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Abstract. We verify a special case of V. V. Shokurov’s conjecture about characteriza-
tion of toric varieties. More precisely, we consider three-dimensional log varieties with only
purely log terminal singularities and numerically trivial log canonical divisor. In this situation
we prove an inequality connecting the rank of the group of Weil divisors modulo algebraic
equivalence and the sum of coefficients of the boundary. We describe such varieties for which
the equality holds and show that all of them are toric.

1. Introduction. The aim of this note is to discuss the birational characterization of
toric varieties. LefX be a normal projective toric variety and lbt= ) "._; D; be the sum of
invariant divisors. It is well-known that the paiX, D) has only log canonical singularities
(see, e.g., [3, 3.7)Kx + D is linearly trivial andr = rankWeil(X)/~) + dim(X), where
Weil(X) is the group of Weil divisors ang is the algebraic equivalence.

Shokurov observed that this property can characterize toric varieties:

CONJECTURE 1.1 ([12]). Let(X, D =)_d;D;) bea projectivelog variety such that
(X, D) hasonly log canonical singularities and numerically trivial. Then

Zd,» < rankWeil(X)/~) + dim(X) .
Moreover, if the equality holds, then (X, | D]) isatoric pair.

Shokurov also conjectured the relative version of Conjecture 1.1 (cf. Theorem 2.3) and
expects that one can replace the numerical trivialit{ f+ D with the nefness of (K x+ D).
We do not discuss these points in detail here.

Conjecture 1.1 was proved in dimension two in [12] (see also [9, Sect. 8] and Proposi-
tion 2.1 below). Our main result is the following partial answer to Conjecture 1.1 in dimension
three:

THEOREM 1.2. Let (X, D =) d;D;) beathree-dimensional projective variety over
Csuchthat Kx + D = 0and (X, D) hasonly purely log terminal singularities. Then
(1.3) > d; < rankWeil(X)/~) + 3.

Moreover, if the equality holds, then up to isomorphisms one of the following holds:
() X~P% |D]=0or|D|=P?
(i) X~P'xP? [D|=0o0r|D|={pt}) x PPor [ D] =P x {line};
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(i) X ~P(Opr @ Op1 @ Op1(d)), d > 1, | D] is the section corresponding to the
surjection Opr @ Opr @ Op1(d) — Op1(d);

(iv) X ~P'xPxPl D] =0o0r D] = {pt}xP'xPlor | D] = {pt;, pt,} x Pt x PL;

(V) X = P(Op2 ® Op2(d)),d = 1, | D] isthe negative section, or a digoint union of
two sections, one of them is negative;

(Vi) X =P(Op1, . ® L), L € Pic(P! x PY, | D] isthe negative section, or a digjoint
union of two sections, one of themis negative.

Inall cases (X, | D]) istoric.

Clearly, our theorem is not a characterization of toric varieties, but we hope that Conjec-
ture 1.1 can be proved in a similar way.

This paper is based on the subject of my talk given at Waseda seminar on January 18,
2000. | am grateful to the participants of this seminar for their attention and valuable dis-
cussions. | would also like to thank the Department of Mathematics of Tokyo Institute of
Technology for the hospitality during my stay in 1999-2000. This work was partially sup-
ported by the grant INTAS-OPEN-97-2072.

2. Preiminaries.

NOTATION. All varieties are defined ovet. Basically we employ the standard nota-
tion of the Minimal Model Program (MMP, for short). Throughout this papék) is the
Picard number and/ E (X) is the Mori cone ofX. We call a pair(X, D) consisting of a nor-
mal algebraic varietX and a boundary) on X alog variety or alog pair. Here aboundary
is aQ-Weil divisor D = > d; D; such that 0< d; < 1 for alli. A contraction is a projective
morphismg: X — Z of normal varieties such that.Ox = Oz. Abbreviations klt, plt, Ic
are reserved for Kawamata log terminal, puralg terminal and log canonical, respectively
(refer to [11], [4] and [3] for the definitions). L&tX, D) be a log pair and le§ := | D]. For
simplicity, assume thatX, D) is Ic in codimension two. The Adjunction Formula proposed
by Shokurov [11, Sect. 3] states thaty + D)|s = K + Diff (D — S), where Diffg(D — S)
is a naturally defined effectiv@-Weil divisor on S, a so-calledlifferent. Moreover,Kx + D
is plt nears if and only if S is normal andk's + Diff (D — S) is klt [4, 17.6]. LCS(X, D)
denotes théocus of log canonical singularities of (X, D) that is the set of all points where
(X, D) is notklt[11]. Lety: X — Z be any fiber type contraction and Bt= " d; D; be a
Q-divisor onX. We will write D = 3o, d; D; + Y o, di D; = D'+ D", where}" . (resp.
> hop runs through all componeni; such that dinp(D;) < dim(Z) (resp. ¢(D;) = Z).
We will frequently use the above notation without reference.

