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BIFURCATION ANALYSISOF KOLMOGOROV FLOWS
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Abstract. We examine the bifurcation curves of solutions to the Kolmogorov prob-
lem and present the exact formula for the second derivatives of their components concerning
Reynolds numbers at bifurcation points. Usihistformula, we show the supercriticality of
these curves in the case where the ratio of periodicities in two directions is close to one. In
order to prove this, we construct an inverse matrix of infinite order, whose elements are given
by sequences generated by continued fractiéios this purpose, we investigate some funda-
mental properties of these sequences suduasi-monotonicity and exponential decay from
general viewpoints.

In 1959, Kolmogorov proposed the investigation of more exact periodic solutions of
Navier-Stokes equations in two-dimensional space subject to an externdl(festey, 0) in
order to understand the onset of turbulence (see Obukhov [4]). Then, Meshalkin and Sinai
[1] studied a related linearized operator, and constructed its eigenfunctions using continued
fractions in an explicit way (see Section 1). They proved that Reynolds numbers at bifurca-
tion points are characteristic values of the linearized problem and paved the way to further
research. Subsequently, ludovich [2] considered the stationary problem:

uuy +vuy = =P +vAu+ysiny, v>0, y=>0,
D uvy +vvy = — Py + vAv,
uy +vy, =0,

where the unknowns are the velocity vectotx, y) = ‘(u(x, y), v(x, y)) and the pressure
P(x, y). In Kolmogorov’'s problem, solutions are assumed to be doubly periodic:

Vx,y)=Vx+2r/a,y) =V(x,y+ 2r1),
Px,y)=P(x+2r/a,y) = P(x,y + 21),

)
// V(x,y)dxdy =0, // P(x,y)dxdy =0,
D D

whereD = {(x,y); |x| < 7/a, |y| < w}.

As is well-known, the properties of flow depend on the Reynolds number defined by
A = y/v2. If we scale the unknowns by (x, y) = vV (x, y) = ‘(vii(x, y), vi(x, y)), and
P(x,y) = v2P(x, y), then the new unknowns satisfy (1) with= 1 andy = A. Itis not
difficult to see that/p = ' (uo, vo) =’ (yv~tsiny, 0) and Py = 0 is a solution for any. > 0,
which is called the branch of trivial solutions. Hence we are interested in whether or not there
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exists a solution of (1) and (2) other th@n (Vp, Po)). Itis known thatife > 1, then(Vp, Po)
is the only solution for any > 0 (see [1]).
To discuss the case e (0, 1), we assume the symmetry of solutions:

(3) V(x»)’)z—v(—)ﬁ_)’), P(X:Y)ZP(—xv_)’)

Note that(V, P) = (Vo, Pp) satisfieq3). Meshalkin-Sinai [1] and ludovich [2] considered a
numberr of critical values for eacky € (0, 1), dependingomx: A1 < A2 < -+ < A, A =
rMka), 1/ — 1 < r < 1/a, whereAr(B) is a strictly monotone increasing function defined
for B € [0, 1) satisfying limg_.o A(8) = V2 and limg—.1 A(B) = oo (see Subsection 1.3 and
Appendix). They then proved that in a neighborhoodXf, (Vo, Po)), k = 1,--- ,r, there
exists a sequence of nontrivial solutidfig,, (Vo + Uy, Po + Qn))},2 4 of (1)—(3) satisfying
U, — 0,0, — 0andu, — A, asn — oo in a suitable topology.

The purpose of this paper is to study the structure of the solution set in a neighborhood
of bifurcation points(1¢, (Vo, Pp)). Based on the above results, we can guess that, for each
k=1,...,r,there exists a bifurcation curve:

I ={(u@s),U(s) € C3((~=1,1); Rx H3), U©) =0, 1(0) = M},

satisfying, for each € (—1, 1),

@) ifa=u(s), (Vo+ U(s), P(s)) is a solution to the problertl), (2) and(3),

(b) U(s) eH®=H3x H®andP(s) € H,
where H* means the set of periodic function$*((27/a)Z x 27Z). Note thatP(s) is
uniquely determined by + U (s) as we see later ifll’), (2') and(3'). Applying Crandall-
Rabinowitz’s bifurcation theorem in [3], we can verify the existence of these curves, which
satisfyu/(0) = 0.

In this paper, we will prove the precise formula for the second derivaii(®). More-
over, from this formula, using repeatedly Abel’s criterion for summability concerning the
conditional convergence, we can prove thdi0) is positive when8 = k« is close to 1.
In this case, whergu(s) is called convex in the seng€¢’(0) > 0, we call the bifurcation
curve I supercritical. For the linear problem,(s) corresponds to an eigenvalug which
is independent of the sizeof the eigenvector. Conversely, some meaningful nonlinear phe-
nomena are expected to satisfy the supercriticality0) = 0 andw”(0) > 0. As in [4],
many researchers studied, from the viewpoinggplications, various numerical approaches
and laboratory works after [2]. Recently, Okamoto an@j5}p] showed many diagrams of
numerical analysis for the above problem, which lead us to conjecture the supercriticality
of the bifurcation curves and proceed to the Inegmatical treatment in this paper. From the
viewpoint of mathematical physics, Yamada [6] treated the case whisrelose to zero (see
[5]). Supercriticality means that, besides the basic flow, two more stationary states appear just
after the external force becomes larger than a critical value.

Our results can be stated as follows.
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THEOREM 1. Letwa belongto (0,1) andr € N satisfy 1/ — 1 < r < 1/a. For each
ke{l,2, ...,r}, thereexistsabifurcation curve I' as stated above. No other solution exists
in a neighborhood of (A, Vo) except (A, Vo). Moreover, we can verify u/(0) = 0.

THEOREM 2. Supposethat all the conditions in Theorem 1 are satisfied. Then we can
obtain the precise formula of the value " (0), and verify 1’ (0) > 0if 8 = ka iscloseto 1.

REMARK 1. The formula fop”(0) is represented by Fourier coefficients of the eigen-
function for the linearized operator and elements of the fundamental matrix given in Section
3 (see also Theorem 413), (16) and(19)). Formulas(16) and(19), which are described by
continued fractions that converge rapidly, give us the exact valué (), which is continu-
ousing € (0, 1). This implies that numerical analyses relying upon this formula will provide
us with the precise information as required.

REMARK 2. In order to prove Theorem 2, we shall verify the following facts, which
are important in their own right. Fourier dfieients of each eigenfunction for the linearized
operator have an almost monotonic property, which we call quasi-monotonicity33esnd
(35)). Moreover we show that Fourier coefficients decay exponentially (&&e (34) and
Theorem 5).

