
Tohoku Math. J.
53 (2001), 581–592

ON A CONJECTURE OF SHOKUROV:
CHARACTERIZATION OF TORIC VARIETIES

YURI G. PROKHOROV

(Received January 31, 2000)

Abstract. We verify a special case of V. V. Shokurov’s conjecture about characteriza-
tion of toric varieties. More precisely, we consider three-dimensional log varieties with only
purely log terminal singularities and numerically trivial log canonical divisor. In this situation
we prove an inequality connecting the rank of the group of Weil divisors modulo algebraic
equivalence and the sum of coefficients of the boundary. We describe such varieties for which
the equality holds and show that all of them are toric.

1. Introduction. The aim of this note is to discuss the birational characterization of
toric varieties. LetX be a normal projective toric variety and letD =∑r

i=1Di be the sum of
invariant divisors. It is well-known that the pair(X,D) has only log canonical singularities
(see, e.g., [3, 3.7]),KX + D is linearly trivial andr = rank(Weil(X)/≈) + dim(X), where
Weil(X) is the group of Weil divisors and≈ is the algebraic equivalence.

Shokurov observed that this property can characterize toric varieties:

CONJECTURE 1.1 ([12]). Let (X,D =∑
diDi) be a projective log variety such that

(X,D) has only log canonical singularities and numerically trivial. Then∑
di ≤ rank(Weil(X)/≈)+ dim(X) .

Moreover, if the equality holds, then (X, �D�) is a toric pair.

Shokurov also conjectured the relative version of Conjecture 1.1 (cf. Theorem 2.3) and
expects that one can replace the numerical triviality ofKX+D with the nefness of−(KX+D).
We do not discuss these points in detail here.

Conjecture 1.1 was proved in dimension two in [12] (see also [9, Sect. 8] and Proposi-
tion 2.1 below). Our main result is the following partial answer to Conjecture 1.1 in dimension
three:

THEOREM 1.2. Let (X,D =∑
diDi) be a three-dimensional projective variety over

C such that KX +D ≡ 0 and (X,D) has only purely log terminal singularities. Then

(1.3)
∑

di ≤ rank(Weil(X)/≈)+ 3 .

Moreover, if the equality holds, then up to isomorphisms one of the following holds:
(i) X � P3, �D� = 0 or�D� = P2;
(ii) X � P1× P2, �D� = 0 or �D� = {pt} × P2 or �D� = P1× {line};
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(iii) X � P(OP1 ⊕ OP1 ⊕ OP1(d)), d ≥ 1, �D� is the section corresponding to the
surjection OP1 ⊕OP1 ⊕OP1(d)→ OP1(d);

(iv) X � P1×P1×P1, �D� = 0 or �D� = {pt}×P1×P1 or �D� = {pt1,pt2}×P1×P1;
(v) X � P(OP2 ⊕OP2(d)), d ≥ 1, �D� is the negative section, or a disjoint union of

two sections, one of them is negative;
(vi) X � P(OP1×P1⊕L), L ∈ Pic(P1×P1), �D� is the negative section, or a disjoint

union of two sections, one of them is negative.
In all cases (X, �D�) is toric.

Clearly, our theorem is not a characterization of toric varieties, but we hope that Conjec-
ture 1.1 can be proved in a similar way.

This paper is based on the subject of my talk given at Waseda seminar on January 18,
2000. I am grateful to the participants of this seminar for their attention and valuable dis-
cussions. I would also like to thank the Department of Mathematics of Tokyo Institute of
Technology for the hospitality during my stay in 1999–2000. This work was partially sup-
ported by the grant INTAS-OPEN-97-2072.

2. Preliminaries.

NOTATION. All varieties are defined overC. Basically we employ the standard nota-
tion of the Minimal Model Program (MMP, for short). Throughout this paperρ(X) is the
Picard number andNE(X) is the Mori cone ofX. We call a pair(X,D) consisting of a nor-
mal algebraic varietyX and a boundaryD onX a log variety or a log pair. Here aboundary
is aQ-Weil divisorD =∑

diDi such that 0≤ di ≤ 1 for all i. A contraction is a projective
morphismϕ : X → Z of normal varieties such thatϕ∗OX = OZ . Abbreviations klt, plt, lc
are reserved for Kawamata log terminal, purely log terminal and log canonical, respectively
(refer to [11], [4] and [3] for the definitions). Let(X,D) be a log pair and letS := �D�. For
simplicity, assume that(X,D) is lc in codimension two. The Adjunction Formula proposed
by Shokurov [11, Sect. 3] states that(KX+D)|S = KS +Diff S(D−S), where DiffS(D−S)
is a naturally defined effectiveQ-Weil divisor onS, a so-calleddifferent. Moreover,KX +D
is plt nearS if and only if S is normal andKS + Diff S(D − S) is klt [4, 17.6]. LCS(X,D)
denotes thelocus of log canonical singularities of (X,D) that is the set of all points where
(X,D) is not klt [11]. Letϕ : X→ Z be any fiber type contraction and letD =∑

diDi be a
Q-divisor onX. We will writeD =∑

verdiDi+
∑

hordiDi = Dver+Dhor, where
∑

ver (resp.∑
hor) runs through all componentsDi such that dimϕ(Di) < dim(Z) (resp.ϕ(Di) = Z).