In dimension two Conjecture 1.1 is much easier than higher dimensional one. We need
only the following weaker version:

ProPOSITION 2.1. Let (X,D = ). d;D;) be a projective log surface such that
—(Kx + D) isnefand (X, D) islc. Then > d; < p(X) + 2. Moreover, if the equality holds
and (X, D) iskit, then X ~ P2, or X ~ P x PL.

For the general statement we refer to [12], see also [9].
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PROOF Assume thad_d; — p(X) — 2 > 0 and runkK x-MMP. According to [1], Log
MMP works even in the category of log canonical pairs. On each 5tef),— p(X) — 2 does
not decrease and all assumptions are preserved (see [4, 2.28]). At the end we get one of the
following:
Case 1. p(X)=1.Then) d; — p(X) —2<0by[4,18.24],[1,5.1].
Case 2. There is an extremal contraction onto a cupreX — Z (in particular,
p(X) = 2). Lett be a general fiber. Then

(2.2) 2=—Kx =D L= diD;-L>) d.

hor hor
HenceY o d: > 2 andKx + D" is not nef. Letp: X — W is a contraction ofK + D"")-
negative extremal ray. b is birational, we replac& with W and obtain Case 1 above. Thus
we may assume thav is a curve, s@ and¢ are symmetric. As above, .di < 2, SO
> di =4.

Now assume thatX, D) is kit and}_d; — p(X) — 2 = 0. Then after each divisorial
contractiony  d; — p(X) — 2 increases. Hence we are only in cases 1 or 2 above. In Case 1,
X ~ P? by Lemma 3.1 below. In Case 2 the contractipcannot be divisorial. Henc#
is a curve. We have the equality in (2.2), 38,,di = Y _verdi = 2 @andD; - £ = 1 for any
component of"%". Considering the inequality similar to (2.2) for the contracijgrone can
obtain thatD"" is vertical with respect tg. In particular, the components 6" are disjoint
sections ofp. Now let£g be any fiber ofp. It is known (see, e.g., [9, 7.2]) thathas at most
two singular points orio. Sincey |,,d: = 2, there is a component @ intersecting’o at
a (single) smooth point. Therefofg is not a multiple fiber ofp and X is smooth alond.
We proved thai is smooth. Taking into account thatX) = 2 and that both extremal rays
on X are nef, we obtaitX ~ P! x P, O

The local version of Conjecture 1.1 was proved in [4, 18.22]:

THEOREM 2.3. Let(X, D =) d;D;) bealog pair which islog canonical at a point
P € ND;. Assume that Kx and all D;’'s are Q-Cartier at P. Then } d; < dim(X).
Moreover, if the equality holds, then (X > P, D) is an abelian quotient of a smooth point
and (X, D) isnot plt at P.

Recall that for any plt paifX, D) of dimension< 3 there is a small birational contraction
g: X9 — X such thatx? is Q-factorial and(X4, DY := ¢;1D) is plt (see [4, 6.11.1], [4,
17.10]). Suchy is called aQ-factorialization of (X, D). Applying aQ-factorialization in our
situation and taking into account that

rankWeil(X)/~) = (rank WeikX?)/~) > p(X?),
we obtain that for Theorem 1.2 it is sufficient to prove the following

PROPOSITION 2.4. Let (X, D = )_d; D;) be athree-dimensional projective plt pair
suchthat Ky + D = 0and X is Q-factorial. Then

(2.5) > di <p(X)+3.



584 Y. PROKHOROV

Moreover, if the equality holds, then for (X, | D]) there are only possibilities (i)—(iv) of
Theorem 1.2.

3. Lemmas. In this section we prove several facts related to Conjecture 1.1.

LEMMA 3.1 (cf. [4, 18.24], [1]). Let (X, D =) ._;d;D;) be a projective n-dimen-
sional log pair such that all D;’s are Q-Cartier, p(X) = 1, (X, D) ispltand —(Kx + D) is
nef. Then

(3.2 Zdi§n+1.

Moreover, if the equality holds, then X ~ P" and Dy, ... , D, are hyperplanes.
Note that in the two-dimensional case any plt pair is automati€aigictorial.

PrRoOOFE  We will prove this lemma in the case whepR| = 0 (i.e.,Kx + D is klt). The
case when D | is non-trivial (and irreducible) can be treated in a similar way. The inequality
(3.2) was proved in [4, 18.24], so we prove the second part of our lemma.