1. Reduction of the problem.
1.1. Stream function. Sinag; + v, = 0, the stream functiog (x, y) is introduced
by the formula

w(x,y)zd+/udy—vdx,
c

whereC is an arbitrary piecewise smooth curve fr@f 0) to (x, y) andd is a constant so
chosen that it hold§/,, dxdy = 0. From thisy,, (u, v) is reproduced byyr,, —). Then,
the problem described hit), (2) and(3) is equivalent to the problerii’), (2') and(3') (see
Proposition A-1 in Appendix):

@ {UAZw—i—yCOSy:J(AI/fv V), J(fi9)=frgy— [rgxs
—AP =20y, — Yuxyy) -

v, y) =y +2n/ay) =Y(x,y +21),

2) P(x,y) = P(x +2n/a,y) = P(x,y + 27),
// Y(x,y)dxdy =0, // P(x,y)dxdy =0.
D D

(3/) w(x:Y)zl/f(—x:_)’% P(X:Y)ZP(—xv_)’)

By virtue of this transformation we see that it suffices to salvéirst. As [[,, Pdxdy = 0,
P is determined by the second equation(iry, becausef[D(t/ffy — Yux¥yy)dxdy = 0'is
verified to hold by integration by parts. Thus, corresponding’te= Vo + U, by putting
Vv = Yo+ yv tp andyg = —yv~Lcosy, we see thatl’), (2') and(3) are equivalent to the
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following (17), (2”) and(3").
1" A%p — asiny(A + Dy — AJ (Ag, ) = 0.

2" p(x,y) =9+ 21 /a,y) =¢(x,y+2m1), //D ¢(x,y)dxdy = 0.

€] p(x,y) =p(—x,—y).

1.2. Function space. Let us denote the two dimensional flat RfUE 27 /a)Z x
2nZ) by M. We consider the following function space definedidn

X = {<ﬂ e H\M); //Mso(x, y)dxdy =0, p(x,y) = o(—x, —y)} ,
(0. ¥)y / /MA2¢ A%ydxdy .

Taking account of2”) and(3”), we can expang € X by the Fourier series

00 00 00
¢ = Z (P(m) , QD(O) = Z co,n COSny <P(m) = Z Cm,n coSmax + ny),
m=0 n=1 n=—00

wherem > 1 andco,o = 0. Corresponding to this representation, as stated in [5], we have an
orthogonal decompositioi = Xo® X1 D --- ® X, ® - - - , Where

oo oo
Xo = {go“’); > nBleoal? < oo}, Xy = {M; > Uml+In)®lemal® < oo}, meN.
n=1 n=-—00

We can operata—2 to (1”), since these terms contain (@ 0) factor, and then obtain

(I — 2A72siny(A + 1)d)g — AA™%J (Ag, ) = 0.
Forg € X, we denote this relation by
") fO,9)=U—-AL)p —20lp] =0,
defining operatorg andQ by
Lo = A7%siny(A+ Dixp,  Qlol = A™2J (Mg, 9) .

Hereafter, we seek a solutigi(s), ¢(s)) of (1) depending on the parameter (-1, 1),
which is a nonlinear perturbation to the pair of characteristic valésand eigenfunction
space(ty(x) ; t € R, Y(x) =lims_0(p(s)/s)} of the linearized operatdt.

1.3. Linearization. Sincg ()1, 0) = 0 holds,p = 0 is a solution off (A, ¢) = 0 for
anyx > 0. Let us now consider the linearized operatoy ok, ¢) atg = 0, which we denote
by f,(A,0) = I — AL = A. Note that we havelX,, C X, foranym > 0. Assume that
¢ € X satisfies the linearized equatidip = 0, which is equivalent to

(4) A% — xsiny(A 4+ Doe™ =0, m=0,12,....
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From (4), Fourier coefficients,, , of ¢ satisfyco, =0, n =0,1,2,..., and

(4/) am,nbm,n + bm,n—l - bm,n+1 =0,neZ,meN, Z (m2a2 + n2)2b’2n’n <00,
meN,neZ
where we put
2m2a? + n?)2
amoa(m20?2 +n2 —1)°

(4//) am,n = bm,n = (m2a2 + n2 - 1)Cm,n ,

asin [1] and [2]. Now, puttingd = ma, we set
2(8% + n?)?

M(BZ2+n2-1)"

Note thatag < 0 anda, > 0 forn # 0. Then we have that

5 ap=a,(B, ) = by = bu(B, %) = (B2 +n? — )cgan -

6)  anby+by1—by1=0, n=0+1£2 ..., Y (B2+n®?b] < oo,

n

which is also represented as

1 a—1 -1 bfl
(6/) A(;Bv )")b = Os A(;Bv )\,) = 1 ao -1 ) b = bO )
1 a; -1 b1

whereY", (82 + n?)%b? < co. b € €2 is equivalent tay_, (B2 + n?)kb? < oo for anyk € N
if b is the solution of(6'), as we see below (s€&;)). Concerning the uniqueness and the
solvability of (6), we have the following proposition due to [1] and [2].

PropPosITION 1. If 8 > 1, b = Oistheonly solution in 22 of (6'). For 0 < B <1,
(6') hasa nonzero solution b in ¢2 if and only if (8, 1) = (B8, A(8)) holds.

Here, we briefly review the proof of this proposition, because we will use a similar
method. We rely upon the same continued fractions, replagity 23, to construct the
inverse matrix ofA(B, 1). First note that, as in [1] and [2h, # O holds for anyn € Z.
Indeed, ifb, = 0 is zero for some, then the system of equations (&) are separated into
two independent groups. In this case we see thatligg |b,| = oo is equivalent ta, 1 # 0.
Therefore we can put, = b, /b,—1, and then look fof p, }, which satisfies

1
an+__pn+l:Oa neza
(7 Pn 1

on — 0, — 0 asn — +o00o.

P—n
Once we fixp1, then othelp, are determined uniquely by the equationgin
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We now introduce the following notation by using infinite continued fractions for any

nel.
-1 1
o = o (B 2) = S
® dn dnil
1
p;=p;(ﬁ,x>sanfl+4+m,

Aan-2

wherea, are given in(5). Regarding the convergence of continued fractions, see Lemma
A-1 in Appendix. Note thap,” < 0 forn > 1. Forn > 1, it follows froma, = a_,
that o, (B, Mp_, 182 = —1 for all n. Since lim,_+0 a, = o0, it also follows that
M, 400 p,j = 0 and lim__« 1/p, = 0. Hence, if we choosp; = pf(ﬂ,x) (resp.
p1 = py (B, 1)), then we have, = p; (B, 1) (resp. p, = p, (B, 1)) by equations in7).
Otherwise, it is verified that lifL, ;o0 [0n] = o0 (resp. lim_ _oo |pn]~t = o0). We prove
this fact by an elementary method in Appendinother theoretical approach can be seen in
[1] and [8].

Therefore, the solutiop, to (7) exists if and only ifpf(ﬁ, L) = p; (B, A) = p1. By
virtue ofa, = a_, and(8), this relation is equivalent to

9 pI(ﬂ,A)_pf(ﬂ’A):a0+2<%+%+"'>:O'

In Appendix we give a simple proof of the following facts, (see also [1] and [2]):
(i) Forp = 1, equation9) has no real solution.