We will frequently use the above notation without reference.
In dimension two Conjecture 1.1 is much easier than higher dimensional one. We need

only the following weaker version:

PROPOSITION 2.1. Let (X,D = ∑
diDi) be a projective log surface such that

−(KX +D) is nef and (X,D) is lc. Then
∑
di ≤ ρ(X)+ 2. Moreover, if the equality holds

and (X,D) is klt, then X � P2, or X � P1× P1.

For the general statement we refer to [12], see also [9].
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PROOF. Assume that
∑
di − ρ(X) − 2 ≥ 0 and runKX-MMP. According to [1], Log

MMP works even in the category of log canonical pairs. On each step,
∑
di − ρ(X)− 2 does

not decrease and all assumptions are preserved (see [4, 2.28]). At the end we get one of the
following:

Case 1. ρ(X) = 1. Then
∑
di − ρ(X)− 2≤ 0 by [4, 18.24], [1, 5.1].

Case 2. There is an extremal contraction onto a curveϕ : X → Z (in particular,
ρ(X) = 2). Let� be a general fiber. Then

(2.2) 2= −KX · � ≥ D · � =
∑
hor

diDi · � ≥
∑
hor

di .

Hence
∑

verdi ≥ 2 andKX+Dhor is not nef. Letφ : X→ W is a contraction of(K+Dhor)-
negative extremal ray. Ifφ is birational, we replaceX with W and obtain Case 1 above. Thus
we may assume thatW is a curve, soϕ andφ are symmetric. As above,

∑
verdi ≤ 2, so∑

di = 4.
Now assume that(X,D) is klt and

∑
di − ρ(X) − 2 = 0. Then after each divisorial

contraction
∑
di − ρ(X) − 2 increases. Hence we are only in cases 1 or 2 above. In Case 1,

X � P2 by Lemma 3.1 below. In Case 2 the contractionφ cannot be divisorial. HenceW
is a curve. We have the equality in (2.2), so

∑
hordi =

∑
verdi = 2 andDi · � = 1 for any

component ofDhor. Considering the inequality similar to (2.2) for the contractionφ, one can
obtain thatDhor is vertical with respect toφ. In particular, the components ofDhor are disjoint
sections ofϕ. Now let�0 be any fiber ofϕ. It is known (see, e.g., [9, 7.2]) thatϕ has at most
two singular points on�0. Since

∑
hordi = 2, there is a component ofDhor intersecting�0 at

a (single) smooth point. Therefore�0 is not a multiple fiber ofϕ andX is smooth along�0.
We proved thatX is smooth. Taking into account thatρ(X) = 2 and that both extremal rays
onX are nef, we obtainX � P1× P1. �

The local version of Conjecture 1.1 was proved in [4, 18.22]:

THEOREM 2.3. Let (X,D =∑
diDi) be a log pair which is log canonical at a point

P ∈ ∩Di . Assume that KX and all Di ’s are Q-Cartier at P . Then
∑
di ≤ dim(X).

Moreover, if the equality holds, then (X 
 P,D) is an abelian quotient of a smooth point
and (X,D) is not plt at P .

Recall that for any plt pair(X,D) of dimension≤ 3 there is a small birational contraction
q : Xq → X such thatXq is Q-factorial and(Xq,Dq := q−1∗ D) is plt (see [4, 6.11.1], [4,
17.10]). Suchq is called aQ-factorialization of (X,D). Applying aQ-factorialization in our
situation and taking into account that

rank(Weil(X)/≈) = (rank Weil(Xq)/≈) ≥ ρ(Xq) ,
we obtain that for Theorem 1.2 it is sufficient to prove the following

PROPOSITION 2.4. Let (X,D = ∑
diDi) be a three-dimensional projective plt pair

such that KX +D ≡ 0 and X is Q-factorial. Then

(2.5)
∑

di ≤ ρ(X)+ 3 .
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Moreover, if the equality holds, then for (X, �D�) there are only possibilities (i)–(iv) of
Theorem 1.2.

3. Lemmas. In this section we prove several facts related to Conjecture 1.1.

LEMMA 3.1 (cf. [4, 18.24], [1]). Let (X,D = ∑r
i=1 diDi) be a projective n-dimen-

sional log pair such that all Di ’s are Q-Cartier, ρ(X) = 1, (X,D) is plt and −(KX +D) is
nef. Then

(3.2)
∑

di ≤ n+ 1 .

Moreover, if the equality holds, then X � Pn andD1, . . . ,Dr are hyperplanes.

Note that in the two-dimensional case any plt pair is automaticallyQ-factorial.

PROOF. We will prove this lemma in the case when�D� = 0 (i.e.,KX+D is klt). The
case when�D� is non-trivial (and irreducible) can be treated in a similar way. The inequality
(3.2) was proved in [4, 18.24], so we prove the second part of our lemma.

