

◦ Xi (x, y). By Theorem 4.2,K(X1(U),LCλσ1 ,λ
σ
1 ) = K(X2(U), LCλ

σ
2 ,λ

σ
2 ) if and only

if g̃1,λ1 andg̃2,λ2 areK-equivalent. Therefore, we can apply Proposition A.4 to our situation.
We denote byQσ(X, (x0, y0)) the local ring of the function germ̃gλσ0 : (U, (x0, y0)) → R,
whereλσ0 = LCσM((x0, y0), u0). We remark that we can explicitly write the local ring as
follows:

Q±(X, (x0, y0)) = C∞
(x0,y0)

(U)

〈〈X(x, y), ẽ1 ± e2(x0, y0)〉 − 1〉C∞
(x0,y0)

(U)

,

whereC∞
(x0,y0)

(U) is the local ring of function germs at(x0, y0).
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THEOREM 4.3. Let Xi : (U, (xi, yi)) → (R4
1,Xi ((xi, yi))), i = 1,2, be spacelike

surface germs such that the corresponding Legendrian lift germs are Legendrian stable. For
σ = + or −, the following conditions are equivalent.

(1) The lightlike hypersurface germs LHσ
M1

and LHσ
M2

are A-equivalent.
(2) G1 andG2 are P -K-equivalent.
(3) g1,λ1 and g2,λ2 are K-equivalent.
(4) K(X1(U),LCλσ1 ,λ

σ
1 ) = K(X2(U), LCλ

σ
2 ,λ

σ
2 ).

(5) Qσ(X1, (x1, y1)) andQσ (X2, (x2, y2)) are isomorphic as R-algebras.

PROOF. The preceding arguments shows that (3) and (4) are equivalent. The other as-
sertions follow from Proposition A.4. �

Given a spacelike surface germX : (U, (x0, y0)) → (R4
1,X(x0, y0)), we call

(X−1(LCλ±), (x0, y0))

thetangent lightcone indicatrix germ of X, whereλ± = X(x0, y0)+u0 ˜(e1 ± e2)(x0, y0) and
u0 = −1/κ∓

i (x0, y0), i = 1,2. As a corollary of Theorem 4.3, we have the following.

COROLLARY 4.4. Under the assumptions of Theorem 4.3, if the lightlike hypersur-
face germs LHσ

M1
and LHσ

M2
are A-equivalent, then tangent lightcone indicatrix germs

(X−1
1 (LCλ±

1
), (x1, y1)) and (X−1

2 (LCλ±
2
), (x2, y2))

are diffeomorphic as set germs.

PROOF. Note that the tangent lightcone indicatrix germ ofXi is the zero level set of
gi,λi . SinceK-equivalence among function germs preserves the zero-level sets of function
germs, the assertion follows from Theorem 4.3. �

5. Classification of singularities of lightlike hypersurfaces. In this section we pro-
vide a generic classification of the singularities of lightlike hypersurfaces inR4

1. We consider
the space of spacelike embeddings Embsp(U,R4

1) with the WhitneyC∞-topology. We also
consider a functionG : R4

1 × R4
1 → R defined byG(v,λ) = 〈v − λ, v − λ〉, and claim thatGλ

is a submersion atv �= λ for anyλ ∈ R4
1, whereGλ(v) = G(v,λ). GivenX ∈ Embsp(U,R4

1),
we haveG = G ◦ (X × idR4

1
). We also have the�-jet extension

j�1G : U × R4
1 → J �(U,R)

defined byj�1G(u,λ) = j�gλ(u), where we writeG(u,λ) = gλ(u). Consider the trivialization
J �(U,R) ≡ U × R × J �(2,1). For any submanifoldQ ⊂ J �(2,1), we denoteQ̃ = U ×
{0} ×Q. Then we have the following proposition as a corollary of Lemma 6 in Wassermann
[18]. (See also Montaldi [16].)

PROPOSITION 5.1. Let Q be a submanifold of J �(n− 1,1). Then the set

TQ = {X ∈ Embsp(U,R4
1) | j�1G is transversal to Q̃}

is a residual subset of Embsp(U,R4
1). If Q is a closed subset, then TQ is open.
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On the other hand, we have a stratification given by the set ofK-orbits in J �(2,1) \
W�(2,1) (for the definition ofW�(2,1) and additional properties, refer to [5, p. 120]). As a
consequence of the above proposition, we have the following theorem.