Since— Ky is ample, Pi¢X) ~ Z (see, e.g., [8, 2.1.2]). La¥ be an ample generator of
Pic(X) and letD; = a;H,a; € Q,a; > 0. Assume that; < ajfori # jorKx + D # 0.

For 0 < ¢ « 1, consider

D® :=¢D;+ D — eDj.

ThenKy + D is again kit (because the kit property is an open condition)-ankly +
D®) is ample. TakeV € N so that—N(Kx + D®) is integral and very ample, and let
M € |- N(Kx + D®)| be a general member. By a Bertini type theorem [3, Sect. 4],
(X, D'® 4 (1/N)M) is kit (and numerically trivial). Moreover, the sum of coefficients of
D® + (1/N)M is equal ton + 1 + 1/N. This contradicts (3.2). HencEx + D = 0
andD; = D; for all i, j. Thus, for any pairD; and D; there exists:; ; € N such that
ni j(Di — Dj) ~ 0.

By taking repeated cyclic covers (which are étale in codimensionong) — --- —
X, we obtain a new plt paitX’, D’ = Y i_,d;D}) [4, 20.4] such thaiD, ~ D;, where
D, = n*D;. On this step, we do not assume tiaf is irreducible. ThenDj, ..., D,
generate a linear systemt of Weil divisors. If B M) is not empty, then we pick a point
P’ € DiN---N Dj. By construction(X’, D') is kit at P" and);_,d; > n + 1, a con-
tradiction with Theorem 2.3. Therefore 8%!) = . In particular,D/, ..., D, are ample
Cartier divisors and-Kx: = D’ is ample (i.e., X’ is a log Fano variety). This also shows
that the Fano index ok’ is r(X’) > Y '_;d;i > n + 1. Itis well-known (see, e.g., [8,
3.1.14]) that in this case we haveX’) = Y7 ;d; =n+1,X' >~ P"andD],..., D, are
hyperplanes. Since: X’ — X is étale outside of Sing) andX’ is smooth, the restriction
X"\7~1(Sing X)) — X\ Sing(X) is the universal covering. This gives us thatX’ — X is
Galois. HenceX = P"/G, whereG C PGL,1 is afinite subgroup. Furthermore, the group
G does not permut®;, ..., D.. ThusG hasr > n + 1 invariant hyperplane®’, ..., D,
in P". By Theorem 2.3 we hav@), ,, D; = o fork=1,...,r.
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Finally, the lemma follows by the following simple fact which can be proved by induction
onn. 0

SUBLEMMA. LetG C PGL,4+1 beafinitesubgroup. Assumethat therearer > n + 2
invariant hyperplanes Hy, ... , H, c P" such that ﬂi#k H =goforallk=1,...,r. Then
G ={1}.

LEMMA 3.3. Letg: X — Z 3 o beathree-dimensional flipping contraction and let
D =) d;D; beaboundary on X suchthat (X, D) isplt, p(X/Z) =1, —(Kx + D) is¢-nef
and all D;’sare p-ample. Assumethat X is Q-factorial. Then > " d; < 2.

PROOF Lety: X -2 Z Pl X* be the flip with respect t&Kx and letDT =
> d; D} be the proper transform d. Then allD;"’s are anti-ample oveZ. Hencep™ (o)
is contained ile.+. Consider a general hyperplane sectiorc X*. Then(H, D|p) is plt
[3, Sect. 4]. Applying Theorem 2.3 td we obtain) " d; < 2. O

LEMMA 3.4. Letg: X — Z beacontraction froma projective Q-factorial three-fold
ontoasurfacesuchthat p(X/Z) = 1. Let D = ) _ d; D; beaboundary on X suchthat (X, D)
islc, (X, D — | D)) iskitand —(Kx + D) isnef. Assumethat | D | hasa component S which
is generically a section of ¢. Then ), d; < p(X) + 3. Moreover, if the equality holds and
(X, D) isplt, then X issmooth, ¢ isaP-bundle ¢|s: § — Z isanisomorphismand Z ~ p?
or Z ~ P! x PL.