(i) For g € (0, 1), (9) has a unique solution(g) which is strictly monotone increas-
ing. Moreover, limy_.o »(8) = +/2 and ling_,1 A(8) = oo.
Moreover we have

(i) 1o (B, M| < 2forallk anda, if B is close to 1.
Note thatgiii) follows from sug_, ax+1/a, < 4, if we apply Lemma A-3. 1f9) holds, the
solution of(7) is given by

oF (B, 1(B)) = py (B, 1(B)) = pu(B) = pn forall nez,

which satisfyb, = p,b,-1, (n > 0), by = (1/pp+1)bpy1, (n < 0) andp,p_py1 = —1.
Then, using thesg,, we can represent elements of a solutiori®fas

(l_[pi) for n > 0,
i=1
(10 by = by (B) = 1 forn =0,
—n
(Pn+1 = -,00)_1 = (—1)”1_[ Di for n < 0.
i=1

The kernel ofA(8, A(8)) in £2 is given by
kerA(ﬁ! )"(13)) = {Sbv b = t(" ) b*’l(ﬁ) e 7bn(ﬁ)1 o ')1 s € R} .



BIFURCATION ANALYSIS OF KOLMOGOROV FLOWS 335

Here we remark that we can construct a fundamental m&¢g 1), called the Riemann
matrix, if (8, 1) # (B, A(B)), in such a way thaf(8, \)b = f yieldsb = G(B,A)f. In
Section 3 we consider the case whaxg, 1) is replaced byA(28, L(B)).

Now, we fix the givernx € (0, 1) and put

Mm=rka), ke{l,...,r; ra<l=<@+Da}.

Note thatg stands folka in the previous argument. Since the solutioof (I — AL)p = 0

is decomposed as in Subsection 1.2, the set of characteristic vallieoasists ofA; ; k =

1,...,r}. Namely, we can find a solution % 0 of (I — AL)¢ = 0 if and only if A is equal
toone of{rx, k = 1,...,r}. More precisely, by virtue o, = b, (ka) in (10), the kernel
of Ay =1 — AL is expressed as

o0
kerA; = {t(p(k) ;) = Z (k%o 4+ n? — 1) b, (ko) cogkax + ny), t € R} ,
n=—od
wherep®) € X;. The components af®) = 3" " cogkax + ny) are given by
@) o = K% +n? - D k), 9% = (1", nez, k=1,....r.
Note that(p,(,k) was denoted also hy. ,. From the representation we have the estimate

lon(B)| < 1/lan(B, M(B))| < BA(B)/2n%, 1<n,
ba(B)] < [ [1/1ai(B. 1(BNI < (BA(B)/2)"(1/n))?, 1<n.

i=1

(E1)

In the next section, we see that the estimate of the Riemann matrix follows £gm

Here we summarize the framework of our argument.

1) We use a suitable implicit function theorem to show the existence of bifurcation
curves and show'(0) = 0 by differentiating them at bifurcation points (Section 2).

2) By taking higher derivatives, we can determine an integral representatich ®f
In order to derive a more useful expressionutf0), we need to solve’(0) appearing in this
formula (Subsection 3.1).

3) Z/(0) satisfiesAyz/(0) = ©© + @), wherew© e Xgandw@® e Xo (Sub-
section 3.2). Therefore it is necessary to prove thahas an inverse operator Xy and X o
(Subsection 3.3).

4) More precisely, we show a rigorous form of the inverse matriA@ko, Ax) to
obtain an exact expression @f (0) (Section 4).

5) We then clarify that the main part gf’ (0) appears ag = ka tends to 1. In order
to show that this part is positive, we need to prove some facts concerning continued fractions
(Section 5).

2. Existence of bifurcation curves. Here we construct bifurcation curves issuing
from each(1¢, 0) and prove Theorem 1.
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2.1. Bifurcation theorem. We use the following bifurcation theorem stated in a con-
venient form for our use (see [3] and [7]).

THEOREM 3 (Crandall-Rabinowitz). Let f (A, ¢) be afunction defined on R x X with
continuous Fréchet derivative f,, = —L. For eachk € {1, ..., r}, let A = A; beacharacter-
istic value of L sothat Ay = I — AL hasa nonzero solutionin X. Supposethat f(1,0) =0
in a neighborhood of A;. Moreover we assume that

(i) dimkerA; =1, thatis, kerd; = {tp®; % £ 0, r e R},

(i) A = {Axx; x € X} isaclosed subspacein X and codimSAg) = 1,

(i) Lo® & IA;.

Denoting (ker A;)* simply by Z;, we can find a neighborhood V; of (14, 0) inR x X anda
set of continuous functions of a parameter s € (—1, 1):

wr(s) : (=1L,1)—> R, zx(s) : (-1, 1) > Z,
satisfying . (0) = Ag, zx (0) = 0, such that the solutions of f (i, ¢) = 0in V. are given by

[ (), 50® +52(9)) 1 Is| < UL, 0) 5 (,0) € Vi)
The assumption (i) has been verified in the previous subsection. We can show (i) by the
well-known Lemma 1 and Proposition 2 below.

LEMMA 1. Let Aj(=1 — AL*) bethe conjugate operator of A. Then it holdsthat
A = (kerADHt.

PROPOSITION 2. Let r be the integer satisfying ra < 1 < (r + Da. For k €
{1,...,r}, itholdsthat dimkerA; = 1, thatis,

o0
kerAf = {tcb(") oM = Z (k%a? + n?®)~2(—=1)"b, coskax +ny), t € R }

n=—0o
where {b,} isgivenin (10).

(i) follows from Lemma 1 and the fidowing Proposition 3, since we have
(L™, o0 = (o0, 0®) 3£ 0.

PROPOSITION 3. For ¢ e kerA; and @® e ker A} defined by

o® =3 "(kK*a® + n® — 1) b, codkax + ny),

n

o® — Z(kzaz + n?)72(=1)"b, cogkax + ny),
n

we have (¢®, %)), < 0.

SinceL and L* are compact operators, the proof of Lemma 1 is straightforward. For
convenience sake, here we prove Proposition 2 and Proposition 3.
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PROOF OFPROPOSITION 2. LetL* be the conjugate operator bf which is given by
L* = —A %A + I)sinyA%d, ,

since, forp, @ € X,
(Lo, @)y = // siny(A + )3, A’®dxdy = // 3e@(A + 1) (SinyA?®)dxdy
D D
= // A%p(—1)A™%(A + 1) sinyA?d, ®dxdy = (¢, L*®) .
D

Supposed*® = 0 for @ € X. Then it follows that
A%® + M AT2(A + I)sinyA23,@ = 0.