Since−KX is ample, Pic(X) � Z (see, e.g., [8, 2.1.2]). LetH be an ample generator of
Pic(X) and letDi ≡ aiH , ai ∈ Q, ai ≥ 0. Assume thatai < aj for i �= j orKX +D �≡ 0.
For 0< ε � 1, consider

D(ε) := εDi +D − εDj .
ThenKX + D(ε) is again klt (because the klt property is an open condition) and−(KX +
D(ε)) is ample. TakeN ∈ N so that−N(KX + D(ε)) is integral and very ample, and let
M ∈ | − N(KX + D(ε))| be a general member. By a Bertini type theorem [3, Sect. 4],
(X,D(ε) + (1/N)M) is klt (and numerically trivial). Moreover, the sum of coefficients of
D(ε) + (1/N)M is equal ton + 1 + 1/N . This contradicts (3.2). HenceKX + D ≡ 0
andDi ≡ Dj for all i, j . Thus, for any pairDi andDj there existsni,j ∈ N such that
ni,j (Di −Dj ) ∼ 0.

By taking repeated cyclic covers (which are étale in codimension one)π : X′ → · · · →
X, we obtain a new plt pair(X′,D′ = ∑r

i=1 diD
′
i ) [4, 20.4] such thatD′i ∼ D′j , where

D′i = π∗Di . On this step, we do not assume thatD′i is irreducible. ThenD′1, . . . ,D′r
generate a linear systemM of Weil divisors. If Bs(M) is not empty, then we pick a point
P ′ ∈ D′1 ∩ · · · ∩ D′r . By construction,(X′,D′) is klt at P ′ and

∑r
i=1 di ≥ n + 1, a con-

tradiction with Theorem 2.3. Therefore Bs(M) = ∅. In particular,D′1, . . . ,D′r are ample
Cartier divisors and−KX′ ≡ D′ is ample (i.e.,X′ is a log Fano variety). This also shows
that the Fano index ofX′ is r(X′) ≥ ∑r

i=1 di ≥ n + 1. It is well-known (see, e.g., [8,
3.1.14]) that in this case we haver(X′) = ∑r

i=1 di = n + 1,X′ � Pn andD′1, . . . ,D′r are
hyperplanes. Sinceπ : X′ → X is étale outside of Sing(X) andX′ is smooth, the restriction
X′\π−1 (Sing(X))→ X\Sing(X) is the universal covering. This gives us thatπ : X′ → X is
Galois. HenceX = Pn/G, whereG ⊂ PGLn+1 is a finite subgroup. Furthermore, the group
G does not permuteD′1, . . . ,D′r . ThusG hasr > n + 1 invariant hyperplanesD′1, . . . ,D′r
in Pn. By Theorem 2.3 we have

⋂
i �=k D′i = ∅ for k = 1, . . . , r.
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Finally, the lemma follows by the following simple fact which can be proved by induction
onn. �

SUBLEMMA . Let G ⊂ PGLn+1 be a finite subgroup. Assume that there are r ≥ n+ 2
invariant hyperplanes H1, . . . , Hr ⊂ Pn such that

⋂
i �=k Hi = ∅ for all k = 1, . . . , r . Then

G = {1}.
LEMMA 3.3. Let ϕ : X → Z 
 o be a three-dimensional flipping contraction and let

D =∑
diDi be a boundary on X such that (X,D) is plt, ρ(X/Z) = 1,−(KX +D) is ϕ-nef

and all Di’s are ϕ-ample. Assume that X is Q-factorial. Then
∑
di < 2.

PROOF. Let χ : X ϕ−→ Z
ϕ+←− X+ be the flip with respect toKX and letD+ =∑

diD
+
i be the proper transform ofD. Then allD+i ’s are anti-ample overZ. Henceϕ+−1(o)

is contained in∩D+i . Consider a general hyperplane sectionH ⊂ X+. Then(H,D|H ) is plt
[3, Sect. 4]. Applying Theorem 2.3 toH we obtain

∑
di < 2. �

LEMMA 3.4. Let ϕ : X→ Z be a contraction from a projective Q-factorial three-fold
onto a surface such that ρ(X/Z) = 1. LetD =∑

diDi be a boundary onX such that (X,D)
is lc, (X,D − �D�) is klt and −(KX +D) is nef. Assume that �D� has a component S which
is generically a section of ϕ. Then

∑
i di ≤ ρ(X) + 3. Moreover, if the equality holds and

(X,D) is plt, thenX is smooth, ϕ is a P1-bundle, ϕ|S : S → Z is an isomorphism andZ � P2

or Z � P1× P1.

PROOF. Assume that
∑
i di ≥ ρ(X) + 3. Since−KX is ϕ-ample, a general fiber� of

ϕ is isomorphic toP1. We have

(3.5) 2= −KX · � = Dhor · � ≥
∑
hor

di ,
∑
ver

di ≥ ρ(X)+ 1= ρ(Z)+ 2 .

Letµ := ϕ|S . Write DiffS(D − S) =∑
i βiΘi . Then

(3.6) βi = 1− 1

mi
+ 1

mi

∑
j∈�i

dj ki,j ,

wheremi ∈ N ∪ {∞}, ki,j ∈ N and the sum runs through the setMi of all componentsDj
containingΘi (see [11, 3.10]). Heremi = ∞ when(X,D) is not plt alongΘi . It is easy to
see thatβi ≥∑

j∈�i
dj . PutΞ := µ∗ Diff S(D−S) and letΞ =∑

γiΞi . Since−(KS +Θ)
is nef,(Z,Ξ) is lc [4, 2.28]. For any componentDi of Dver we have at least one component
Θj ⊂ Di ∩ S such thatµ(Θj ) �= pt. This yields∑

i

γi =
∑

µ(Θi) �=pt

βi ≥
∑
ver

dj ≥ ρ(Z)+ 2 .

