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Abstract. We classify singularities of lightlike hypersurfaces in Minkowski 4-space
via the contact invariants for the corresponding spacelike surfaces and lightcones.

1. Introduction. The objective of this paper (and [5-9]) is to link the differential ge-
ometry of lightlike hypersurfaces in Minkowski 4-space with the modern theory of Legendrian
singularities. Lightlike hypersurfaces are rul@enanifolds whose induced first fundamental
forms are positive semi-definite. Extending these ruling lines defines a natural completion
which contains (non-immersive) singular points. The generic intersection of such a hypersur-
face with a spacelike 3-plane is an immersegh&nifold that encodes the local differential
geometry of lightlike hypersurfaces [9, 10]. However, this approach does not efficiently adapt
to more general spacetimes. As an alternative we will use Montaldi’s characterization of
submanifold contacts in terms @f-equivalent functions, which provides a technical link-
age to Legendrian singularity theory. As a consequence, we provide a local classification of
lightlike hypersurface singularities in terms of algebraic invariantdRagebra) and differ-
ential geometric invariants (the lightcone indicatrix). In [3, 4], lightlike hypersurfaces have
been studied from the viewpoint of the general theory of relativity. In this paper we study
the detailed differential geometric properties of lightlike hypersurfaces (and corresponding
spacelike surfaces).

In Section 2 we begin by describing Cartan’s frame method adapted to spacelike surfaces
as well as lightlike hypersurfaces (see [7] for a more detailed discussion.) This is used to de-
fine the lightcone indicatrix. In Section 3 we describe the (multivalued) Legendrian distance
squared function whose discriminant is a given lightlike hypersurface. The given hypersurface
is now the wave front set of this function, as described in Legendrian singularity theory [1].
Section 4 applies Montaldi’s theorem to thesdeption of generic contact between a given
lightcone and a spacelike surface. Singularities in the hypersurface are now characterized as
points of higher-order contact. We can also consider the contact of spacelike surfaces with
other pseudo-spheres (i.e., hyperbolic spaces or de Sitter spaces). However the most inter-
esting case is to consider the contact with lightcones. Moreover, from the point of view of
physics, lightlike hypersurfaces are of importance because they are models of different types
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of horizons studied in relativity theory [2, 14T herefore, we only consider the singularities
of lightlike hypersurfaces in this paper. In Section 5 we present the classification of lightlike
hypersurface singularities and tangent lightcone indicatrices, which is based on the theory
of Legendrian singularities [1, 19]. (See Appendix for a brief description.) As a source of
examples and motivation, Section 6 indicatest tpeneric lightlike hypersurface singularities
occur in the level surfaces of solutions to thikomal partial differential equation (PDE) on
Minkowski 4-space. Section 7 indicates hdvese methods can be locally adopted to some
curved spacetimes. Finally, we remark that gnarguments in this paper can be directly gen-
eralized to higher-dimensional Minkowski spaces. However, from the viewpoint of physics,
Minkowski 4-space (i.e., space-time) is the most important and we would need a much larger
paper for writing the higher-dimensional cases, so that we only consider four-dimensional
Minkowski space here.

We assume throughout the paper that all manifolds and maps°arenless otherwise
stated.

2. Local differential geometry of spacelikesurfaces. In [7], we introduced the basic
geometric tools for the study of spacelike faiges in Minkowski 4-space. Here we briefly
review a part of the theory relevant to this paper.

Let R* = {(x1, x2, x3, x4) | x1, x2, x3, x4 € R} be a Cartesian 4-space. For any vectors
x = (x1,x2,%3,%4), ¥y = (¥1, y2, y3, y4) in R*, the pseudoscalar product of x and y is
defined by(x, y) = —x1y1+ x2y2 + x3y3+ x4y4. We call(R*, (, )) aMinkowski 4-space and
simply write it asR} instead of(R?, (, )).

We say that a vector in R‘l‘ \ {0} is spacelike, lightlike or timelike if (x,x) > 0,=0or
< 0, respectively. The norm of the vectore R] is defined byi|x || = /[(x, x)[.

LetX : U — R‘l1 be a regular surface (i.e., an immersion), whére R? is an open
subset. We identif/ = X (U) with U through the immersioX.

We call M a spacelike surface if the tangent pland, M of M is a spacelike plane (i.e.,
consists of spacelike vectors) for any poine M. In this case, the normal spasg M is a
timelike plane (i.e., Lorentz plane) (cf. [17]). Ltz (x, ), e4a(x, y)} be an orthonormal frame
of T,M and{ei(x, y), e2(x, y)} a pseudo-orthonormal frame &f, M, wherep = X(x, y).
Heree1(p) is atimelike vector and;, i = 2, 3, 4, are spacelike vectors.

In order to establish the fundamental formula for a spacelike surfaB4,iwe define
some notions similar to those of Little [11]. As usual, define the foims= 5(e;){d X, e;)
anda),j = 5(8/)(6!6,’, ej), where

1, i=2234,

5(e;) = Sign(e;) = {_1 i1

Here (dX, e;) denotes the pseudoscalar product of the vector valued oned&rand the
vectore,;. Then we havelX = % | w;e; andde; = Z;Ll wije;, i =1,2,3,4. We have
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the Codazzi type equations:

4
dw; = 28(65)5(81')0),']' Awj
j=1

4
dw;j = Zwik A wgj
k=1
whered denotes exterior differentiation. Also, we have
(*) wij = —8(e;)d(ej)wji .