In a similar way, we now obtain the following relations between Fourier coefficignis
of &: ¢y, = 0,n =012..., andA(B, )b = 0, where = ma, A(B, Ay) is the
matrix defined in the previous section dpids the column vector witk-th componenbd;, =

b = (B2 + n2)2(—1)"c;3/a)n. Therefore, Proposition 2 follows in the same way as that

for Proposition 1.

PrROOF OFPROPOSITION 3. It holds that

(w(k),qj(k))x:// A25® A20® gy dy
D

on2 &
= > (KPa? + 0?2k +n® — H)TH=1)"bE.
n=—0oo

On the other hand, multiplyingA + 1)¢® to A2p®) — ), siny(A + 1)d,¢® = 0, we have
//D(A + De® A%pPdxdy — i //D(A + De® siny(A + Do p®dxdy = 0.

Note that the second term vanishes, since integration by parts yields

— Ak //D(A+1)¢<’<> siny(A+1)dcp®Pdxdy = it /:/D(A—l—l)&x(p(k) siny(A+1)p®dxdy .

Hence we obtain
// (A4 P A%pPdxdy =0,
D

which implies

oo
> KPa? + 0?2k +n* — )7 Hh2 =0,

n=—oo
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since the left-hand side equals

//D < Z(—l)bn coSkax + ny)>

X (Z(kzoz2 + 0?2k +1n'? — 1)~ 1b, cogkax + r/y))dxdy
"
2 o
= _2”7 > (KPo? 4+ n®)?(kKPa? +n® — 1) 1bE.
n=—0oo
Proposition 3 directly follows from this relation, since only negative valued terms remain in
the expansion ofp®, @®) .
2.2. Differentiation of a bifurcation curve. Here we restrict ourselves to the solution

of

fOu@)=U—-AL)p —AQlp]l = Akp — (A — M) Lo —AQ[p] =0
in a neighborhood/; of (A, 0) for any fixedk. Each solution(A, ¢) € R x X has the
following form with a parametes: (A(s), ¢(s)) = (ux(s), s® + sz (s)) for |s| < 1, satis-
fying 1k (0) = Ax, zx(0) = 0 and(zx(s), 9®)x = 0. Then, we can rewritg (A(s), ¢(s)) =
o(s) — ur () Lo(s) — ur(s) Qle(s)] = 0 into the following form
(11) Arp(s) = ik ($)Lp(s) + uk () Qlo ()], ik (s) = pur(s) — A .
Differentiating(11) by s, we have that

Arg'(s) = [y ($)Lo(s) + a($)Le' () + 1 (8) Qle ()] + ur()(Qle()]) .

The second differentiation @iL1) gives

Ax@" (s) = [ (s)Lo(s) + 21, (s)Lg'(s) + fi(s)Le" ()

+ 117 () QLo ()] + 2. (s)(Qle ()] + i () (Qle()])” .

Puttings = 0, we have thafi(0) = 0, ux(0) = A, ¢(0) = 0, Lp(0) = 0, O[¢(0)] = O,
(Qlp()])Is=0 = 0 and(Ql¢(5)])"|s=0 = 2Q[¢™®], from which it follows
(11) Arz;(0) = i (0 Le® + 1. Qlp ™)1
Taking inner-product witip® e ker A} C Xy, we obtainu (0) = 0, if we take account of
0[¢®] € XoU X2 and Proposition 3. Thus we have Theorem 1.

3. Someanalysisat bifurcation points.
3.1. Integral representation pf/(0). It follows from (1) that

(12) Az (0 = 0le™1,  Qlp® 1= A727(Ap™, ™),

which is equivalent to

(12) Az (0) = AArzj(0) = (A% — A siny(A + 1dy) 2 (0) = M (Ap®, 9®) = w .

Differentiate(11) once more, put = 0, and divide by three. Then we have that
Arz(0) = (O Lo™ + 2 AT[1 (AZ4(0), 00) + T (Ap™®), 2,(0)] .
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Taking inner-product witl® ®), we have

—22
13 1O = i [[ 5009+ 120, 50220 Vsay.
) X

Now, Proposition 3 implies that 21.2/(¢®, #®)y > 0. In order to determine the value of
uy (0), itis necessary to solvg (0) in the equation(12).

3.2. Equations for, (0). Let us determine the valug (0) given in (12). First we
see that the right-hand side of (12) can be written asv = w@ + w@), wherew® and
w) belong toA2Xg andA2Xy, respectively. Namely, let us note

(14) w=J(Ap®, Py = wO 4 @ @ c A%y, WP e A%Xy .
The components ab @ andw @ are written explicitly as follows.

PROPOSITION 4. Put w©@ = WO¢(0), w® = W) ¢c(2ka), where c(0) and c(2ka)
are column vectors with n-th components cosny and co2kax + ny), respectively. Then we
obtain the I-th components of the column vectors w© and w®® as

W), = 221Ky (SN - NSHe®)

W@y, = 2 2 10K (NRS! — RS'NY® |
where ¢® is the column vector with n-th component (k22 + n?2 — 1)~1p, and K1, N are
diagonal matrices with n-th diagonal elements

(K = —(K?e® +n®) = —k,, (N), =n,
respectively. S and R are matriceswith (i, j) elements as follows:

1 for j—i=1,
0 otherwise,

1 fori+j=0,

Iy, . —
($)i,j = { 0 otherwise.

(R)i,j = {

In order to simplify the result, we prove the following proposition.

PROPOSITION 5. Thematrices S, N and R defined in Proposition 4 satisfy the follow-
ing relations :

(i) S'N—NS' =15,

(i) NRS'—RS'N= (2N —II)RS'.

Now, (W®); and(w?)), in Proposition 4 can be written as

Mcko
WOy, = T"”(k) Kals'e®,
(14)
W@y, = 2 Y1OK (2N — 11 RS @®) .
Corresponding to the decomposition= w@+w @), we write the solution of linear equation

(12) asz’x(0) = z©@ + @) Denotez(© = ZO0¢(0) andz(®) = fz(z")c(Zka) Then we see
thatAzz© = w©@ is equivalent tdz©® (Ax1)c(0) = WO c(0). Since(Axl)c(0) = N4c(0), we
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havezZON* = W@, From wW®)y = 0 due to(14), we can writezZ® = WON—4, where
N~! stands for a diagonal matrix withtth element

~1, _ |1/n for n#0,
(N )”_{0 for n =0.

Similarly, Axz@ = w@) means thaz®) (Ax] )c(2ka) = W) c(2ka). A direct calculation
then gives ugAgl )c(2ka) = ADc(2ka), where

-1 L~Z,1 1 dfl

D =A2ka, A;) = -1 a 1 , A= do ,
-1 a1 1 dq

Gn = Mika(Bk%a? +n2 — 1), Gy = an(2ka, M),

an (B, 1) being given in(5). Here we have assumed tltat # 1/2. Note thatig is not defined
if ke = 1/2. We consider the case whete = 1/2 later. Ifka # 1/2, then we have
tZ(Zk)AD — tW(Zk).