Applying Proposition 2.1 to(Z,Ξ), we obtain equalities

(3.7)
∑
i

γi =
∑

µ(Θi) �=pt

βi =
∑
ver

dj = ρ(Z)+ 2 .

Hence
∑

hordi = 2 and
∑
i di = ρ(X)+ 3. This shows the first part of the lemma.
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Now assume that(X,D) is plt. By Adjunction [4, 17.6],(S,Diff S(D − S)) is klt and so
is (Z,Ξ). Again, by Proposition 2.1 we have eitherZ � P2 orZ � P1 × P1. There exists a
standard form of ϕ (see [10]), i.e., the commutative diagram

X̃ ��� X

↓ ↓
Z̃

σ−→ Z

whereσ : Z̃ → Z is a birational morphism of smooth surfaces,X̃ ��� X is a birational map
andϕ̃ : X̃ → Z̃ is a standard conic bundle (in particular,̃X is smooth andρ

(
X̃/X

) = 1).
Take the proper transform̃S of S on X̃. For a general fiber̃� of ϕ̃ we haveS̃ · �̃ = 1.
Sinceρ(X̃/Z̃) = 1, S̃ is ϕ̃-ample. It gives us that each fiber ofϕ̃ is reduced and irreducible,
i.e., the morphism̃ϕ is smooth. By [7], there exists a standard conic bundleϕ̂ : X̂ → Z

and a birational map̂X ��� X overZ. This map indices an isomorphism(X̂/ϕ̂−1(M)) �
(X/ϕ−1(M)), whereM ⊂ Z is a finite number of points. Since bothϕ, ϕ̂ are projective
andρ(X/Z) = ρ(X̂/Z) = 1, we haveX̂ � X. But thenϕ : X → Z is smooth, i.e.,ϕ is a
P1-bundle.

Now we claim thatµ is an isomorphism. Indeed, otherwiseS contains a fiber, say�0.
ThenS intersects all irreducible components ofDhor−S. If some componentDk ofDhor−S
does not contain�0, thenϕ(S ∩Dk) is a component ofΞ . By (3.7) we have

ρ(Z)+ 2=
∑
i

γi =
∑

µ(Θi) �=pt

βi ≥ dk +
∑
ver

dj > ρ(Z)+ 2 ,

which is impossible. Therefore all components ofDhor contain�0. Taking a general hyper-
plane section as in the proof of Lemma 3.3, we derive a contradiction. �

COROLLARY 3.7.1. S does not intersects Supp(Dhor − S) and all components of
Dhor− S are sections of ϕ.

LEMMA 3.8. Let ϕ : X → Z be a contraction from a Q-factorial three-fold onto a
curve and let D = ∑

diDi be a boundary on X such that (X,D) is lc, (X,D − �D�) is
klt. Let F be a general fiber. Assume that −(KX + D) is ϕ-nef and ρ(X/Z) = 1. Then∑

hordi ≤ 3. Moreover, if the equality holds and (X,D) is plt, then F � P2 and for any
component Di of Dhor the scheme-theoretic restriction Di |F is a line.

PROOF. Put∆ := D|F . Then(F,∆) is lc, (F,∆ − �∆�) is klt (see [3, Sect. 4]) and
−(KF +∆) is nef. Moreover, if(X,D) is plt, then so is(F,∆). Write∆ =∑

δi∆i , where
all ∆i ’s are irreducible curves onF . ClearlyDver|F = 0 and

∑
δi ≥ ∑

hordi . If ρ(F ) = 1,
then the assertion of 3.8 follows by Proposition 2.1. Assume thatρ(F ) > 1. LetC be an
extremalKF -negative curve onF (note thatKF is not nef). ThenC intersects all components
of ∆ (becauseρ(X/Z) = 1). Let υ : F → F ′ be the contraction ofC. If F ′ is a curve,
then we takeC to be a general fiber ofυ. By Adjunction, 2= − degKC ≥ deg∆|C . This
gives us 2≥ ∑

δi ≥ ∑
hordi . If υ is birational, then(F ′, υ(∆)) is lc and all components of

υ(∆) pass through the pointυ(C). By Theorem 2.3, the sum of coefficients ofυ(∆) is≤ 2.
Hence

∑
hordi ≤

∑
δi ≤ 3. If (F,∆) is klt, then so is(F ′, υ(∆)) and the inequality above is
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strict. Finally, if (F,∆) is plt and�∆� �= 0, then we takeC to be(KF +∆− �∆�)-negative
extremal curve. ThenC is not a component of�∆�. By [3, 3.10],(F ′, υ(∆)) is plt. Again, by
Theorem 2.3 the sum of coefficients ofυ(∆) is strictly less than 2. So,

∑
hordi ≤

∑
δi < 3.

This proves Lemma 3.8. �

COROLLARY 3.8.1. Notation being as in Lemma 3.8, assume additionally that X is
projective, −(KX +D) is nef (not only over Z),

∑
hordi = 3,

∑
verdi = 2 and (X,D) is plt.