THEOREM 5.2. There exists an open dense subset O ⊂ Embsp(U,R4
1) such that for

any X ∈ O, the germ of the Legendrian lift of the corresponding lightlike hypersurface LH±
M

at each point is Legendrian stable.

By the classification results on stable Legendrian mappings, we have the following.

COROLLARY 5.3. There exists an open dense subset O ⊂ Embsp(U,R4
1) such that

for any X ∈ O, the germ of the corresponding lightlike hypersurfaces LH±
M at any point

(x, y, u) ∈ U × R is A-equivalent to one of the map germs Ak (1 ≤ k ≤ 4) or D±
4 , where

Ak, D
±
4 -map germ f : (R3,0) → (R4,0) are given by:

(A1) f (u1, u2, u3)= (u1, u2, u3,0);
(A2) f (u1, u2, u3)= (3u2

1,2u
3
1, u2, u3);

(A3) f (u1, u2, u3)= (4u3
1+2u1u2,3u4

1+u2u
2
1, u2, u3);

(A4) f (u1, u2, u3)= (5u4
1+3u2u

2
1+2u1u3,4u5

1+2u2u
3
1+u3u

2
1, u1, u2);

(D+
4 ) f (u1, u2, u3)= (2(u2

1+u2
2)+u1u2u3,3u2

1+u2u3,3u2
2+u1u3, u3);

(D−
4 ) f (u1, u2, u3)= (2(u3

1−u1u
2
2)+(u2

1+u2
2)u3, u

2
2−3u2

1−2u1u3, u1u2−u2u3, u3).

PROOF. By Theorems 5.2 and A.3, the Lorentzian distance-squared functionG is a
K-versal deformation ofgλ0 at each(x0, y0,λ0) ∈ U×R. Therefore, we can apply the generic
classification ofK-versal deformationsF(x, y,λ) of function germs up to 4-parameters [1].
For anyF(x, y,λ), we define

Σ∗(F ) =
{
(x, y,λ)

∣∣∣∣ F(x, y,λ) = ∂F

∂x
(x, y,λ) = ∂F

∂y
(x, y,λ) = 0

}

(cf. Appendix). The normal forms are given by

F(x, y,λ) = xk+1 ± y2 + λ1 + λ2x + · · · + λk−1x
k−1 , 1 ≤ k ≤ 4 ,

F (x, y,λ) = x3 + y3 + λ1 + λ2x + λ3y + λ4xy ,

F (x, y,λ) = x3 − xy2 + λ1 + λ2x + λ3y + λ4(x
2 + y2) .

For example, if we consider the germ given by

F(x, y,λ) = x3 + y3 + λ1 + λ2x + λ3y + λ4xy .

Then we get

Σ∗(F ) = {(x, y,2(x3 + y3)+ λ4xy,−3x2 − λ4y,−3y2 − λ4x, λ4) | (x, y, λ4) ∈ R3} .
Therefore, the corresponding Legendrian map germ is:

(D+
4 ) f (u1, u2, u3) = (2(u2

1 + u2
2)+ u1u2u3,3u2

1 + u2u3,3u2
2 + u1u3, u3).

The other cases follow from similar arguments, so that we may leave the details to the reader.
�
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By using the generic normal forms of generating families (i.e., Lorentzian distance-
squared functions) and Corollary 4.4, we have the following.

COROLLARY 5.4. There exists an open dense subset O ⊂ Embsp(U,R4
1) such that

for any X ∈ O, the germ of the corresponding tangent lightcone indicatrix at any point
(x0, y0) ∈ U is diffeomorphic to one of the germs in the following list :

(1) {(x, y) ∈ (R2,0) | x3 + y2 = 0} (ordinary cusp);
(2) {(x, y) ∈ (R2,0) | x4 ± y2 = 0} (tachnode or point);
(3) {(x, y) ∈ (R2,0) | x5 + y2 = 0} (rhamphoid cusp);
(4) {(x, y) ∈ (R2,0) | x3 − xy2 = 0} (three lines);
(5) {(x, y) ∈ (R2,0) | x3 + y3 = 0} (line).