In particular,w;; = 0fori =1, 2, 3, 4.
It follows from the fact(d X, e1) = (d X, e2) = 0 that

w1 =w2=0.

Therefore we have

4 4

O=dw1 = 25(81)5(61')(1)1]' Nwj = —Z(S(Ej)a)lj ANwj=—w13A w3 — W14 N 04,
j=1 =3
4 4

O=dwr = Z8(e2)5(ej)a)2j ANwj= Zé(ej)a)zj Awj = w3 A w3+ w4 A ws.
Jj=1 j=3

By Cartan’s lemma, we can then write

w13 = aw3 + bwa, w14 = bw3 + cwy,
w23 =ew3+ fwa, wra= fwz+ gws

for appropriate functions, b, ¢, e, f andg. We define thatd?X, e;) = —(dX,de;), i =
1, 2, then we have a vector-valued quadratic form:

—(d?X, e1)e1 + (d°X, ex)er = (aw3 + 2bwzws + cwd)er — (ews + 2f wawa + gwd)ez,

which is called thesecond fundamental form of the spacelike surface. It follows from)(that

el 0 w12 w13 wis) [e1
dlez| = |« 0 w23 w24 | ez

e3 w13 —w23 0 w3 |es]’

ey w14 —w24 —w34 O ey

from which we also get the following equations:

0 —w12 W13 — W23 W14 — W24
e1—e2 w12 0 w13+ w23 wia+ wo4 | fe1+ €2
d e1+e2| | wiz— w3 wiz+ w3 el —e2
= 0 w34
e3 2 2 €3
e4 W14 — W24 W14+ W24 e4
—w34 0

2 2
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On the other hand, we define
4

—(x1— p1)? + Z(xi —p)?= 0}

LC, = {x e R}
i=2

and
52 = {x = (x1,x2,x3,x4) € LCo | x1 = 1},

wherep = (p1, p2, p3, pa) € R‘l‘. We caIISJZr the (future) spacelike unit sphere andLCZ =
LC, \ {p} thelightcone with deleted vertex at p. We also define

LC} = {x = (x1,x2,x3,x4) € LC§ | x1 > 0}

and call it afuture lightcone at the origin. For any lightlike vectox = (x1, x2, x3, x4), we
have

Letey = (a1, a2, as, ag) andea = (b1, ba, b3, bs). Clearly, we have
d(e1+ ep) = d(ar % b1)(e1 + €2) + (a1 £ b1)d(e1 + e2) .

Finally, we get the following fundamental formula:

e1 —e2
d e1+eo
e3
€4
d(ar—b1) w13— w23 wi14— w24
0 —w12 —
a1 —by a1 —by a1 —bh -
d(a1 + b1) 0 w13+ w3 wis+wrs | feLte2
w)p — —M o
= ar+by a1+ by a1+ by e1—e
w13 — @23 w13 + @23 0 © e3
— — 34 es
w14 — W24 w14+ w24
—2 2 o 0

For a given normal vectar = ey +nez € N, M, we havelv = déei1+&dey +dnex+
ndez and hence

(dv, e3) A (dv, eq) = [(a& + en)(c& + gn) — (bE + f)*wz A wa
= [(ac = b?)E? + (ec +ag — 2bf)en + (eg — fAn*lws A wa.
We define a functioiC; as follows:
Ki(@)(p) = Ki (&, m(p) = (ac — b*)E? + (ec + ag — 2bf)én + (eg — fHn°.
We also define thenean curvature vector $) by

_ 1 1
H(p) = 5(a+c)er— e+ g)ez
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and

1 1
Hy(v)(p) = Hi(§,n)(p) = (H(p),v) = E(a + o) + E(e+ Dn.

We now consider a symmetric matrix

At (@ +e bEf
T \bEtf cxg)’
Let K,.i( p),i =1, 2 be the eigenvalues af* which we callprincipal lightcone curvatures of
M at p. By definition, we have

ki (p)y (p) = detA = (ac — b?) £ (ce + ag — 2bf) + (eg — %) = Ki(1, £1)(p)
and
2H/(L, £1)(p) =te £ g+a+c =k (p)+k5(p).

We say thatp € M is anumbilic point if «*(p) = x5 (p). An umbilic point isflat if
K;(1, £1)(p) = 0. On the other hand, we define a pair of hypersurfaces

LHY : M x R— R}
by

LH3, (p, u) = LHy, (x, y, 1) = X (x, y) + u(e1 £ e2)(x, y) ,
wherep = X (x, y). We caIILHj; thelightlike hypersurface alongM.
In general, a hypersurfadé C R‘l1 is called alightlike hypersurface if it is tangent to a
lightcone at any point. It is known that any lightlike hypersurface is given by the construction

above at least locally (cf. [10] and Section 6).

3. Lorentzian distance-squared functionson spacelikesurfaces.  In this section we
introduce the notion of Lorentzian distance-squared functions on spacelike surfaces, which is
useful for the study of singularities of lightlike hypersurfaces.

First we define a family of functions : M xR} — R on a spacelike surfadd = X (U)
by

G(p, M) =Gx,y,2) =(X(x,y) =&, X(x,y) — 1),
wherep = X(x, y). We call G the Lorentzian distance-squared function on the spacelike
surfaceM. For any fixedip € R4, we write g(p) = Gyu(p) = G(p,ro) and have the
following proposition.

PROPOSITION 3.1. Let M beaspacelikesurfaceand G : M x Rf — RtheLorentzian
distance-squared function on M. Suppose that pg # Ao. Then we have the following.