If �Dhor� �= ∅, then �Dhor� = �D� � P1× P1 and X is smooth along �D�. In particular, X
has at most isolated singularities.

PROOF. PutS := �D�. By [4, 17.5],S is normal. Sinceρ(X/Z) = 1, S is irreducible
and all components ofD − S meetS. Let DiffS(D − S) = ∑

βiΘi . Clearly,−(KS +
Diff S(D − S)) is nef. By [4, 17.6],(S,Θ) is klt. As in the proof of Lemma 3.4, we see∑
βi ≥∑

di−1 ≥ 4. If ρ(S) = 2, then equalities
∑
βi =∑

di−1= 4 and Proposition 2.1
give us the assertion. Assume thatρ(S) > 2. Then some fiber ofϕ|S : S → Z is not
irreducible. LetΓ be its irreducible component andυ : S → S′ be the contraction ofΓ .
Taking into account thatΓ intersects all components ofDhor, as in Lemma 3.4 we get a
contradiction. �

LEMMA 3.9 (cf. [11, 6.9]). Let ϕ : X → Z 
 o be a KX-negative contraction from a
Q-factorial variety X such that ρ(X/Z) = 1 and every fiber has dimension one. Let D be a
boundary on X such that (X,D − �D�) is klt and KX + D is ϕ-numerically trivial. Assume
that �D� is disconnected near ϕ−1(o). Then KX +D is plt near ϕ−1(o).

PROOF. Regardϕ : X → Z 
 o as a germ nearϕ−1(o). PutS := �D�. Clearly, for
a general fiber� of ϕ we have−KX · � = D · � = 2. If S′ is an irreducible component ofS
such thatS′ · � = 0, thenS′ = ϕ−1(C) for a curveC ⊂ Z. In this case,S′ containsϕ−1(o)

andS is connected nearϕ−1(o). ThereforeS has exactly two connected componentsS1 and
S2, which are irreducible andS1 · � = S2 · � = 1. ThenSi , i = 1,2, meets all components
of ϕ−1(o). HenceSi ∩ ϕ−1(o) is 0-dimensional. SinceZ is normal andϕ|Si : Si → Z is
birational,Si � Z andSi ∩ ϕ−1(o) is a single point. In particular,ϕ−1(o) is irreducible.
Clearly,LCS(X,D) ⊂ S = S1 ∪ S2. Assume that(X,D) is not plt. Then there is a divisor
E �= S1, S2 of the function fieldK(X) with discrepancya(E,D) ≤ −1. LetV ⊂ X be its
center. ThenV ⊂ S and we may assume thatV ⊂ S1 (andV �= S1). Let L ⊂ Z be any
effective prime divisor containingϕ(V ) and letF := ϕ−1(L). Clearly,(X,D + F) is not lc
nearV . For sufficiently small positiveε the log pair(X,D + F − εS1) is not lc nearV and
not klt nearS2. This contradicts Connectedness Lemma [4, 17.4]. �

4. Proof of Theorem 1.2. In this section we prove Proposition 2.4.

4.1. Inductive hypothesis. Notation and assumption in Proposition 2.4 are preserved.
Our proof is by induction onρ(X). In the caseρ(X) = 1, the assertion is a consequence of
Lemma 3.1. To prove Proposition 2.4 forρ(X) ≥ 2 we fix ρ ∈ N, ρ > 1. Assume that the
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inequality (2.5) holds ifρ(X) < ρ and forρ(X) = ρ we have

(4.2)
∑

di − ρ(X)− 3 ≥ 0 .

4.3. If (X,D) is klt, then we runKX-MMP. On each stepK ≡ −D cannot be nef.
Obviously, all steps preserve our assumptions (see [4, 2.28]) and the left hand side of (4.2)
does not decrease. Moreover, by our assumptions we have no divisorial contractions onX

(because after any divisorial contraction the left hand side of (4.2) decreases). Therefore after
a number of flips, we obtain a fiber type contractionϕ : X → Z. Sinceρ(X) = ρ ≥ 2,
dim(Z) = 1 or 2. Note that all varieties from Theorem 1.2 have no small contractions. Thus,
it is sufficient to prove Proposition 2.4 on our new model(X,D).

This procedure does not work if(X,D) is not klt. The difference is that contractions
of components ofD do not contradict the inductive hypothesis. If(X,D) is not klt, then we
run (KX + D − �D�)-MMP. Note that�D� is normal and irreducible [4, 17.5]. For every
extremal rayR we have�D� ·R > 0, so we cannot contract an irreducible component of�D�.
Therefore after every divisorial contraction

∑
di − ρ(X) decrease, a contradiction with our

assumption. Thus, all steps of the MMP are flips. By [4, 2.28], they preserve the plt property
ofK+D. At the end we get a fiber type contractionϕ : X→ Z, where dim(Z) < 3 and�D�
is ϕ-ample (i.e.,�Dhor� �= 0). Since�Dhor� has a component which intersects all components
of Dver, �Dver� = 0.