PROOF. We have the same generic normal forms of generating families (i.e., Lorentzian
distance-squared function germs) at each point as in the above corollary. By Corollary 4.4,
the corresponding lightcone tangent indicatrix germs are diffeomorphic to the zero-level set
of the function germF |R2 × {0} of the list. For example, if the normal form is given by

F(x, y,λ) = x3 + y3 + λ1 + λ2x + λ3y + λ4xy ,

then we haveF |R2 × {0} = x3 + y3, so that the corresponding lightcone tangent indicatrix
germ is diffeomorphic to the set germ (4) in the above list. �

6. The eikonal equation. As indirect motivation, we will show how the construction
above is naturally encountered in solutions to the Minkowski eikonal equation:

−
(
∂S

∂x1

)2

+
(
∂S

∂x2

)2

+
(
∂S

∂x3

)2

+
(
∂S

∂x4

)2

= 0 .

If the solution has a formS(x1, x2, x3, x4) = x1 − U(x2, x3, x4), we have a solution of the
Euclidean eikonal equation:

(
∂U

∂x2

)2

+
(
∂U

∂x3

)2

+
(
∂U

∂x4

)2

= 1 .

The graph of the solutionU can be interpreted as a level set ofS. If we consider a surface in
Euclidean space as an initial manifold of the above Euclidean eikonal equation, we can obtain
such a solution.

Let π : T ∗(R4
1) → R4

1 be the cotangent bundle overR4
1 and((x1, x2, x3, x4), (p1, p2,

p3, p4)) be the canonical coordinate system such that for a single-valued solutionS we have
pi = ∂S/∂xi . Therefore, the above eikonal equation can be viewed as a family of cones in
T ∗(R4

1) given by the following equation:

H(x1, x, p1,p) = 1

2
(−p2

1 + p · p) = 1

2
(−p2

1 + p2
2 + p2

3 + p2
4) = 0 ,

wherex = (x2, x3, x4) andp = (p2, p3, p4). The singularities of the hypersurfaceH−1(0)
correspond to the zero sectionR4

1 × {0} of the cotangent bundle. Consider the 1-form on
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T ∗(R4
1) given by

θ = −p1 dx1 + p · dx ,
wherep · dx = ∑4

i=2pi dxi. We can show thatθ |H−1(0) is a contact form on the non-
singular part ofH−1(0). If we consider a surfaceX(U) = M in Euclidean 3-spaceR3 =
{x = (0, x2, x3, x4) | x ∈ R4 } and the unit normal vectorn(x, y), then the surface�(x, y) =
(0,X(x, y),1,n(x, y)) in T ∗R4

1 lies in the hypersurfaceH−1(0). Sincen(x, y) is the normal
vector ofM, we have�∗θ = n(x, y) · dX(x, y) = 0. This means that the surface�(x, y) is an
integral submanifold ofθ |H−1(0). Moreover, the Hamiltonian vector field along the surface
�(x, y) is given by

XH = − ∂

∂x1
+ n(x, y) · ∂

∂x
.

It follows that we have a Cauchy problem for the level surface of a solution to the PDE
H(x1, x, p1,p) = 0 with the initial submanifold�(x, y). We can apply the characteristic
method to obtain the level hypersurface of a multi-valued solution which is a Legendrian
submanifold ofH−1(0). In general, the level hypersurface of the solution to this Cauchy
problem is the lightlike hypersurface. To see this, consider the three-dimensional submanifold
defined by

L(x, y, u) = (u,X(x, y)+ un(x, y),1,n(x, y))

in T ∗R4
1. Sincen(x, y) is a unit vector, we haven(x, y) · dn(x, y) = 0, so that

L∗θ = −du+ n(x, y) · dX(x, y)+ du+ n(x, y) · dn(x, y) = 0 .

Therefore,L is a Legendrian embedding. It is clear that ImageL ⊂ H−1(0). Moreover, if
we sete1(x, y) = (1,0,0,0) ande2(x, y) = n(x, y), then we have the lightlike hypersurface
defined by

LH±
M(x, y, u) = X(x, y)+ u(e1 ± e2)(x, y) .

We remark that ˜(e1 ± e2)(x, y) = (e1 ± e2)(x, y) in this case. Therefore, the above Leg-
endrian embeddingL is the Legendrian lift of the lightlike hypersurfaceLH±

M . Since the
simultaneity has no meanings in the theory of relativity, we might consider spacelike sur-
faces as initial submanifolds for the above Minkowski eikonal equation instead of surfaces
in Euclidean space. Moreover, we have examples of lightlike hypersurface which cannot be
constructed from a regular surface inR3 (see [9, 10]).