(1) g(po) = dg/9x(po) = dg/dy(po) = Oif andonlyif po — Xo = w(e1 = €2)(po)
for some u € R\ {0}.

(2) g(po) = 9g/dx(po) = dg/dy(po) = detH(g)(po) = O (det(g)(po) is the
determinant of the Hessian matrix) if and only if

po — Ao = (e % e2)(po)
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for some 1 € R\ {0} which isthe inverse of a non-zero principal curvaturexf(po), i=1,2

PrROOF. (1) The conditiong(p) = (X(x,y) — A9, X(x,y) — A0) = 0 means that
X(x,y)—Xg € LCo. We can observe thdty(p) = (dX (x, y), X(x, y) —Ag) = Oif and only
if X(x,y)—2Xoe€ N,M. Henceg(po) =dg(po) = 0ifandonly if pg — o € N, M N LCo.

This is equivalent to the condition thayg — Lo = u(e1 £ €2)(po) for someu € R\ {0}.
(2) By a Lorentzian motion, we may assume thgis the origin ofR‘l‘. We can choose
local coordinates such that is given by the Monge form

X(x,y) = (falx, y), fa(x, y), x, y)
with f1,(0, 0) = f1,(0,0) = f2,(0,0) = f2,(0, 0) = 0, so that we have (po) = (1, 0, 0, 0)
andez(po) = (0, 1, 0, 0). In this case we have
/1.(0,0) = —a(po), f1,,(0,0)=—b(po), f1,,(0,0)=—c(po),
12,,(0,0) =e(po), f2,(0,00= f(po), f2,(0,0)= g(po).
Under the condition (1), we have the following calculations:

829
— = gex = 2((Xxx, X — Xo) + (X, Xi)
dx2
= 2({(fLirs f2rr 0,0), pule1 £ €2)(po)) + 2((f1,, f2,. L.0), (f1,. for, 1,0))),
32
axagy = oy = 2((Xxy, X — X0) + (X., X))
= 2((f1,,, f2.,, 0,0, juler £ €2)(po)) + 2((f1, 2, 1,0), (fa,, f2,,0, D),
82
a_yg = gy = 2((Xyy. X — o) + (X, X,))

= 2((f1,,, f2,,,0,0), j(er = e2)(po)) + 2((f1,, f2,,0,1), (f1,, f2,,0,1)).
It follows that
9xx(0,0) = —2ua(po) £ 2ue(po) + 2,
gxy(0, 0) = —2ub(po) £ 2uf (po)
9yy(0,0) = —2uc(po) £ 2pg(po) + 2.

Therefore,
—pna+pe+1 —ub + uf

—ubEtpf  —pcxpg+l (po) =0

detH(g,)(po) =
if and only if
(ac+eg:Fag:Fce—b2—fzj:be)u2+(:I:e:i:g—a—c)u+1=0,
which is equivalent to
KL, ¥)u? — 2H; (L, FHp +1=0.

This means that 0 and ¥ is one of the lightcone principal curvatures (po). o
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Thus, Proposition 3.1 means that the discrimireet of the Lorentzian distance-squared
functionG is given by

D ={A|A=X(p)+u(erxex(p), pecM,ucR},

which is the image of the lightlike hypersurface alaWlg Therefore, a singular point of the
lightlike hypersurface is a pointy = X (po) + uo(eI—:T:_;z)(po) at whichug = —1/«;"(po),
i=12.

We now explain the reason why such a correspondence exists from the point of view
of contact geometry. Let : PT*(R‘l‘) — R‘l1 be the projective cotangent bundle with its
canonical contact structure. We next review the geometric properties of this bundle. Consider
the tangent bundle : TPT*(R}) — PT*(R}) and the differential magr : TPT*(R}) —

TR} of 7. For anyX € TPT*(R}), there exists an elemeat ¢ T*(R{ such thatr (X) =
[a]. For an elemenV € TX(R‘l‘), the propertyx(V) = 0 does not depend on the choice of
representative of the clags]. Thus, we can define the canonical contact structun%Td‘mR‘ll)
by

K = {X e TPT*(R}) | t(X)(dn (X)) = 0}.

Via the coordinatesvs, vy, v3, va), we have the trivializatioPT*(R) = R} x P3(R)*,
and call

((v1,v2,v3,v4), [E1: 62 : &3 : &4])

homogeneous coordinates of PT*(R‘l‘), where[&; : &2 : &3 : &4] are the homogeneous coordi-
nates of the dual projective spaé(R)*.

It is easy to show thak € K, ¢} if and only if Y% ; w;& = O, whered# (X) =
Zf‘zl uid/dv;. An immersioni : L — PT*(R‘l‘) is said to bea Legendrian immersion if
dimL = 3 anddi,(T,L) C K;(,) foranyq € L. The mapr o is also calledhe Legendrian
map and the seW (i) = imager o i, thewave front of ;. Moreover,i (or the image of)
is called theLegendrian lift of W(i). In Appendix, we give a quick survey of the theory of
Legendrian singularities. For additional déions and basic results on generating families,
we refer to [1, Chapter 21]. By the preceding arguments, the lightlike hyperstﬂEeis
the discriminant set of the Lorentzian distance-squared funciioiVe have the following
proposition (see Appendix for the definition of a Morse family).

PROPOSITION 3.2. Let G bethe Lorentzian distance-squared function on M. For any
point ((x, y),A) € G~1(0), G isaMorse family around ((x, y), A).