We now give proofs of Propositions 4 and 5.

PROOF OFPROPOSITION 4. From the representation of the eigenfunctions of the lin-
earized operataop® =9 ® c(ka), it holds thatAp®="o K c(ka). Also, ixJ (Ap®), o))
becomes

Ml (@K1 (—ka)s(ka)) (™ (=N)stka)) — (p VK1 (=N)s(ke)) (9 ®) (—kar)s(ker)}

= k'@ ®©Kq{s(ka)'s(ka)N —Ns(ka)'s(ker) }p & .

Note that thgn, n") element of the matrig(ka)'s(ka) is given by

(Stke)'stkar)), , = % cosn —n')y — % cos2kax + (n +n)y).

In general, the matriM_ with (n,n’) elementm, , = a(n — n’) is given byM_ =
Y a(l)S~!, andM, with (n, n’) elemenin,, ,, = b(n 4+ n’) equalsM, = > b()RS’. Let us
write

o0 o o
Cm) = ) coSmx+ly)S™, Cm)R= Y codmx+ly)S'R= Y codmx+Iy)RS',
[=—00 [=—00 [=—00

where we us&kS = S~1R. In other words, we put

(C(m))p,w = cogmx + (n —n')y), (C(m)R), ,» = cosmx + (n+n")y).
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Thens(ka)'s(ka) is equal to(C(0) — C(2ka) R)/2, and we obtain

Med (Ap® | ®)y = )\kka "MK 1{(C(0)—C(2ka) R)N — N(C(0) — C(2kar) R) }p

2 Ak
=Y —"2 ‘9K (S'N — NSHe® cosly

[=—00

o0
ik
+ 3 "T“fq)(")Kl(NRS’—RslN)¢<k>cos(2kax+1y).
[=—00

This completes the proof of Proposition 4.

PrROOF OFPROPOSITION 5. If I = 0, then the both sides of (i) become zero. We use
the mathematical induction fdr> 0. If [ = 1, thenSN — NS = S follows from a direct
calculation. Suppose th&tN — NS/ = /5!, Then it follows that

SIFIN — NS = S(SIN) — NS' L = S(NS? +181) — Nsi*1
= 1S 4 (SN = NS)S' =18+ + s+ = (1 + 1) 511,

Thus the identity holds for all > 0. Forl < 0, putl = —/’ (I’ > 0). The transposition of
S'N—NS" =1'S" equaldNS~" — s'N = I’S~"', becauséS = S~1and's’ = s~!". Hence
we obtain (i). As for (ii), first note thalR = —RN. Using this relation and (i), we obtain
that
NRS' — RS'N = NRS' — R(S' + NS') = 2N —I1)RS',

which completes the proof of Proposition 5.

3.3. Determination of; (0) by the fundamental matrix. = The inverse matrixbis
a diagonal matrix withi-th elementA 1), = &i,jl. The existence of the right inverse matrix
of D, which we call the fundamental matrix, is given as follows.

PROPOSITION 6. Let ko # 1/2. PutD1 = (---d™...), whered™ are column
vectors with n-th component (d “™),, = d{™. Then we have that

n
( 1_[ )NmJlrl for n > m,
i=m+1
-1
dim = N, i1 for n=m,
m -1
— 1
( 1_[ 771') N, i1 for n <m,
i=n+1
where
0t = o @k i) =ty
an-i—l
_ _ - -1 -
My = —Pp (Zka1 )"k) = —dp-1+ a 5 +-e, ap :an(Zkav )"k)v
—

_ o+ -
Nmt1 = M+l ~ Tt
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Moreover, it holds that

d" = (=1"+"a"™ forall nm e Z.

Furthermore, we have another representatios8f for ko # 1/2.

COROLLARY 1. For ka # 1/2, we can represent d.™ asfollows.
i) Forn>0,m=>0,

M N

— -1

d\™ = 0" [ [ []n N2t
i=1 i=1

where M = max{|m/|, |}, N = min{|m|, |n|}, and []°_, n* = 1.
(i) Forn<0,m=>0,

|n|

(m) ( 1)m+n l_[ n; l_[ 77+N l

Note that we have

|m|

1 + - -1 1
Nm+1 (nm+l - nm+1) = (_1)"1 l_[ n; n; Nl
i=1

Incidentally, we notice the following slightly general result, whose proof is essentially the
same as that of the above proposition.

THEOREM 4. Suppose that {a(n)}>,, satisfiesa(0) > 0 and clnl? < a(n), ¢ > 0,
for any integer n # 0. Also, assumethat a (k) < a(k + 1)(1+ c¢1/k?) and a(—k) < a(—k —
1)(1 + c1/k?) for k > 1. Define {pT(n)}*,, and {p~(n)}>,, respectively by the above
(1% and {n; 1>, with a, replaced by a(n). Then the matrix D with a, replaced by a(n)
has a right inverse D~1. All the components of D~ are expressed by {p;F1%°, and {p; }>°.
Moreover there exists a positive constant C depending on ¢ and ¢1 so that the absol ute values
of all components 4™ are uniformly lessthan C.

We give a proof of this theorem in Appendix. Note that it suffices for us to verify the
uniform estimate fon’(’") By virtue of this theorem and the estimdtg;) in Section 1, all
series under consideration in thiaper are absolutely convergent.

Now, let us return to the probleszz")AD W), By virtue of Proposition 6, we have
7% — @D-14-1 Thusz}(0) = z©@ + ) is reprsented by

24(0) = WON"c0) + W'D 1A 1c(2%ka) .
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We now consider the case bt = 1/2. Note that(Z}l)c(Zka) = D'c(2ka), where

—d_1 a-1 d-1
D = —do aop do ,

an = (Bk%e? +nd?%,  ip = Mka(dkPa? +n? — 1),
and thaty, /d, is equal taq,, = a, (2ka, Ay), if (n, ka) # (0, 1/2). Remark that, ika = 1/2,
agp cannot be defined. However, from
A2y = g2
we can solvéz®, if the right inverse matrix ob’ exists.

COROLLARY 2. ThereexiststheinverseD’~1 = (---d’™ ...) whered’™ arecol-
umn vectors with n-th component (d’™),, = d ;™. Asfor m = 0, 1, we have

n
+ n
n; for n >0,
(L_[l ' ) <l_[77i+>d,(ll) for n > 1,
d/(l) _
n

a9 =11 for n =0, i=2
n . . -1
(a1+a1n2) for n=1,

0 -1
(H’?i) for n <0, 0 for n <1,

and for m > 2

0 forn<1,
m—1 m—2 -1
i=1 i=1
d/(m) _ n—1
" ( g,»)d’(lm) for l<n<m,
i=1
n
( nf)d/fnm) for n > m,
i=m-+1
where
— 1
_ _&n+#++~ﬂ+~— fOT’}’l>1,
In = ap—-1 az al
—a1 forn=1.