On the other hand, the Minkowski eikonal equation defines a hypersurfaceH−1(0)× R
in the 1-jet spaceJ 1(R4

1,R) ∼= T ∗R4
1 × R on which the canonical contact structure is given

by dz − θ , where(x, x, p,p, z) is the canonical coordinate system ofJ 1(R4
1,R). Under

this framework, the Legendrian lift of each lightlike hypersurface inH−1(0) gives a non-
characteristic initial data for the Cauchy problem of the Minkowski eikonal equation. There-
fore, we obtain the multivalued solution of the Cauchy problem by applying the characteristic
method which is a Legendrian submanifold ofJ 1(R4

1,R) belonging toH−1(0) × R. It fol-
lows that a general lightlike hypersurface can be considered as the level set of a multivalued
solution of the Minkowski eikonal equation.
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We have another interpretation as follows: observe that there is a natural spherical blow-
up in the seven-dimensional cone bundle{H = 0} in T ∗R4

1 defined by

R4
1 × R × S2 → T ∗R4

1 ,

where(x1, x, t, θ) �→ (x1, x, t (1, θ)), t ∈ R, θ ∈ S2. The characteristic line field and the
canonical 1-formθ pullback to the cylinder bundle with removable zero points. It follows
that the Cauchy problem can be extended to the initial submanifold which intersects the zero
section in{H = 0} ∈ T ∗R4

1. Moreover, there existC∞-foliations ofR3 with mild singularities
which generate well-posed initial data. For example, consider a foliation by level surfaces
f (x) = c possibly with critical points. Then the initial data

x → (0, x,
√

1 − ‖dfx‖, dfx)
will generate a four-dimensional submanifold in{H = 0}, which is a family of multivalued
three-dimensional Legendrian submanifolds in{H = 0} (i.e., a multivalued solution) on the
complement of the critical points. For special cases off (x) = c, this 4-manifold has a
C∞-immersive extension to the missing points. In any case each non-singular level surface
f (x) = c generates a lightlike hypersurface as in the above paragraph. These hypersurfaces
are the ‘level 3-manifolds’ of the multivalued solution.

7. Lightlike hypersurface singularities in curved spacetimes. Let g denote aC∞-
Lorentzian (pseudo) Riemannian metric on a neighbourhood of the origin inR4. We may
choose local normal coordinates [17, Proposition 33] so that the componentsgij of g satisfy

gij ≡ δij εj modM2 ,

whereε1 = −1 andεj = 1, j �= 1. Recall that the conformal metriccg, 0 < c ∈ R
has the same unparametrized null geodesics as the original metricg. As in Section 2, the
lightlike hypersurfaces ofg consist of two-parameter families of null geodesics. It follows
that a lightlike hypersurface forcg is also lightlike forg. Hence, via the pullback over the
dilation dc : R4 → R4, x �→ 1/

√
c x, for all c > 0, we see thatg has the same lightlike

hypersurface singularities (near the origin inR4) as the metric

d∗
c (cgij ) = δij + 1

c
(fourth-order terms) .

Thus, for sufficiently largec, we may use the generic nature of the results in Sections 4
and 5 to conclude that Corollary 5.3 is also valid for an open dense set ofC∞ embeddings
U → (R4, g). In other words, on a sufficiently small neighbourhood in any smooth Lorentzian
4-manifold, there exist stable lightlike hypersurface singularities as in Minkowski space.

Appendix. Generating families. Here we give a quick survey on the theory of Leg-
endrian singularities mainly developed by Arnol’d-Zakalyukin [1, 19]. LetF : (Rk×Rn, 0) →
(R, 0) be a function germ. We say thatF is a Morse family if the map germ

∆∗F =
(
F,

∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn, 0) → (R × Rk, 0)
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is submersive, where(q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn, 0). In this case we have
a smooth(n− 1)-dimensional submanifold

Σ∗(F ) =
{
(q, x) ∈ (Rk × Rn, 0)

∣∣∣∣ F(q, x) = ∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}

and the map germΦF : (Σ∗(F ), 0) → PT∗Rn defined by

ΦF (q, x) =
(
x,

[
∂F

∂x1
(q, x) : · · · : ∂F

∂xn
(q, x)

])

is a Legendrian immersion. Then we have the following fundamental theorem in the theory
of Legendrian singularities [1, Section 20.7], [19, p. 27].

PROPOSITION A.1. All Legendrian submanifold germs in PT∗Rn are constructed by
the above method.