PROOF  Assume thad ", d; > p(X) + 3. Since—Ky is p-ample, a general fiberof
¢ is isomorphic tdP!. We have
(3.5) 2=—Kx-z=Dh°f-zde,», Zdiz,o(X)+1=,0(Z)+2.

hor ver
Let i := ¢|s. Write Diffg(D — §) = ), 8i®;. Then
1 1

(3.6) ,Bizl—m—i-i-m—iZdjki,jv

JjeM;
wherem; € N U {oc}, k; ; € N and the sum runs through the $& of all component;
containing®; (see [11, 3.10]). Here;; = co when(X, D) is not plt along®;. It is easy to
see thaB; > Zjezm,- dj. Putg := pu, Diff (D —S) and letZ = )" y; &;. Since—(Ks + ©)
is nef,(Z, &) is Ic [4, 2.28]. For any componem; of DV¢" we have at least one component
©®; C D; N S such thafu(®;) # pt. This yields

Yovi= Y. Bz di=p2)+2.

i 1(O)#pt ver

Applying Proposition 2.1 t¢Z, Z'), we obtain equalities

3.7) dvi= ), Bi=) di=p2)+2.
i (O #pt ver

Hence) |, di = 2and)_; di = p(X) + 3. This shows the first part of the lemma.
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Now assume thatX, D) is plt. By Adjunction [4, 17.6](S, Diff (D — 8)) is kIt and so
is (Z, &). Again, by Proposition 2.1 we have eithér~ P? or Z ~ P! x PL. There exists a
standard formof ¢ (see [10]), i.e., the commutative diagram
X - X
\ \
z 5 z
whereo : Z — Z is a birational morphism of smooth surfac&s--» X is a birational map
and@: X — Z is astandard conic bundle (in particularX is smooth ang (X/X) = 1).
Take the proper transforr§i of S on X. For a general fibef of ¢ we haveS - ¢ = 1.
Slnce,o(X/Z) =1,Sis g-ample. It gives us that each fiber @fis reduced and |rredUC|bIe,
i.e., the morphisn® is smooth. By [7], there exists a standard conic bunitleX — Z
and a birational map? --+» X overZ. This map indices an isomorphis(ﬁ/@‘l(im)) ~
(X/o~1(OM)), whered c Z is a finite number of points. Since boih ¢ are projective
andp(X/Z) = p(X/Z) = 1, we haveX ~ X. Buttheng: X — Z is smooth, i.e.¢ is a
PL-bundle.
Now we claim thatu is an isomorphism. Indeed, otherwiSecontains a fiber, sayp.
Thens intersects all irreducible componentsRf® — S. If some componenb; of D" — §
does not contailfip, theny (S N Dy) is a component of'. By (3.7) we have

pPZ)+2=) yi= Y. Bizdi+y dj>p2)+2,

i w(O;)#pt ver
which is impossible. Therefore all componentsi@®" containty. Taking a general hyper-
plane section as in the proof of Lemma 3.3, we derive a contradiction. O

COROLLARY 3.7.1. S does not intersects Supg D" — §) and all components of
DO — § are sections of ¢.

LEMMA 3.8. Let¢: X — Z be a contraction from a Q-factorial three-fold onto a
curve and let D = Y d;D; be a boundary on X such that (X, D) islc, (X, D — | D)) is
kit. Let F be a general fiber. Assume that —(Ky + D) is ¢-nef and p(X/Z) = 1. Then
> hordi < 3. Moreover, if the equality holds and (X, D) is plt, then F ~ P2 and for any
component D; of D" the scheme-theoretic restriction D; | isa line.

PROOE PutA := DJ|f. Then(F, A)islc, (F, A — |A)) is kit (see [3, Sect. 4]) and
—(KF + A) is nef. Moreover, if(X, D) is plt, then so igF, A). Write A = > §; A;, where
all A;’s are irreducible curves ofi. Clearly DV®'|p = 0and)_ & > > ., di. If p(F) =1,
then the assertion of 3.8 folis by Proposition 2.1. Assume thatF) > 1. LetC be an
extremalK g-negative curve o’ (note thatk ¢ is not nef). TherC intersects all components
of A (becausep(X/Z) = 1). Letv: F — F’ be the contraction of. If F’ is a curve,
then we takeC to be a general fiber af. By Adjunction, 2= —degK¢ > degA|c¢. This
givesus 2> ) 8; > Y o di. If v is birational, then(F’, v(4)) is Ic and all components of
v(A) pass through the point(C). By Theorem 2.3, the sum of coefficientswfA) is < 2.
Hence) | o,di < > 8; < 3.1f (F, A)isklt, then so iSF’, v(A)) and the inequality above is
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strict. Finally, if (F, A) is pltand|A] # 0O, then we take” to be(Kr + A — | A])-negative
extremal curve. Thef is not a component dfA]. By [3, 3.10],(F’, v(4)) is plt. Again, by
Theorem 2.3 the sum of coefficientswfA) is strictly less than 2. SG,_,o,di < Y68 < 3.
This proves Lemma 3.8. O

COROLLARY 3.8.1. Notation being as in Lemma 3.8, assume additionally that X is
projective, —(Kx + D) isnef (not only over Z), > 1o,di = 3, > \erdi = 2and (X, D) isplt.
If |LDMO"| £ &, then | D] = | D] ~ P! x P! and X issmooth along | D]. In particular, X
has at most isolated singularities.