4.4. Case: dim(Z) = 1. Thenρ(X) = 2. By Lemma 3.8 and our assumption (4.2),
we have

∑
hordi ≤ 3 and

∑
verdi ≥ 2. In particular,Dver �= 0. Components ofDver are fibers

of ϕ, so they are numerically proportional. Clearly, the log divisorKX+Dhor ≡ −Dver is not
nef and curves in fibers ofϕ are trivial with respect to it. LetQ be the extremal(KX +Dhor)-
negative ray ofNE(X) ⊂ R2 andφ : X → W be its contraction. It follows by Lemma 3.3
thatφ cannot be a flipping contraction. Let� be a general curve such thatφ(�) = pt. Then�
dominatesZ and� � P1. HenceZ � P1.

4.4.1. Subcase:�D� = 0. We will prove thatX � P2 × P1. By our inductive
hypothesis,φ cannot be divisorial. Therefore dim(W) = 2. Further,Dver ·� ≤ D ·� = −KX ·
� = 2. Since� intersects all components ofDver,

∑
verdi ≤ 2. This yields

∑
verdi = 2 and∑

hordi = 3. In particular, this proves inequality (2.5). Moreover,�·Dver = 2,�·Dhor = 0 and
for any componentDi of Dver we haveDi · � = 1. Fix two components ofDver, sayD0 and
D1. ThenKX+D0+D1+Dhor≡ KX+D ≡ 0, so(X,D0+D1+Dhor) is plt by Lemma 3.9.
Applying Lemma 3.4, we obtainD0 � D1 � Z � P2, X is smooth andφ is a P1-bundle.
By [6, 3.5],ϕ is aP2-bundle. We have a finite morphismϕ × φ : X → Z ×W = P1 × P2.
Clearly, deg(ϕ × φ) = ϕ−1(pt) · � = 1. Henceϕ × φ is an isomorphism.

4.4.2. Subcase:�D� �= 0. Sinceρ(X/Z) = 1, �D� is irreducible. PutS := �D�. Let
F be a general fiber ofϕ. By construction,−KX is ϕ-ample. First, assume that dim(W) = 2.
ThenDver ·� ≤ D ·� = −KX ·� = 2. Since� intersects all components ofDver,

∑
verdi ≤ 2.

This yields
∑

verdi = 2,
∑

hordi = 3 and
∑
di = 5. Moreover,Dhor · � = 0. By Lemma 3.8,

F � P2, X is smooth alongF and for any componentDi of Dhor the scheme-theoretic
restrictionDi |F is a line. Hence components ofDhor are numerically equivalent. LetD1 be a
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component ofDhor− S. Consider the new boundaryD′ := D + εD0 − εS. If 0 < ε � 1,
then(X,D′) is klt andKX+D′ ≡ 0. Applying Case 4.4.1, we getW � P2 andX � P2×P1.

Now assume thatφ is divisorial. By the inductive hypothesis,φ contractS. Since the
contraction is extremal,φ(S) is a curve (otherwise curvesS ∩ ϕ−1(pt) is contracted byφ and
ϕ). All components ofφ(Dver) pass throughφ(S). By taking a general hyperplane section
as in the proof of Lemma 3.3, we obtain

∑
verdi ≤ 2. By Corollary 3.8.1, we obtain that

S � P1 × P1, X has only isolated singularities andX is smooth alongS. By Lemma 3.8,
F � P2 andX is smooth alongF . The curveF ∩ S is ample onF , so it is connected and
smooth by the Bertini theorem. ThereforeF ∩ S is a generator ofS = P1 × P1. Sinceϕ|S
is flat, the same holds for arbitrary fiberF0. Hence all fibers ofϕ are numerically equivalent
and any fiberF0 contains an ample smooth rational curve. Moreover, this also means thatF0

is not multiple. Thus it is a normal surface. Now as in Case 4.4.1,KX + F0+ F1+Dhor ≡ 0
and by Lemma 3.9,(X, F0 + F1 + Dhor) is plt for any fibersF0 andF1. By Adjunction,
(F0,D

hor|F0) is klt. Clearly,KF0 ≡ KX|F0 andS|F0 are numerically proportional. Hence
F0 is a log del Pezzo surface of Fano index> 1. Sinceϕ is flat, (KF0)

2 = (KF )
2 = 9.

Therefore,F0 � P2 andX is smooth. By [6, 3.5],ϕ is aP2-bundle, soX � PP1(E), where
E = OP1 ⊕ OP1(a) ⊕ OP1(b), 0 ≤ a ≤ b. The Grothendiek tautological bundleOP(E)(1)
is generated by global sections and not ample. ThereforeOP(E)(1) gives us a supporting
function for the extremal rayQ. Sinceφ is birational,OP(E)(1)3 = a + b > 0. Finally,X
containsS = P1 × P1. Hencea = 0. This proves Proposition 2.4 in the case whenZ is a
curve.

4.5. Case: dim(Z) = 2. Note thatZ has only log terminal singularities (see, e.g., [4,
15.11]). Since−KX is ϕ-ample, a general fiber� of ϕ is P1. Hence 2= −KX · � = D · � =
Dhor · � ≥ ∑

hordi . By our assumption,
∑

verdi ≥ ρ(X) + 1. If (X,D) is not plt, then�D�
is ϕ-ample. Clearly,�Dver� = 0.

CLAIM 4.5.1. Notation being as above, KZ is not nef.