If we regard [1°_,¢; = 1 and [[Z}¢; = 0, then the notation for 4’ is also valid for
m = 1. We have similar results when m < 0 in above proposition. Indeed, it suffices to
replacem, n, n;” and a,, by —m, —n, n~,_; and a_,, respectively.

Now we are in a position to give the proof of Proposition 6.



344 M. MATSUDA AND S. MIYATAKE

PROOF OFPROPOSITION 6. We fixm and solve
Dd™ =3§,,,
whered,, is the column vector whose component is & & m, and 0 otherwise. It then holds
that
and™ —d"™ +d" =0 forn #m.

Put
(m) _ d(m)/d(m)

Theny™ satisfies

(77('")) 14 nfl’i)l =0 forn#m.

As in the proof of Proposition 1, we see that\™ = p (2ka, Ax) = —n; form < n, (resp.
P, (2ka, i) = —n,; for m > n), which satisfies

an + (,On)il — pnt1 = 0.

Indeed, if we putn;’"jl = n} 4, then it holds that)!™ = nF forn > m + 1 and
lim, . 0ony™ = 0. Forn < m — 1, it also holds, with the notation” = 7, that

(m) (m)
Mn

= n, and lim,—_s 1/n," = 0. Note thatn are positive and;, are negative
for all n, since alld, are positive in this case. Hence we haif); = nm+1d(m) am, =

n;+2n;+1d,(nm), ...,and

n

4 =( I nj)d;m for n>m.

i=m+1
Similarly, d””; = (g;) 71", d"™, = (ym;_~dY"”, ..., and

m

-1
d,(lm) = < 1_[ r]l.) d,g;") for n <m.

i=n+1
Forn = m, it holds that,,d\™ — d(’")l + d(’") = 1, which is equal to
A @G — (M L+ =1

Taking account ofi\"” = -, nf;;gl =n} 4 anda, — 1/n, = —n,, 1, we obtain

+ - y_
dr(nm)(nm+l - nm+l) =1.

DenoteN,+1 = ;.4 — 1,,,,. Then we obtain/,” = N, *,. Hence all the othes,"

can be determined. Now note that it follows.,,, 11 = N,,+1 from the above equations and
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n; n'; .1 = —1. This relation yields fon > m € Z that

n —m -1
+\y-1 - -1
dr(zm) = ( l_[ n; >Nm+l = ( l_[ —N; ) N 1

i=m+1 i=—n+1
—m 71
— (_1)m+n< 1_[ 7],) N:n]:l+l — (_1)n1+nd£:lm) X
i=—n-+1
This completes the proof of Proposition 6.

4. Preciserepresentation of 11//(0). As mentioned before, in order to know the sign
of 1/ (0), it suffices to consider the sign of the right hand sideg18). Noting z;(0) =
72O + 2@ we rewrite(13) as

1 0, 0 (", M)y
(13) W@ = =" + Dy, pr=——"-5 >0,
Dk —2);

whereD(lk) and Dg‘) are given by

D = / / (829, o®) + 7 (Ap®, 7)) A20 W dxdy,
D

Dy = // (7 (A2, 9®) 1+ 7 (AP, 22} A2@ D dxdy.
D

In this section we describe the formula th(ik) + Dg‘) more precisely and estimate its value

asg tendsto 1.
4.1. DY‘) and its positiveness. First, let us descrlbg) by substituting Fourier ex-
pansions of

20 = WONHc0), ¢o® =9®ckka), o® =@®cka),

wherew©, N andc(-) are given in Proposition 4, argf*) and®® are column vectors with
n-th componentk2e? 4+ n2 — 1)~ b, and (k2«2 4+ n?)~2(—1)"b,, respectively. Recall that
by, is given in (10). Now we have

J(AZQ, 0y = — (= WON"2(=N)s(0)) (—ka'p P s(ka)) = ka'WON~1s(0)'s(ka)p® .
Since the(n, n’) element of the matris(0)’'s(k«) is
(5(0)'s(ket)) ..y = Sinny sin(kax + n'y)
= % coS—kax + (n —n')y) — % cogkax + (n +n')y),

it holds thats(0)’s(ka) = (C(—ka) — C(ka) R) /2, whereC(—pB) andC(B) R are given respec-
tively by C(—=B) = Y72 cod—px +1y)S~H = Y72 codBx +1y)S' andC(B)R =
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> cospx +1y)RS!. Note thatS~' R = RS'. Then it follows that

1
J(AZQ, 0y = ka'WON _1§(C(—koz) — C(ka) R)p®

k o0
- 7°‘fw<0>N L3 costkax +1y)(I — R)S'9® = icka)

[=—00
where ther-th component 081 is (J1), = (ka)/2WON~1(1 — R)S"¢® . Now it holds
J(Az29, ") A20® = 131 c(ka)' @ P K 2c(ka) = J1c(ka)'c(ka)K 30D

whereK; is given in Proposition 4. Since th@, n’) element of the matrix(ka)’c(ka) is
given by

(c(ka)'c(ka)), »w = coskax + ny) coSkax +n'y)

1 1
=5 co2kax + (n +n')y) + > cogn —n')y,

we havec(ka)'c(ka) = (C'(2ka) + C(0))/2 and obtain

1
J(AZ©Q, ) A20®) = 531(C/ (2kar) + C(0)K2¢®

1 C L2 (k 1 OO —ly 24 (k
= 501 Z cog2kax +1y) RS'K3( )+§’J1 Z coslyS'K2¢®)

[=—00 I=—00

Therefore it holds that
27.[2
(15) // J(Az9, @) A20 B dxdy = — 131K 290
D o

In the same way, we have that
T(Ap®, 20y = (—ka'pPKys(kar)) (WON~4(—N)s(0))
= ka'WON ~3s(0)'s(ka)K19p®

1
= ka'wON _35(0(—ko{) — C/(ka))K1p®

k o
- 7“ 3" costkax + Iy)WONT3( — R)S'Kip® = Jpctker) |
[=—00
where
ka, ©)pny -3 n (k)
J2), = 7W N7 — R)S"K19" .
We obtain also that

1
J(Ag® z2O)A20® = Joc(ka)'c(ka)K 200 = Esz(c:/(zm) + C(0)K 29 ®)

e¢]

1 2a® 1 L v I 2 (k
=54 > cos(zkax+zy)RSKl¢(>+§’J2 > coslyskie®.