PrROOF. Denote
X(x,y) = X1(x,y), Xo(x, y), X3(x,y), Xa(x,y)) and A= (Ag, A2, A3, A4).
By definition, we have

G(x,y,A) = —(X1(x, y) — A2+ (X2(x, y) — 42)? + (X3(x, y) — 23)% + (Xa(x, y) — Aa)?
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We now prove that the mapping

. G 9G
A*G = (G,

ax 9y
is non-singular at(x, y), A) € G~1(0). Indeed, the Jacobian matrix afG is given by

( 2(X1—21) —2(X2—2r2) —2(Xz—Ai3) —2Xa-— )»4))
A 2X 1y —2Xoy —2X 3y —2X 4 ,
2X1y —2X2y —2X3y —2Xay

where
2(X — A, Xy) 2(X =1, X,)
A= 2((XX1 Xx>+<X_)¥s Xxx)) 2((XX1 Xy)“l‘(X_)”s Xxy))
2((Xy, Xx) + (X =X, Xyi)) 200Xy, Xy) + (X — &, Xy))

SinceX is an immersion, the rank of the matrix
(2Xlx —2Xo5, —2X3, —2X4x)
2X1y —2X2y —2X3y —2X4y
is equal to two. MoreoverX — A is lightlike, so that it is linearly independent of tangent
vectorsX,, X . This means that the rank of the matrix

2(X1—21) —2(X2—22) —2(X3—2A3) —2(Xa—24)
2X 1y —2X>o, —2X3, —2X 4y
2X1y —2X>y —2X3y —2Xay
is equal to three. Therefore the Jacobi matrix4fG is non-singular at((x, y),A) €
G10). |

SincegG is a Morse family, we can define a Legendrian immersion
L Z.(G) — PT*(R)
by
LT, y, M=, [(X1(x, y)—A1) 1 (ha—Xa(x, ¥)) : (h3—X3(x, ¥)) : (la—Xa(x, Y,
where
Z.(G) = (A*G)"H0) = {(x, y, 1) | A = LH3, (x, y, u) for someu € R}.
We observe that is a generating family of the Legendrian immersl@ whose wave frontis

LHj; (cf. Appendix). Therefore, we might say that the Lorentzian distance-squared function
G on M gives a Minkowski-canonical generating family for the Legendrian Iiﬂtldljﬁ.

4. Contact with lightcones. In this section we describe Montaldi’s characterization
of submanifolds contact in terms &f-equivalence [13]. It is then adapted to lightlike hyper-
surfaces and their indicatrices. We begin with the following basic observations.

PROPOSITION 4.1. Let Ag € R‘l‘ and M a spacelike surface without umbilic points
satisfying K;(1, 71) # 0. Then M C LC,, if and only if A¢ is an isolated singular value of
the lightlike hypersurface L H3: and LH3; (U x R) C LCy,.
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PROOF. By definition, M C LC;, if and only if g;,(x, y) = O forany(x,y) € U,
whereg,,(x, y) = G(x, y, Ao) is the Lorentzian distance-squared functionidn It follows
from Proposition 3.1 that there exists a smooth functionlU’ — R such that

X(x,y) =Xo+nulx,y)e1£ex)(x,y).
Therefore, we have
LHE(x, y,u) = ko + (u + p(x, y)(er £ e2)(x, y).

Hence, we havéHﬁ(U x R) C LC,,. Moreover, it follows that

ILH
= (ex L er)(x,y),
du
ILH; — —
o mx(x,y)(erEex)(x,y) + (u+ u(x,y))(e1 e, (x,y),
ILHy — —
oy py(x, y)(e1 £ e2)(x, y) + (u + u(x, y))(e1 £ e2),(x,y),

from which we obtain
ILHY: OLHY OLH
A\ A\
ou ax dy

> = (u+pux,y)erLex) Aer L e, Aler£ €2), .
By the assumption, we have

X — o= ulx, y)(ea/ez)(x, y).

SinceX — Ag is lightlike andX ., X, are spacelikeX — o, X, X, are linearly independent.
Therefore, we have

—_—~—

0# (X —20) AX: A Xy = nlx, ) e e2) Aler £ e2), A (1 £ e2),,

so that

ILHY: OLH OLH;
N N
du ax dy

if and only ifu 4+ w(x, y) = 0 under the assumption th&t (1, 1) # 0. This means thatg
is an isolated singularity dEHAj;. The converse assertion is trivial. a

Motivated by the proposition above, we now consider the contact of spacelike surfaces
with lightcones in view of Montaldi’s theorem [15]. Lét; andY;, i = 1, 2, be submanifolds
of R" with dimX; = dimX2 and dimy; = dimY>. We say thathe contact of X1 and
Y1 at y1 is same type athe contact of X» andY> at y; if there is a diffeomorphism germ
@ : (R*, y1) — (R", y2) such that®(X1) = X2 and® (Y1) = Y». In this case we write
K (X1, Y1; y1) = K (X2, Y2; y2). Since this definition of contact is local, we can repl&e
by arbitraryr-manifold. Montaldi gives in [15] the following characterization of contact by
using/C-equivalence.



80 S. IZUMIYA, M. KOSSOWSKI, D. PEI AND M. ROMERO FUSTER

THEOREM 4.2. LetX; andY;,i = 1, 2, besubmanifolds of R* with dim X; = dim X»
anddimY; = dimY». Let g; : (X;,x;) — (R*, y;) beimmersiongermsand f; : (R", y;) —
(R”, 0) be submersion germswith (;, yi) = (f;"2(0), y;). Then

K (X1, Y1; y1) = K(X2, Y2; y2)

if and only if f1 0 g1 and f2 o g are K-equivalent.