PROOE PutS := |D]. By [4, 17.5],S is normal. Sincep(X/Z) = 1, S is irreducible
and all components oD — S meetS. Let Diffg(D — S) = > 8;0;. Clearly, —(Ks +
Diff (D — S)) is nef. By [4, 17.6],(S, ©®) is kIt. As in the proof of Lemma 3.4, we see
Bi=> di—1>4.1f p(S) = 2, thenequalitiey " g; = > d; —1 = 4 and Proposition 2.1
give us the assertion. Assume thatS) > 2. Then some fiber op|s: S — Z is not
irreducible. LetI” be its irreducible component and S — S’ be the contraction of".
Taking into account thaf” intersects all components @"”", as in Lemma 3.4 we get a
contradiction. O

LEMMA 3.9 (cf. [11, 6.9]). Letp: X — Z > o bea Kx-negative contraction froma
Q-factorial variety X such that p(X/Z) = 1 and every fiber has dimension one. Let D be a
boundary on X suchthat (X, D — | D]) iskltand Kx + D is ¢-numerically trivial. Assume
that | D | is disconnected near ¢ (o). Then Kx + D isplt near ¢~1(0).

PROOF Regardp: X — Z > o as a germ neap~1(0). PutS := | D]. Clearly, for
a general fibef of ¢ we have—Ky - £ = D - £ = 2. If §’ is an irreducible component ¢f
such thats’ - ¢ = 0, thenS’ = ¢~1(C) for a curveC C Z. In this cases’ containsy (o)
ands is connected neas~1(0). ThereforeS has exactly two connected componesitsand
S2, which are irreducible anfl; - £ = S> - ¢ = 1. ThenS;, i = 1, 2, meets all components
of 9~1(0). Hences; N ¢~(0) is O-dimensional. Sinc is normal andp|s,: S; — Z is
birational, S; ~ Z andS; N ¢~1(0) is a single point. In particulag (o) is irreducible.
Clearly, LCS(X, D) C S = S1 U S2. Assume thatX, D) is not plt. Then there is a divisor
E # 81, S» of the function fieldK (X) with discrepancy:(E, D) < —1. LetV C X be its
center. TherV C S and we may assume th&t C S1; (andV # S1). Let L C Z be any
effective prime divisor containing(V) and letF := ¢~1(L). Clearly,(X, D + F) is not Ic
nearV. For sufficiently small positive the log pair(X, D + F — ¢S1) is not Ic nearV and
not kit nearsSy. This contradicts Connectedness Lemma [4, 17.4]. i

4. Proof of Theorem 1.2. In this section we prove Proposition 2.4.

4.1. Inductive hypothesis. Notation and assumption in Proposition 2.4 are preserved.
Our proof is by induction ow(X). In the casep(X) = 1, the assertion is a consequence of
Lemma 3.1. To provei®position 2.4 forp(X) > 2we fixp € N, p > 1. Assume that the
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inequality (2.5) holds ifo(X) < p and forp(X) = p we have

4.2) Zdi—,o(X)—3zO.

4.3. If (X, D) is klt, then we runKx-MMP. On each stefK = —D cannot be nef.
Obviously, all steps preserve our assumptions (see [4, 2.28]) and the left hand side of (4.2)
does not decrease. Moreover, by our assumptions we have no divisorial contracti®ns on
(because after any divisorial contraction the left hand side of (4.2) decreases). Therefore after
a number of flips, we obtain a fiber type contractiopnX — Z. Sincep(X) = p > 2,
dim(Z) = 1 or 2. Note that all varieties from Theorem 1.2 have no small contractions. Thus,
it is sufficient to prove Proposition 2.4 on our new modg| D).

This procedure does not work (¥, D) is not klt. The difference is that contractions
of components oD do not contradict the inductive hypothesis.(¥, D) is not klt, then we
run (Ky + D — | D])-MMP. Note that| D] is normal and irreducible [4, 17.5]. For every
extremal rayR we have| D] - R > 0, so we cannot contract an irreducible componentof.
Therefore after every divisorial contractign d; — p(X) decrease, a contradiction with our
assumption. Thus, all steps of the MMP are flips. By [4, 2.28], they preserve the plt property
of K 4+ D. At the end we get a fiber type contractiopn X — Z, where din{Z) < 3and| D]
is g-ample (i.e., D"°'| # 0). Since| D"'| has a component whichtiersects all components
of DVer, LDverJ =0.