PROOF. Run (KX + Dver)-MMP. After a number of flips we get either a divisorial
contraction (of the proper transform of a component of�D�), or a fiber type contraction. In
both casesZ is dominated by a family of rational curves [2, 5-1-4, 5-1-8]. ThereforeKZ is
not nef by [5]. �

CLAIM 4.5.2. Notation being as in 4.5, Z contains no contractible curves. In par-
ticular, ρ(Z) ≤ 2.

PROOF. Assume the converse. Namely, there is an irreducible curveΓ ⊂ Z and a
birational contractionµ : Z → Z′′ such thatµ(Γ ) = pt andρ(Z/Z′′) = 1. DenoteF :=
ϕ−1(Γ ). SinceF �⊂ �D�, (X,D + εF ) is plt for 0< ε � 1 [4, 2.17].

Run(K +D + εF )-MMP overZ′′. By our inductive hypothesis, there are no divisorial
contractions (because such a contraction must contractF ). At the end we cannot get a fiber
type contraction (becauseK +D+ εF ≡ εF cannot be anti-ample over a lower-dimensional
variety). Thus after a number of flipsX ��� X′, we get a modelX′ over Z′′ such that
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KX′ +D′ + εF ′ ≡ εF ′ is nef overZ′′, whereD′ andF ′ are proper transforms ofD andF ,
respectively. ThenF ′ �≡ 0 (becauseF �≡ 0). Let�′ be the proper transform of a general fiber
of ϕ. SinceF ′ is nef overZ′′, F ′ · �′ = 0 andρ(X′/Z′′) = 2, we obtain that�′ generates an
extremal ray ofNE(X′/Z′′). Let ϕ′ : X′ → Z′ be its contraction andµ′ : Z′ → Z′′ be the
natural map. Then dim(Z′) = 2,Γ ′ := ϕ′(F ′) is a curve andµ′(Γ ′) = µ(ϕ(F )) = µ(Γ ) =
pt. Therefore(Γ ′)2 < 0. On the other hand,(Γ ′)2 ≥ 0, which is a contradiction. Indeed, let
C′ ⊂ F ′ be any curve such thatϕ′(C′) = Γ ′. ThenC′ · F ′ ≥ 0. By the projection formula,
(Γ ′)2 ≥ 0.

SinceKZ is not nef, there is an extremal contractionψ : Z → V . By the above it is not
birational. Therefore dim(V ) = 1 andρ(Z) = 2. �

COROLLARY 4.5.3. Notation being as in 4.5, one of the following holds:
(i) ρ(Z) = 1 and −KZ is ample;
(ii) ρ(Z) = 2 and there is a KZ-negative extremal contraction ψ : Z → V onto a

curve.

4.5.4. Subcase:�D� = 0. LetDi be a component ofDver. Run(K + D − diDi)-
MMP:

χ(i) : X ��� X(i) .
As above we get a fiber type contractionϕ(i) : X(i) → Z(i). NotationsDver andDhor will be
fixed with respect to our originalϕ. If dim(Z(i)) = 1, then replacingX with X(i), we get the
case dim(Z) = 1 above. Thus we can assume that dim(Z(i)) = 2 for any choise ofDi . Let
�(i) ⊂ X(i) be a general fiber ofϕ(i) and letL(i) ⊂ X be its proper transform. Clearly,χ(i)
is an isomorphism alongL(i). Hence−KX · L(i) = 2, L(i) is nef andDi · L(i) > 0. For
i = 1, . . . , r we get rational curvesL(1), . . . , L(r). We shift indexing so thatX = X(0) and
putZ = Z(0) andϕ = ϕ(0).

Up to permutations we can takeL(0), . . . , L(s), s + 1 ≤ r to be linearly independent in
N1(X). Then for anyDi there existsL(j) such thatDi · L(j) > 0. Thus we have

2(s+1) = −KX ·
s∑
j=0

L(j) = D ·
s∑
j=0

L(j) =
r∑
i=1

di

(
Di ·

s∑
j=0

L(j)
)
≥

r∑
i=1

di ≥ ρ(X)+3 .

Since 3≥ ρ(Z)+ 1= ρ(X) ≥ s + 1, this yieldsρ(X) = s + 1= 3. Thus,

(4.6) Di ·
2∑
j=0

L(j) = 1

holds for all i. Moreover,L(0), L(1), L(2) generateN1(X) and components ofD generate
N1(X).

Taking into account that 2= −KX · L(j) = D · L(j), we decomposeD into the sum
D = D(0) +D(1) +D(2) of effectiveQ-divisors without common components so that

(4.7) D(i) · L(j) =
{

0 if i �= j ,
2 otherwise .
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ThenD(i) = ϕ∗∆(i) for i = 1,2, where∆(1), ∆(2) are effectiveQ-divisors onZ. Put
C(i) := ϕ(L(i)), i = 1,2. Since familiesL(j) are dense onX, C(j) are nef and�≡ 0. By the
projection formula,

∆(i) · C(j)
{ = 0 if 1 ≤ i �= j ≤ 2 ,
> 0 if 1 ≤ i = j ≤ 2 .