Turning to lightlike hypersurfaces, we now consider the funcion Rf x R} — R
defined byG(x,1) = (x — A, x — A). Givenig € R}, we denoteg,,(x) = G(x, Log), SO
that we haveg;ol(O) = LC,,. For any(xg, yo) € U, we take the poinli = X(x0, y0) +
uo(ef?t/ez)(xo, yo) and have

8, © X(x0,50)) = G o (X x idga)((x0, y0). Ag) = G(x0. yo. A5) =0,

whereug = —1//cf(xo, yo), i =1, 2. We also have relations
g,z o X G g,z o0 X 9G
—2(po) = —((p0),A5) =0, —2——(po) = —(po, A3) = 0.
ox (po) ™ ((po), Ay) oy (po) oy (po, Ag)

These imply that the Iightcorga;j(O) = LC)LO:E is tangenttaM = X (U) at pg = X (xg, yo0).
In this case, we call eadrckg thoetangent lightcone of M = X (U) at po = X (x0, y0).

We now describe the contacts of spacelike surfaces with lightcones.LH§t; :
(U, (xi, yi)) — (LCY,v9),i = 1,2, be two lightlike hypersurface germs of spacelike sur-
face germsX; : (U, (x;, yi)) — (R%, pi), whereo = +. We say that Hf, ; and LH‘]{L2
are A-equivalent if there exist diffeomorphism germs : (U, (x1, y1)) — (U, x2, y2)) and
@ : (R}. 1) — (R, 1) such thakd o LHY, | = LMY, , o ¢. If both of the regular sets of
LM;{LI. are dense iU, (x;, y;)), it follows from Propos’ition A.2 (see Appendix) tHak-I‘;d)l
andLHY, , are.A-equivalent if and only if the corresponding Legendrian lift germs are Leg-
endrian equivalent. This condition is also equivalent to that two generating farGifiesd
G are P-K-equivalent by Theorem A.3, where; : (U x RS, ((xi, vi), A7)) — Rdenotes
the Lorentzian distance-squared function gernXof

On the other hand, if we denoggk;r (x,y) = Gi(x, y,A7), then we have, ,=(x,y) =
g,+ o X;(x,y). By Theorem 4.2K (X 1(U), LCArlr, A]) = K(X2(U), LCA,A3) if and only
if }}1,)\1 andgp ,, areK-equivalent. Therefore, we can apply Proposition A.4 to our situation.
We denote byQ? (X, (xo, yo)) the local ring of the function ger@g . (U, (x0, y0)) — R,
wheredg = LCY,((xo, yo), uo). We remark that we can explicitly write the local ring as
follows:

o

0*(X. (x0.y0) = Conn @

(X (x. y). er £ ealxo.y0)) = Dz,

(%)

whereC®

o yo)(U) is the local ring of function germs ato, yo).
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THEOREM 4.3. Let X; : (U, (xi, ) — (R}, Xi((xi, y))), i = 1,2, be spacelike
surface germs such that the corresponding Legendrian lift germs are Legendrian stable. For
o = + or —, the following conditions are equivalent.

(1) Thelightlike hypersurfacegerms L H AU41 and LH AU42 are A-equivalent.

(2) GiandGj are P-K-equivalent.

(3) g1, and g2, are K-equivalent.

(4) K(X1(U),LCyg,A9) = K(X2(U), LCAG, A9).

(5) 0%(X1, (x1, y1)) and Q% (X2, (x2, y2)) areisomorphic as R-algebras.

PrROOF. The preceding arguments shows that (3) and (4) are equivalent. The other as-
sertions follow from Proposition A.4. O

Given a spacelike surface getxh: (U, (xo, yo)) — (R%, X (x0, y0)), we call
(XH(LC;2). (x0. y0))

thetangent lightcone indicatrix germof X, wherex®™ = X (xo, yo) + uo(emz)(xo, yo) and
ug = —1//<f(xo, yo), i = 1, 2. As a corollary of Theorem 4.3, we have the following.

COROLLARY 4.4. Under the assumptions of Theorem 4.3, if the lightlike hypersur-
facegerms LH ,‘{41 and LH ,‘{42 are A-equivalent, then tangent lightcone indicatrix germs

(XTHLC2). (1yp)) and  (X57(LC,). (2. y2)
are diffeomorphic as set germs.

PrROOF. Note that the tangent lightcone indicatrix germXf is the zero level set of
gi.»;- Since-equivalence among function germs preserves the zero-level sets of function
germs, the assertion follows from Theorem 4.3. O

5. Classification of singularities of lightlike hypersurfaces. In this section we pro-
vide a generic classification of the singularities of lightlike hypersurfacéﬁ.irWe consider
the space of spacelike embeddings Eps, R‘l‘) with the WhitneyC®°°-topology. We also
consider a functio : R} x R — Rdefined byG(v, 1) = (v — &, v — 1), and claim thag;
is a submersion at # A for anyA € R}, whereG, (v) = G(v, ). GivenX ¢ Embsp(U, R‘l‘),
we haveG = G o (X x idRil). We also have thé-jet extension

AG:U xR} = JYU,R
defined byij(u, A) = jtg. (1), where we writeG (1, ) = g, (u). Consider the trivialization
JEU,R) = U x R x J42,1). For any submanifold? c J¢(2, 1), we denoteQ = U x

{0} x Q. Then we have the following proposition as a corollary of Lemma 6 in Wassermann
[18]. (See also Montaldi [16].)