[=—00 |=—00
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Hence it holds that
27.[2
(15) / / J(2p®, 7N A20 P axdy = —13,K50 ),
D o
Proposition 2(14), (15) and(15) then yield

272
—(

DY = = (3 +Ip)K2e®

o0
= kn? Z WOUN T — R)S"® + N3(1 — R)S"K19 Y} (—=1)" b,

m=—00
Prlan, e e _
=5 Y Y p®PKinS 9PN - R)S"9®
m=—00 n=—00

+ N3 = R S"K19p®), by ,

where(M),, stands for the-th row vector of the matrix/. Hence we can rewrite

2.2 © o
k ke oy ~
DZ(I_ ) = T Z Z Wy Apmbm

m=—0o0 n=—00

where

o
wy = '9®K1nS"9® = n Z (kj@jont

j==00
b = (=1)"by = (=" (k?e® + m® = Dw, by >0if m>0,
Anm = (N"HI = R)S" )0 + (N3 = R)S" K19 D),
Here we have denote,&ﬁk) in (4" simply byg;. Note thatk;, 9*’, K1, N~ andR are given

in Proposition 4. We can easily seg = 0. We also remark thad,, ,, = A_, . In fact,
since

1 1
An,m = ;(_(p—n—i-m + (pn+m) + ﬁ(k—n+m§0—n+m - n+m§0n+m)
1 2 2
= ﬁ{(_n +k pim)P—nim + (0 — knim)Ontm}
we have that
-1 2 2
A—n,m = ﬁ{(_n + kngm)Pntm + (0 — k_pntm)O—ntm}

1
= F{(_nz + k—n—i—m)(p—n—i-m + (n2 - kn+m)(pn+m} = An,m .
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Note thatAgg = 0. Hereafter we put > 0. Sincep_,, = (—1)"@m, b_m = (—1)"b,, and
k—m = kn, we also have the following fon # 0:

An,ml;m + An,fml;fm

1 .~
= ﬁbm{(—nz + k) P—ntm + (0% = kngem) @ntm HL — (=1)"}

0 if niseven,

2 - . .
ﬁbm{(_nz +k_ntm)O—ntm + (n2 — knm)@nim} if nisodd.

Also, form = 0, it holds that
= 1 2 2
An,ObO = ﬁ{(_n +k_p)o_n + " —kp)on}

1 2 n 2 1 2 n
= —3{(—1’1 + k) (=D "0p + (n° — kp)on} = —3(I’l — k{1 - (="}
n n

0 if niseven,

2
= n? = ke, if nisodd.
n

Therefore we can rewrit@f‘) as

k) kZJTZOZ)\k ~ e ~ ~
(16 Dl = T Z (wn +w—y) An,ObO + Z(An,mbm + An,fmbfm) .

n=13,5,... m=1

Now, let us investigate the term for each odd 1. We first have

2(ka)?
n3

~ 2
Ay0bo = F(”z —kn)pn = — ¢on > 0.

Also, in the sum

00 ~ y ~ 3 o L -
Z(An,mbm + An,fmbfm) =3 Z bu{(—=n° +k_pym)@—ntm + (n kntm)@ntm} s

m=1 m=1

the term containingy is given by

2b,(—n? + ko) o
—_— >

3 0.

n
If B = ko tends to 1, only this term diverges+ano, sincepg = 1/(8%— 1) < 0 diverges and
the sum of other terms is uniformly bounded. Hence we Bage ; (An.mbm+ An,—mb—m) >
Oif Biscloseto 1.
In the case that — 0, ¢,, = (82 + m? — 1)~1b,, are very small ifn # 0, since
1 _ BB +m? =1

lom| < —

am — 2(82+m?)?

—-0 asp—0,
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but|go| = |82 — 1] tends to 1. So in this case the term witfis dominant, and we have

00
Z(Anmgm + An,fmgfm) > 0.

m=1

On the other hand, it follows frorg?”’) that for each odd number> 1

o o0
W+ Wy =n Y (—k)Qjgntj+(—n) Y (=k)@jo-nt

j=—00 j=—00

00 00
=n Z (_kj)¢j¢n+j+n Z kj+n§0j+n§0j

j=—00 j=—00

0
=n Z (kjtn —kj)ojon+j

j=—00
= H{Z(kn — ko)pogpn + Z (kjn — kj)¢j¢n+j} .
J#0,—n
If g tends to 1, only the first termi3gpog, diverges to+-co and the other terms are bounded.
Thenw, + w—_, > 0 holds as8 — 1. Note that, in the case whegeis close to Ow, +
w_, > 0O follows directly, sincep; (j # 0) are very small. Consequently, summing up above
estimates, we havBik) > Owhengis closeto 1 or 0.
4.2. Dg‘) and its estimates. Next we investigaﬂg() by using the Fourier expansion of
each component function. First(Az#), ¢®) turns out to be
(—2ka'Z?Kas(2ka)) (9™ (—N)s(ka)) — (2% Ka(—N)s(2ka)) (—ka'o©s(ka))
= 2ka'ZPIKos(2ka)'s(ka)No® — ka'ZPIKoNs(2kar)'s(ka) o ®
= ka'Z%Ko(25(2kar)'s(ka)N — Ns(2ka)'s(ker)) o ©
whereKs is a diagonal matrix with-th elementK»),, = — (4k%e2+n?) = —k,. Inamanner
similar to J (Ap®, 2©), J(Ap®, (%)) becomes
(—ka'9PK1s(ka)) (‘2% (=N)s(2ka)) — (‘o WK1 (=N)s(kar)) (—2ka'Z?s(2kar))
= ka'Z%) (Ns(2ka)'s(ka) — 28(2ka)'s(ka)N)K1p®

whereK; is a diagonal matrix wittu-th element- (k2«2 4+ n?) = —k,. Substituting

S(2ka)'s(ka) = %(C(ka) — C(Bka)R)

1 o
= E{ Z coSkax +ly)Sfl — Z co3kax —i—ly)RSl } ,

I=—00 [=—00
we obtain
J(AZ®) oWy = Jac(kar) + 3'3c(3kar) ,
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where

(I3)n = —ka'Z®PK(257"N — NS ™) e (k)

J'3)n = —ka'Z®Ko(—2RS"N + NRS")p® .
Similarly, we also have

J(Ag® | 20y = 3c(ka) 43 4c(3ka)

NI NI

where
1
Q) = Eka’Z(Zk)(NS’” —257"N)K19®
1
Q') = Ek(x’z(Zk)(—NRS" +2RS"N)K19® .
Thus we have
@) () A2 () 2%, 2 )
17 J(AZP, O\ A20 B dxdy = —'J3K2e®)
D o
27.[2
(18) / / TJ(Ag®, zPNA20® gxdy = —13,K30 0
D o

Moreover, rewritingJz), and(Js), by using Proposition 5, we have
1
Jaln = Ska'Z®KoS ™" (N —nD)p®,
1
Ja)n = Ekoﬁz@“s*"(—N +nDHK1p® .

From Proposition 2(12"), (14), (17) and(18), it then follows that

2 2
DY = T (354 1K™
27.[2 S k k ~
== {Eatz(Zk)KZSm(N —mDe® + Eafz@k)s*m(—N +mIK1p® }bm
o
m=—0o0

o0
=kn? Y Z(KasT" — ST"K)(N — mDePby,
m=—0o0
Krnlan,  —
_ Ak Z 19K (2N = nI)RS" 9™

m,n=—00

x (DA (K287 — S7"K)(N — mD)@®), b, .