4.4. Case: difZ) = 1. Thenp(X) = 2. By Lemma 3.8 and our assumption (4.2),
we have) |, di < 3and)_, ., d; > 2. In particular,D¥®" £ 0. Components ab'®" are fibers
of ¢, so they are numerically proportional. Clearly, the log divikar+ D"°" = — D€' is not
nef and curves in fibers @f are trivial with respect to it. Lep be the extremalK x + D"°")-
negative ray ofVE(X) c R? and¢: X — W be its contraction. It follows by Lemma 3.3
that¢ cannot be a flipping contraction. Létbe a general curve such that¢) = pt. Thene
dominatesZ and¢ ~ P1. HenceZ ~ PL.

4.4.1. Subcase{D] = 0. We will prove thatX =~ P2 x PL By our inductive
hypothesis¢ cannot be divisorial. Therefore ditW) = 2. FurtherDV®'-¢ < D-{ = —Kx -
¢ = 2. Sincel intersects all components &f'¢", 3" .. d; < 2. Thisyields) ., d; = 2 and
> hordi = 3. In particular, this proves inequality (2.5). MoreoweVe" = 2, ¢-D"°" = 0 and
for any componenD; of DV®" we haveD; - £ = 1. Fix two components ab'®', say Dg and
D1. ThenK x + Do+ D1+ D" = Kx +D = 0, so(X, Do+ D1+ D" is plt by Lemma 3.9.
Applying Lemma 3.4, we obtaidg ~ D; ~ Z ~ P2, X is smooth and is a P*-bundle.
By [6, 3.5], ¢ is aP?-bundle. We have a finite morphismx ¢: X — Z x W = P! x P2,
Clearly, degy x ¢) = ¢~ 1(pt) - £ = 1. Hencep x ¢ is an isomorphism.

4.4.2. Subcas€:D| #0. Sincep(X/Z) =1, |D]isirreducible. PufS := | D]. Let
F be a general fiber af. By construction—K x is p-ample. First, assume that diii) = 2.
ThenDY®'-¢ < D-¢ = —Kx -£ = 2. Since( intersects all components &', " . d; < 2.
This yieldsY e di = 2,3 pordi = 3andy_d; = 5. Moreover,D"". ¢ = 0. By Lemma 3.8,
F ~ P?, X is smooth alongF and for any componenb; of D"°" the scheme-theoretic
restrictionD; | is a line. Hence components B"°" are numerically equivalent. Leé?; be a
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component ofd"" — §. Consider the new boundafy := D + Do — &S. If 0 < ¢ < 1,
then(X, D) iskltandK x + D’ = 0. Applying Case 4.4.1, we g&t ~ P? andX ~ P? x PL.

Now assume thap is divisorial. By the inductive hypothesig, contractS. Since the
contraction is extrema# (S) is a curve (otherwise curvessn ¢ ~1(pt) is contracted by and
¢). All components ofp (DV®") pass througly (S). By taking a general hyperplane section
as in the proof of Lemma 3.3, we obtaln, . d; < 2. By Corollary 3.8.1, we obtain that
s ~ P! x P!, X has only isolated singularities arilis smooth alongs. By Lemma 3.8,

F ~ P? and X is smooth along”. The curveF N § is ample onF, so it is connected and
smooth by the Bertini theorem. TherefaFen S is a generator of = P! x PL. Sincey|s

is flat, the same holds for arbitrary fib€. Hence all fibers of are numerically equivalent
and any fiberFp contains an ample smooth rational curve. Moreover, this also meanggthat
is not multiple. Thus it is a normal surface. Now as in Case 4Kxl+ Fo+ F1+ phor= o
and by Lemma 3.9(X, Fop + F1 + D" is plt for any fibersFp and F1. By Adjunction,
(Fo, Dh°f|po) is klt. Clearly, Kr, = Kx|r, andS|g, are numerically proportional. Hence
Fp is a log del Pezzo surface of Fano index1. Sincey is flat, (KFO)2 = (Kp)? = 9.
Therefore,Fp ~ P? andX is smooth. By [6, 3.5]¢ is aP?-bundle, soX =~ P1(£), where
& = Op1 ® Opi(a) ® Op1(b), 0 < a < b. The Grothendiek tautological bundep ) (1)

is generated by global sections and not ample. Therefyg)(1) gives us a supporting
function for the extremal rayp. Since¢ is birationaI,Op(g)(1)3 =a+ b > 0. Finally, X
containsS = P! x P!, Hencea = 0. This proves Proposition 2.4 in the case wheis a
curve.

4.5. Case: dinZ) = 2. Note thatZ has only log terminal singularities (see, e.g., [4,
15.11]). Since-Ky is g-ample, a general fiberof ¢ is P1. Hence 2= —Ky - =D - £ =
phor. ¢ > > hordi- By our assumptiony ., d; > p(X) + 1. If (X, D) is not plt, then| D |
is p-ample. Clearly| DV®'| = 0.