Hence∆(1) and∆(2) generate extremal rays ofNE(Z) ⊂ R2. By (4.7), theseQ-divisors have
more than one component, so they are nef and(∆(1))2 = (∆(2))2 = 0. This gives us thatC(1)

andC(2) also generate extremal rays. ThereforeC(i) and∆(j) are numerically proportional
wheneveri �= j and(C(1))2 = (C(2))2 = 0. In particular,C(i), i = 1,2 generate an one-
dimensional base point free linear system which defines a contractionZ → P1. This also
shows thatD(i) = ϕ∗∆(i), i = 1,2 are nef onX.

Now we claim thatD(0) is nef. Assume the opposite. Then for smallε > 0, (X,D +
εD(0)) is klt [4, 2.17]. There is a(KX + D + εD(0))-negative extremal ray, sayR. By our
inductive hypothesis, the contraction ofR must be of flipping type. Since∆(1),∆(2) generate
N1(Z), we haveD(i) · R > 0 for i = 1 or 2. By (4.7),

∑(i)
j dj = 2, where

∑(i)
j runs

through all componentsDj of D(i). Since components ofD(i) = ϕ∗(∆(i)) are numerically
proportional, this contradicts Lemma 3.3. ThereforeD(i) are nef fori = 0,1,2.

We claim thatL(i), i = 0,1,2 generateNE(X). Indeed, letz ∈ NE(X) be any element.
Thenz ≡∑

αi [L(i)] for αi ∈ R. By (4.7), 0≤ D(j) · z = αj . This shows thatL(i) generate
NE(X). From (4.6) we see that components ofD(0) are numerically equivalent.

Fix two componentsD′ andD′′ of D(0). ThenKX + D′ + D′′ + D(1) + D(2) ≡ 0.
By Lemma 3.9,(X,D′ + D′′ + D(1) + D(2)) is plt. Lemma 3.4 implies thatD′ � D′′ �
S � P1 × P1, X is smooth andϕ is a P1-bundle. As in the case dim(Z) = 1, we have
X � P1× P1× P1.

4.7.5. Subcase:�D� �= 0. LetS be a component of�D�. Clearly,S · � ≤ 2. If S is
generically a section ofϕ, then by Lemma 3.4,X is smooth,ϕ is aP1-bundle andS � P2 or
P1×P1. ThereforeX � P(E), whereE is a rank two vector bundle onZ. Sinceϕ has disjoint
sections,E is decomposable. So we may assume thatE = OZ + L, whereL is a line bundle.
By the projection formula, all components ofDver are nef. LetR be a(KX +Dhor)-negative
extremal curve and letφ : X → W be its contraction. Assume thatφ is of flipping type. By
[6], KX · R ≥ 0. HenceDhor · R < 0, soR is contained in a section ofϕ. But all curves on
P2 andP1×P1 are movable, a contradiction. Ifφ is of fiber type, then as in the case�D� = 0
we getX � Z×P1. Assume thatφ is of divisorial type. By inductive hypothesis,φ contracts
a component of�D�.

Finally, consider the case whenϕ|S : S → Z is generically finite of degree 2. Obviously,
Dhor = S. If ρ(Z) = 1, then all components ofDver are numerically proportional and∑

verdi ≥ 4. If additionally dim(W) = 2, thenDver · φ−1(w) ≤ 2 for generalw ∈ W .
Hence

∑
verdi ≤ 2, a contradiction. Then by Lemmas 3.3 and 3.8,φ is divisorial andφ must

contractS. We derive a contradiction with Theorem 2.3 for(W, φ(Dver)) nearφ(S).
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Thereforeρ(Z) = 2 and there is aKZ-negative extremal contractionψ : Z → V onto

a curve (see Corollary 4.5.3). Letπ : X ϕ−→ Z
ψ−→ V be the composition map. Clearly, all

fibers ofπ are irreducible. WriteD = ∑′
diDi +∑′′

diDi = D′ + D′′, where
∑′ (respec-

tively
∑′′) runs through all componentsDi such thatπ(Di) = pt (respectivelyφ(Di) = V ).

Thus,S is a component ofD′′ and components ofD′ are numerically proportional. LetF
be a general fiber. Thenρ(F ) = 2. Consider the contractionϕ|F : F → ϕ(F ) and denote
D′′|F = D|F by Φ = ∑

αiΦi . Then(F,Φ) is plt andKF + Φ ≡ 0. Clearly, the curve
S|F = �Φ� is a 2-section and components ofΦ − �Φ� are fibers ofϕ|F . As in the proof of
Lemma 3.8, using the fact thatS|F intersects components ofΦ − �Φ� twice, one can check∑
αi < 3. This yields

∑′′ di < 3 and
∑′ di > 2. LetR be a(KX +D′′)-negative extremal

ray. Since
∑′ di > 2 andρ(X) > 2,R cannot be an extremal ray of fiber type. According to

Lemma 3.3,R also cannot be of flipping type. ThereforeR is divisorial and contractsS to a
point. SinceS intersects all components ofDver, this contradicts Theorem 2.3. The proof of
Proposition 2.4 is finished.

CONCLUDING REMARK. In contrast with the purely log terminal case we have no
complete results in the log canonical case. The reason is that the steps of MMP are not so
simple. In particular, we can have divisorialcontractions which contract components of�D�.
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