We callF a generating family of ΦF and the corresponding wave front isW(ΦF ) =
πn(Σ∗(F )), whereπn : Rk × Rn → Rn is the canonical projection.

We now introduce an equivalence relation among Legendrian immersion germs. Let
i : (L, p) ⊂ (PT∗Rn, p) andi ′ : (L′, p′) ⊂ (PT∗Rn, p′) be Legendrian immersion germs.
Then we say thati andi ′ areLegendrian equivalent if there exists a contact diffeomorphism
germH : (PT∗Rn, p) → (PT∗Rn, p′) such thatH preserves fibres ofπ and thatH(L) = L′.
A Legendrian immersion germ intoPT∗Rn at a point is said to beLegendrian stable if for
every map with the given germ there is a neighbourhood in the space of Legendrian immer-
sions (in the WhitneyC∞ topology) and a neighbourhood ofthe original point such that each
Legendrian immersion belonging to the first neighbourhood has in the second neighbourhood
a point at which its germ is Legendrian equivalent to the original germ.

Since the Legendrian lifti : (L, p) ⊂ (PT∗Rn, p) is uniquely determined by the reg-
ular part of the wave frontW(i), we have the following simple but significant property of
Legendrian immersion germs.

PROPOSITION A.2. Let i : (L, p) ⊂ (PT∗Rn, p) and i ′ : (L′, p′) ⊂ (PT∗Rn, p′)
be Legendrian immersion germs such that regular sets of π ◦ i and π ◦ i ′, respectively, are
dense. Then i, i ′ are Legendrian equivalent if and only if wave front sets W(i),W(i ′) are dif-
feomorphic as set germs. Here π : PT∗Rn → Rn is the canonical projection of the projective
cotangent bundle.

This result has been firstly pointed out by Zakalyukin [20, Assertion 1.1]. In his original
assertion, he assumed that the representatives ofπ ◦ i andπ ◦ i ′ are proper. However, we
remark that we can get rid of such an assumption. The assumption in the above proposition is
a generic condition fori, i ′. In particular, ifi andi ′ are Legendrian stable, then these satisfy
the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.
We denote byEn the local ring of function germs(Rn, 0) → R with the unique maximal ideal
Mn = {h ∈ En | h(0) = 0}. Let F,G : (Rk × Rn, 0) → (R, 0) be function germs. We say
thatF andG areP -K-equivalent if there exists a diffeomorphism germΨ : (Rk × Rn, 0) →
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(Rk × Rn, 0) of the formΨ (x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × Rn, 0) such that
Ψ ∗(〈F 〉Ek+n ) = 〈G〉Ek+n . HereΨ ∗ : Ek+n → Ek+n is the pullbackR-algebra isomorphism
defined byΨ ∗(h) = h ◦ Ψ .

Let F : (Rk × Rn, 0) → (R, 0) be a function germ. We say thatF is aK-versal defor-
mation of f = F |Rk × {0} if

Ek = Te(K)(f )+
〈
∂F

∂x1

∣∣∣∣ Rk × {0}, . . . , ∂F
∂xn

∣∣∣∣ Rk × {0}
〉

R
,

where

Te(K)(f ) =
〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek
.

(See [12].) The main result in the theory [1, Section 20.8], [19, Theorem 2]) is the following.

THEOREM A.3. Let F,G : (Rk × Rn, 0) → (R,0) be Morse families. Then:
(1) ΦF and ΦG are Legendrian equivalent if and only if F , G are P -K-equivalent;

and
(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F | Rk ×{0}.
SinceF andG are function germs on the common space germ(Rk × Rn, 0), we do

not need the notion of stablyP -K-equivalences under this situation (cf. [19, p. 27]). By the
uniqueness result of theK-versal deformation of a function germ, we have the following
classification result of Legendrian stable germs (cf. [6]). For any map germf : (Rn, 0) →
(Rp, 0), we definethe local ring of f byQ(f ) = En/f ∗(Mp)En.

PROPOSITION A.4. Let F andG : (Rk×Rn, 0) → (R,0) be Morse families. Suppose
that ΦF and ΦG are Legendrian stable. The the following conditions are equivalent.

(1) (W(ΦF ), 0) and (W(ΦG), 0) are diffeomorphic as germs.
(2) ΦF and ΦG are Legendrian equivalent.
(3) Q(f ) and Q(g) are isomorphic as R-algebras, where f = F |Rk × {0} and g =

G|Rk × {0}.
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