CLAIM 4.5.1. Notation being as above, K is not nef.

PROOFR Run(Kx + D"®")-MMP. After a number of flips we get either a divisorial
contraction (of the proper transform of a component Bf)), or a fiber type contraction. In
both case« is dominated by a family of rational curves [2, 5-1-4, 5-1-8]. Therefgeis
not nef by [5]. O

CLAaiM 4.5.2. Notation being asin 4.5, Z contains no contractible curves. In par-
ticular, p(Z2) < 2.

PrROOFE Assume the converse. Namely, there is an irreducible ciirve Z and a
birational contraction.: Z — Z” such thatu(I") = pt andp(Z/Z"”) = 1. DenoteF :=
@~ 1(I"). SinceF ¢ | D], (X, D +¢F)ispltfor0< ¢ <« 1[4,2.17].

Run(K + D + ¢ F)-MMP over Z”. By our inductive hypothesis, there are no divisorial
contractions (because such a contraction must conffacAt the end we cannot get a fiber
type contraction (becaugé + D + ¢ F = ¢ F cannot be anti-ample over a lower-dimensional
variety). Thus after a number of flip§ --» X’, we get a modeKX’ over Z” such that
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Ky + D' + ¢F' = ¢F'is nef overZ”, whereD’ and F’ are proper transforms dd and F,
respectively. Therr’ # 0 (becausd # 0). Let¢’ be the proper transform of a general fiber
of ¢. SinceF’ is nefoverZ”, F' - ¢’ = 0andp(X’/Z") = 2, we obtain that’ generates an
extremal ray ofNE(X'/Z"). Lety': X' — Z’ be its contraction angt’: Z' — Z” be the
natural map. Thendig¥’) = 2, I’ := ¢/(F") isa curve ang/(I'") = u(p(F)) = w(I') =
pt. Therefore(I')2 < 0. On the other hand[™")? > 0, which is a contradiction. Indeed, let
C’ C F' be any curve such that(C’) = I'’. ThenC’ - F’ > 0. By the projection formula,
(I'")? = 0.

SinceK 7 is not nef, there is an extremal contractign Z — V. By the above it is not
birational. Therefore dif¥’) = 1 andp(Z2) = 2. O

COROLLARY 4.5.3. Notation being asin 4.5, one of the following holds:

(i) p(Z)=1land—Kisample,

(i) p(Z) = 2 and there is a Kz-negative extremal contraction ¢: Z — V onto a
curve.

4.5.4. Subcase/D] = 0. LetD; be a component ob'®". Run(K + D — d; D;)-
MMP:

Xiy: X --» X

As above we get a fiber type contractipp): X — Z®. NotationsD"®" and D"°" will be
fixed with respect to our original. If dim(Z®) = 1, then replacing with X, we get the
case diniZ) = 1 above. Thus we can assume that @) = 2 for any choise oD;. Let
¢® c XD pe a general fiber af;, and letL® c X be its proper transform. Clearlyy;

is an isomorphism along ). Hence—Kyx - L® = 2, L) is nef andD; - L) > 0. For
i =1,...,r wegetrational curves@, ... L") We shiftindexing so thax = X© and
putZ = Z© andy = ¢(0).

Up to permutations we can také?, ... , L®), s + 1 < r to be linearly independent in

N1(X). Then for anyD; there existd. /) such thatD; - L) > 0. Thus we have

S S r S r
25+ =—Kx-» LY =Dy LV = Zdi(Di-ZL(-/)> > di = p(X)+3.
j=0 j=0 i=1 j=0

i=1
Since 3> p(Z) + 1= p(X) > s + 1, this yieldsp(X) = s + 1 = 3. Thus,

2
(4.6) D; - Z LY =1
j=0

holds for alli. Moreover,L© LD L@ generateN1(X) and components ob generate
Ni(X).

Taking into account that 2= —Kx - LY) = D - L), we decompos® into the sum
D = D© + DD 4 D@ of effectiveQ-divisors without common components so that

i ; 0 ifi#j
@ .7 — )
4.7 DL = { 2 otherwise.
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ThenD® = ¢*A® for i = 1,2, whereA®, A@ are effectiveQ-divisors onZ. Put
CD = pL®), i = 1,2. Since familied. ) are dense o, C/) are nef andz 0. By the
projection formula,

v Gy =0 iflsizj<2
@ . cW) = =4,
ATc {>o ifl1<i=j<2.