PROPOSITION 5.1. Let Q bea submanifold of J¢(n — 1, 1). Then the set
To = {X € Emhyp(U, RY) | jLG istransversal to Q)
isaresidual subset of Emhyp (U, RY). If Q isa closed subset, then T is open.
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On the other hand, we have a stratification given by the sét-ofbits in J¢(2, 1) \
W¢(2, 1) (for the definition of W*(2, 1) and additional properties, refer to [5, p. 120]). As a
consequence of the above proposition, we have the following theorem.

THEOREM 5.2. There exists an open dense subset © C Embsp(U, R‘l‘) such that for
any X € O, the germ of the Legendrian lift of the corresponding lightlike hypersurface LHfl
at each point is Legendrian stable.

By the classification results on stable Legendrian mappings, we have the following.

COROLLARY 5.3. There exists an open dense subset O C Embs(U, R}) such that
for any X € O, the germ of the corresponding lightlike hypersurfaces LHj; at any point
(x,y,u) € U x Ris A-equivalent to one of themap germs A, (1 < k < 4) or D, where

Ak, Df-mapgerm f : (R3,0) — (R, 0) aregiven by:

(A1) f(u1,u2, uz)= (u1, uz, us, 0);

(A2)  f(u1,uz, uz)= Bul, 2u3, uz, u3);

(A3)  f(u1, u2, u3) = (Qud+2uruz, 3uf+uou?, us, us);

(Aa)  f(u1, uz, uz) = (5uf+3uzu?+2u1usz, 4us+2uzud+usu?, us, uz);

(DF)  f(ur, uz, uz) = us+u3)+uiususz, 3us+usus, 3us+uius, us);

(D) f(u1, uz, uz) = 3 —uru3)+ u~+ud)yuz, u3—3us—2uiuz, uruz—uou3z, us).

PrROOF. By Theorems 5.2 and A.3, the Lorentzian distance-squared funGticha

KC-versal deformation ofj, at each(xo, yo. Ag) € U xR. Therefore, we can apply the generic
classification offC-versal deformationg ' (x, y, ) of function germs up to 4-parameters [1].
For anyF (x, y, A), we define

YW (F) = {(x, Y, A)

IF oF
F(-xsysx)za_(-xsysx)=—(x7y7)’)zo}
X ay

(cf. Appendix). The normal forms are given by
Fo,y, ) =x"T 32 4o 4 aor + -+ bt 1<k <4,
F(x,y,A) = x>+ 3+ A1 + Aox + Agy + haxy,
F(x,y,A) = x3 — xy2 4+ A1 + dox + Agy + Aa(x? 4 y?).

For example, if we consider the germ given by

F(x,y,A) =x3 4+ y3 4 21 4 Aox + Agy + Aaxy.
Then we get
.(F) = {(x, 3, 203+ 33) + daxy, —=3x2 — day, —3y% — dax, ha) | (x, v, A4) € R3}.

Therefore, the corresponding Legendrian map germ is:
(DF)  f(u1,uz,u3) = u? + u3) + usuzuz, 3u3 + uzuz, 3u3 + uius, u3z).
The other cases follow from similar arguments, so that we may leave the details to the reader.
O
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By using the generic normal forms of generating families (i.e., Lorentzian distance-
squared functions) and Corollary 4.4, we have the following.

COROLLARY 5.4. There exists an open dense subset © ¢ Embyp(U, R‘l‘) such that
for any X € O, the germ of the corresponding tangent lightcone indicatrix at any point
(x0, yo) € U isdiffeomorphic to one of the germsin the following list:

(1) {(x,y) € (R? 0) | x3+ y2 = 0} (ordinary cusp);

(2) {(x,y) € (R% 0) | x*+ y2 = 0} (tachnode or point);

(3) {(x,y) € (R%,0) | x°>+ y2 = 0} (rhamphoid cusp);

4) {(x,y) € (R, 0) | x3— xy2 = 0} (threelines);

(5) {(x,y) € (R%,0) | x3+ y3=0} (line).

ProOF. We have the same generic normal forms of generating families (i.e., Lorentzian
distance-squared function germs) at each point as in the above corollary. By Corollary 4.4,
the corresponding lightcone tangent indicatrix germs are diffeomorphic to the zero-level set
of the function gern”F|R2 x {0} of the list. For example, if the normal form is given by

F(x,y, %) = x3+ y3 4+ A1 + Aox + Agy + Aaxy,

then we haveF|R? x {0} = x3 + y3, so that the corresponding lightcone tangent indicatrix
germ is diffeomorphic to the set germ (4) in the above list. O

6. Theeikonal equation. As indirect motivation, we will show how the construction
above is naturally encountered in solutions to the Minkowski eikonal equation:

9 2+ 9 2+ 9 2+ SV _,
dx1 dx2 9x3 oxa)

If the solution has a forn§(x1, x2, x3, x4) = x1 — U(x2, x3, x4), we have a solution of the
Euclidean eikonal equation:

IUN?  [oUN>  [oUN?
— | +(=) +|=) =1
dx2 0x3 0x4
The graph of the solutioly can be interpreted as a level setSflf we consider a surface in
Euclidean space as an initial manifold of the above Euclidean eikonal equation, we can obtain
such a solution.
Letz : T*(R}) — R be the cotangent bundle ovBf and ((x1, x2, x3, x4), (p1, p2,
p3, pa)) be the canonical coordinate systencisthat for a single-valued solutighwe have

pi = 3S/dx;. Therefore, the above eikonal equation can be viewed as a family of cones in
T*(R}) given by the following equation:

1 1
H(x1,x, p1, p) = 5(—pf+p-p) = 5(—pf+p§+p§+p§) =0,

wherex = (x2, x3, x4) andp = (p2, p3, pa). The singularities of the hypersurfate—l(O)
correspond to the zero sectidﬁf x {0} of the cotangent bundle. Consider the 1-form on
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T*(R}) given by
0 =—p1dx1+p-dx,

wherep - dx = Z?:z pi dx;. We can show tha#|H~1(0) is a contact form on the non-
singular part of ~1(0). If we consider a surfac& (U) = M in Euclidean 3—spac523 =

{x = (0, x2, x3, xa) | x € R*} and the unit normal vectar(x, y), then the surfacé(x, y) =

(0, X(x,y), 1, n(x, y)) in T*RY] lies in the hypersurface ~1(0). Sincen(x, y) is the normal
vector ofM, we havel*d = n(x, y) -dX (x, y) = 0. This means that the surfaééx, y) is an
integral submanifold of| H ~1(0). Moreover, the Hamiltonian vector field along the surface
£(x, y) is given by

X 9 +n(x,y) 0
=——+n(x,y)  —.
H= Y o9

It follows that we have a Cauchy problem for the level surface of a solution to the PDE
H(x1, x, p1, p) = 0 with the initial submanifold(x, y). We can apply the characteristic
method to obtain the level hypersurface of a multi-valued solution which is a Legendrian
submanifold ofH ~1(0). In general, the level hypersurface of the solution to this Cauchy
problem is the lightlike hypersurface. To see this, consider the three-dimensional submanifold
defined by

L(x,y,u) = (u, X(x,y) +un(x,y), 1, n(x,y))
in T*R‘l‘. Sincen(x, y) is a unit vector, we have(x, y) - dn(x, y) = 0, so that

L*0 = —du-+n(x,y)-dX(x,y) +du+n(x,y)-dn(x,y)=0.

Therefore,L is a Legendrian embedding. It is clear that Im&ge H~1(0). Moreover, if
we sete1(x, y) = (1,0, 0, 0) ande2(x, y) = n(x, y), then we have the lightlike hypersurface
defined by

LHE(x, y,u) = X(x,y) +uler £ e2)(x, y) .

We remark tha(ea/ez)(x, y) = (e1 + e2)(x, y) in this case. Therefore, the above Leg-
endrian embeddind. is the Legendrian lift of the lightlike hypersurfa(zellﬂj;. Since the
simultaneity has no meanings in the theory of relativity, we might consider spacelike sur-
faces as initial submanifolds for the above Minkowski eikonal equation instead of surfaces
in Euclidean space. Moreover, we have examples of lightlike hypersurface which cannot be
constructed from a regular surfaceRA (see [9, 10]).

On the other hand, the Minkowski eikonal equation defines a hypersutfaéed) x R
in the 1-jet spacg }(R{, R) = T*R} x R on which the canonical contact structure is given
by dz — 6, where(x, x, p, p, z) is the canonical coordinate system b¥(R?, R). Under
this framework, the Legendrian lift of each lightlike hypersurfaceHin’(0) gives a non-
characteristic initial data for the Cauchy problem of the Minkowski eikonal equation. There-
fore, we obtain the multivalued solution of the Cauchy problem by applying the characteristic
method which is a Legendrian submanifold bf(R?, R) belonging toH ~1(0) x R. It fol-
lows that a general lightlike hypersurface can be considered as the level set of a multivalued
solution of the Minkowski eikonal equation.
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We have another interpretation as follows: observe that there is a natural spherical blow-
up in the seven-dimensional cone bungte = 0} in T*R‘l1 defined by

R‘llxRsz—> T*R‘ll,

where(x1, x,1,0) — (x1,x,1(1,0)),t € R, 6 € S2. The characteristic line field and the
canonical 1-formp pullback to the cylinder bundle with removable zero points. It follows
that the Cauchy problem can be extended to the initial submanifold which intersects the zero
sectionin{fH =0} € T*R‘ll. Moreover, there exist ®-foliations ofR® with mild singularities

which generate well-posed initial data. For example, consider a foliation by level surfaces
f(x) = c possibly with critical points. Then the initial data

X — (vas \Y, 1- ”de”?de)

will generate a four-dimensional submanifold{if = 0}, which is a family of multivalued
three-dimensional Legendrian submanifoldg #h = 0} (i.e., a multivalued solution) on the
complement of the critical points. For special casesf6f) = c, this 4-manifold has a
C*°-immersive extension to the missing pa@nin any case each non-singular level surface
f(x) = c generates a lightlike hypersurface as in the above paragraph. These hypersurfaces
are the ‘level 3-manifolds’ of the multivalued solution.

7. Lightlike hypersurface singularitiesin curved spacetimes. Let g denote aC*°-
Lorentzian (pseudo) Riemannian metric on a neighbourhood of the origit.inVe may
choose local normal coordinates [17, Proposition 33] so that the compajgats; satisfy

gij = 8ij&j modM? )

wheree; = —1 ande; = 1, j # 1. Recall that the conformal metrig;, 0 < ¢ € R
has the same unparametrized null geodesics as the original methis in Section 2, the
lightlike hypersurfaces of consist of two-parameter families of null geodesics. It follows
that a lightlike hypersurface farg is also lightlike forg. Hence, via the pullback over the
dilationd. : R* - R* x — 1/./cx, forall¢ > 0, we see thay has the same lightlike
hypersurface singularities (near the origirRfy) as the metric

1
d¥(cgij) = 8;; + — (fourth-order termp.
-

Thus, for sufficiently large:, we may use the generic nature of the results in Sections 4
and 5 to conclude that Corollary 5.3 is also valid for an open dense s&¥afmbeddings
U — (R% ¢). In other words, on a sufficiently small neighbourhood in any smooth Lorentzian
4-manifold, there exist stable lightlike hypersurface singularities as in Minkowski space.