HenceA® andA@ generate extremal rays BfE (Z) C R?. By (4.7), thes&-divisors have
more than one component, so they are nef@id@)2 = (A@)2 = 0. This gives us thatV
andC@ also generate extremal rays. Theref6'€ and A"’ are numerically proportional

wheneveri # j and(C®)2 = (€@)2 = 0. In particular,C®, i = 1, 2 generate an one-
dimensional base point free linear system which defines a contragtien P1. This also
shows thaD® = p*A® i = 1, 2 are nef orX.

Now we claim thatD© is nef. Assume the opposite. Then for smal- 0, (X, D +
eD©) is kit [4, 2.17]. There is dKx + D + ¢D@)-negative extremal ray, sa§. By our
inductive hypothesis, the contraction ®imust be of flipping type. Sinca®, A@ generate
N(Z), we haveD® . R > Ofori = 1 or 2. By (4.7),25” dj =2, wherezgi) runs
through all component®; of D®. Since components A = ¢*(A®) are numerically
proportional, this contradicts Lemma 3.3. Theref¥@ are nef fori = 0, 1, 2.

We claimthatL ¥, i = 0, 1, 2 generat&V E(X). Indeed, let € NE(X) be any element.
Thenz = Y o;[LP]fora; € R. By (4.7),0< DY) . z = a;. This shows thaL ") generate
NE(X). From (4.6) we see that components/®P are numerically equivalent.

Fix two components)’ and D" of D©. ThenKx + D' + D" + DD + D@ = 0.
By Lemma 3.9,(X, D’ + D” + DD + D®@) is plt. Lemma 3.4 implies thab’ ~ D" ~
S ~ P! x P!, X is smooth andy is a P*-bundle. As in the case difd) = 1, we have
X ~Plx Pt x PL

4.75. Subcase:D| # 0. LetS be acomponentafD]. Clearly,S-¢ < 2. 1f Sis
generically a section af, then by Lemma 3.4X is smoothg is aP*-bundle ands ~ P? or
P x PL. Thereforex ~ P(&), where€ is a rank two vector bundle af. Sincey has disjoint
sections¢ is decomposable. So we may assume ¢hat Oz + L, whereL is a line bundle.
By the projection formula, all components bi¢" are nef. LetR be a(K x + D"")-negative
extremal curve and let: X — W be its contraction. Assume thatis of flipping type. By
[6], Kx - R > 0. HenceD" . R < 0, soR is contained in a section gf. But all curves on
P? andP! x P! are movable, a contradiction. ¢fis of fiber type, thenasinthe cagp| =0
we getX ~ Z x PL. Assume thap is of divisorial type. By inductive hypothesi#,contracts
a componentof D |.

Finally, consider the case wheis: S — Z is generically finite of degree 2. Obviously,
D" = §. If p(Z) = 1, then all components ab'®" are numerically proportional and
> verdi > 4. If additionally dimW) = 2, thenD"®" . ¢~1(w) < 2 for generalw € W.
Hence} . d; < 2, a contradiction. Then by Lemmas 3.3 and 3.8 divisorial andp must
contractS. We derive a contradiction with Theorem 2.3 oV, ¢ (DV®")) nearg(S).
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Thereforep(Z) = 2 and there is & z-negative extremal contractioh: Z — V onto

a curve (see Corollary 4.5.3). Let: X 2z LN V be the composition map. Clearly, all

fibers ofr are irreducible. WriteD = 3" d;D; + 5" d;D; = D' + D", where_’ (respec-
tively 3°”) runs through all componenf; such thatr(D;) = pt (respectivelyp (D;) = V).
Thus, S is a component oD)” and components ab’ are numerically proportional. Lef

be a general fiber. Them(F) = 2. Consider the contractiop|r: F — ¢(F) and denote
D'"\p = D|lp by ® = > o;®;. Then(F, ®) is pltandKr + & = 0. Clearly, the curve
S|F = | @] is a 2-section and components®df— | @ | are fibers ofp| . As in the proof of
Lemma 3.8, using the fact thaty intersects components @f — | @ | twice, one can check
> a; < 3. Thisyields)."d; < 3and)_'d; > 2. LetR be a(Kx + D")-negative extremal
ray. Since} ' d; > 2 andp(X) > 2, R cannot be an extremal ray of fiber type. According to
Lemma 3.3,R also cannot be of flipping type. TherefaReis divisorial and contracts to a
point. Sinces intersects all components &f'®", this contradicts Theorem 2.3. The proof of
Proposition 2.4 is finished.

CONCLUDING REMARK. In contrast with the purely log terminal case we have no
complete results in the log canonical case. The reason is that the steps of MMP are not so
simple. In particular, we can have divisor@ntractions which contract componentd &f]|.
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