Appendix. Generating families. Here we give a quick survey on the theory of Leg-
endrian singularities mainly dewsed by Arnol'd-Zakalyukin [1, 19]. LeF : (R*xR", 0) —
(R, 0) be a function germ. We say thatis a Morse family if the map germ
oF oF
A*F = (F— —) :(REx R, 0) > (Rx RF,0)
9q1 gk
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is submersive, whergy, x) = (q1, - -, gk, X1, -- -, Xp) € (RF x R", 0). In this case we have
a smooth(n — 1)-dimensional submanifold

S (F) = {(q,x) e (R*xR",0)

IF IF
F(g,x)= a—ql(q,x) == S_qk(q’x) =0}

and the map germbr : (X, (F), 0) — PT*R" defined by
oF F
Dr(q,x) = (x, [a—(q,X) Teeed —(q,x)D
X1 dx,

is a Legendrian immersion. Then we have the following fundamental theorem in the theory
of Legendrian singularities [1, Section 20.7], [19, p. 27].

PropPOSITION A.1. All Legendrian submanifold germsin PT*R” are constructed by
the above method.

We call F a generating family of @ and the corresponding wave frontWg(®r) =
7,(Z4(F)), Wherer, : R* x R" — R" is the canonical projection.

We now introduce an equivalence relation among Legendrian immersion germs. Let
i:(L,p) c (PT*R", p) andi’ : (L', p’) c (PT*R", p’) be Legendrian immersion germs.
Then we say that andi’ areLegendrian equivalent if there exists a contact diffeomorphism
germH : (PT*R", p) — (PT*R", p’) such thati preserves fibres of and thatH (L) = L'.

A Legendrian immersion germ intBT*R" at a point is said to beegendrian stable if for

every map with the given germ there is a neighbourhood in the space of Legendrian immer-
sions (in the Whitney"*° topology) and a neighbourhood tfe original point such that each
Legendrian immersion belonging to the first neighbourhood has in the second neighbourhood
a point at which its germ is Legendrian equivalent to the original germ.

Since the Legendrian lift : (L, p) ¢ (PT*R", p) is uniquely determined by the reg-
ular part of the wave fronWw (i), we have the following simple but significant property of
Legendrian immersion germs.

PROPOSITION A.2. Leti : (L,p) c (PT*R", p)andi’ : (L, p’) c (PT*R", p/)
be Legendrian immersion germs such that regular sets of 7 o i and 7 o i/, respectively, are
dense. Then i, i’ are Legendrian equivalent if and only if wave front sets W (i), W(i’) are dif-
feomorphic as set germs. Herer : PT*R" — R" isthe canonical projection of the projective
cotangent bundle.

This result has been firstly pointed out by Zakalyukin [20, Assertion 1.1]. In his original
assertion, he assumed that the representativascof andrz o i’ are proper. However, we
remark that we can get rid of such an assumption. The assumption in the above proposition is
a generic condition foi, i’. In particular, ifi andi’ are Legendrian stable, then these satisfy
the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.
We denote by, the local ring of function germ&”, 0) — R with the unique maximal ideal
M, ={h €& | h(0) =0}. LetF,G : (R* x R",0) — (R, 0) be function germs. We say
that F andG are P-K-equivalent if there exists a diffeomorphism genin : (R x R", 0) —
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(R* x R", 0) of the form¥ (x, u) = (¥1(g, x), ¥2(x)) for (¢, x) € (RF x R", 0) such that
V*(F)g.,,) = (Gg,,- Herew™ : &y — Eyy is the pullbackR-algebra isomorphism
defined byW*(h) = ho V.

Let F : (R* x R*,0) — (R, 0) be a function germ. We say thatis aK-versal defor-
mationof f = F|RF x {0} if

oF oF
& = Te<iC><f)+<a—Xl‘R" X {0}, o Rk x {0}> :
n R
where
0 o)
T)(f) =<—f,...,—f,f> .
991 gk " g,

(See [12].) The main result in the theory [1, Section 20.8], [19, Theorem 2]) is the following.

THEOREM A.3. LetF,G : (R* x R, 0) — (R, 0) be Morse families. Then:

(1) @ and @ are Legendrian equivalent if and only if F, G are P-KC-equivalent;
and

(2) @r islLegendrian stableif and onlyif F isa K-versal deformation of F | R¥ x {0}.

Since F and G are function germs on the common space géRh x R”, 0), we do
not need the notion of stablf-K-equivalences under this situation (cf.[19, p.27]). By the
uniqueness result of th€-versal deformation of a function germ, we have the following
classification result of Legendriatable germs (cf. [6]). For any map gerf: (R",0) —
(RP, 0), we definethe local ring of f by Q(f) = &,/f*(OM,)E,.

PROPOSITION A.4. Let FandG : (R*xR", 0) > (R, 0) be Morsefamilies. Suppose
that @y and @ are Legendrian stable. The the following conditions are equivalent.

(1) (W(®F),0) and (W (D), 0) are diffeomorphic as germs.

(2) @ and @ are Legendrian equivalent.

(3) O(f) and Q(g) areisomorphic as R-algebras, where f = FIRE x {O}and g =
G|R* x {0}.
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