Hence we obtain

2 00 00

k2m2ahg e -
(19 Dék) = T Z Z Wy Anmbm »

m=—0o0 n=—00
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where we put

o0
By ='"9 VKN = nRS"@® = 3" kj(n —2))pjgn-;.
j=—00

Anm = (DflAfl(KZSfm — STMKy)(N — n’ll)(P(k))n

o0
= Y 4 kg A kjem)(—2m + )¢

j==o0

Note thatd\’ is given in Proposition 6 an.iﬂ;l is equal tor;ka (4k20?4+-n2—1). In Dg‘), the
term containingp3 is given by

(19) D = M

o o0
YD —numd i 3+ Db

m=—0o00 n=—oo
while we already know the corresponding terrrﬂﬁ() is given by

Sk kZJTZOl)»k

(16) DY Z 4(n? — B ubngd > 0.

n=1,3,5,...

First, we compare these valuesfsends to 1. Hereafter we negle@fr2uis /2)¢3,
which is a positive factor involved in botft19) and (16). Now, recall the relatior, =
(B2 + n? — 1)~1b, and note the following limits ag — 1:

3 342 2
(20) o, A
p24+n?—1 B(4p2 +m2 — 1)
Then we can regard tha)" /{(k?r 2ari /2)¢2} is close to
oo 0 d(m) o] oo

(21) Z Z (_1)m+lnm l; bbby = Z Z Em,n ,

m=—0o00 n=—0o0 m=—0o00 n=—0o0
where

d(m)

(22 Em,n = (_1)m+lnm r; buby ,

with & = A = Aka) = A(B), d™ = a™(B) andb, = b,(B). Note also thap is a
monotone increasing function af andc,, , has the symmetric properties such as

(23) Em,n = Efm,fn s Em,n = En,m .
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In fact, we have
d(—m)
Com—n = (—1)—m+1(—n)(—m)%bfnb7m
(m)
= (=)™ am(~ 1= " (= D)6 (= 1)"bi = Emons

dyy” dy"
En,m = (_1)n+lmn Y bub, = (_1)n+lmn(_1)n+menbm = Em,n .

Here we have usaﬂ(_j, = (=1)"qd"™ andd(” = (—1)"+ma\™m.
Therefore it suffices to deal with the terms with> |n|. Then(21) becomes

Z Z Cmn—ZZcmm+4Z Z Cm,n

(24) m=—00 n=—00 n=1m=n+1
+2 Z Cm,—m + 42 Z A
m=1 n=1m=n+1

since this series is absolutely convergent. Now note that the sigp ofs alternating with
respect ton, since

~ 1 _
(25) énn = (1" mnz TT N ylbulbal
i=n+1
For our convenience of calculation, we rewrigzl) as follows:
o
~ (k
(26) DE)E Z Cmn—ZZ{chzn+ Z Cmn‘i‘zcmfn‘i‘ Z Cmn}o
m,n=—00 n=1* m=n m=n+1 m=n+1
Our aim now is to show that the absolute valu¢28) is smaller than the following sum
2 2
=) _ nc-—1 2 nc—1 2
27) b=} 717,,: > —bh
n=1,3,5,.. n=3,5,...

which corresponds t(l)(k)/{(kznzakk/Z)(p } as B tends to 1. To this end, we investigate
continued fractions and related sequences in detail in the next section.

5. Quasi-monotonicity and supercriticality.

5.1. Sequences generated by continued fractions. In this section we consider, in a
general situation, properties of conied fractions related to a sequerjaén)};° of positive
numbers, which is supposed to have a paraneter(io, 00), A0 > 0. More precisely, we
puta(n) = a(n, A). The continued fractiop (n) = p(n, A) defined by

1 1 |+ 1
an)+pmn+1,1  a) a(n+1)
becomes a positive valued sequence satisfyifig 1) < 1/a(n, ). We are interested in the
behavior ofp(n, 1) asi tends to infinity. As seen beforé¢p (n, A)}{° gives rise to a new

pn, ) = |_|_
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sequenceb(n)}° ={b(n, 1)}3° defined byb(n, 1) = []/_1p(, ») forn > 1. Note that
b(n+1)=bm)pmn + 1) forn € Nandb(0) = 1. On the other hand, we can see thatn)}
satisfies, for alk € N,

A+amam+ 1) + (an/ani2)) " < pmpn+1) < A+amam+ 1) < 1.

The above inequality shows that the sequence of even terms and that of odd terms are strictly
monotone decreasing, respectively. In the previous sections, we considered the above se-
guences witha(n), p(n) and b(n) replaced respectively by, = a,(8(1), A), |p,| and
(=1)"b,. We note that the inverse functigh = B(A) of A(8) is a monotone increasing
continuous function defined dr/2, co). Therefore we can regaig (8(1), 1) = a(n, A) as
a sequence having one parameter

In our analysis, which is closely related to Abel’s criterion for summability, we are con-
cerned whether{(n)} = {b(n, A)} is @ monotone decreasing sequence or not, that is, if
p(m) < 1 holds for alln € N. Although this is not true in generab(n) = b(n, 1) has a
property which is close to monotonicity for sufficiently largewhich we call later quasi-
monotonicity.

In order to prove this property, we generalizé:, 1), which is defined first ofiN x
(Lo, 00), to a continuous functiop(z, A) defined o1, co) x (Ao, 00), and use infinitesimal
calculus. For this purpose, we assume that the extended fumgtion) is a smooth function
defined or{1, oo) x (Ag, co) satisfying

2 2

t <(t)»)<cr d(l‘)»)<0t
a b — b a b — 9
(28) M2~ M2’ dt M2

d
O<Wa(t,)»), 1<t, te[l,oo), Xe(rg,00)

for some positive constant whereM = [+/A] + 1. Now, we remark two examples:

a0 = 28002+ + D32/ ABONBM?Z + (t + 1% — 1)),
aft,x) = @BM2+ 12/ (MBM@BM? +12 - 1)).

In particular, for alln € N, we havea D (n, 1) = a,41(B(A), A), @(n, A) = @, (B(A), L) =
an(2B(1), 1). Note thata ™D (¢, 1) corresponds tga, (B(1), 1)}°°,, where we can take =
2 for largero. Remark that, fora,(8(1), M)}72,, the extended function(z, A) does not
satisfies the third condition i(28). Therefore the term concerned with= 1 must be treated

separately.
Now, we can define the extensiprfit) = p(z, A) of p(n, 1) by
_ 1| 1|
@9 ) = a(t) + a(t+1) Tt

Then fromp(t) = (a(t) + p(r+1)) " Litfollows thatp(r) < 1 for r > M andp(t)p(r+1) <
L+a®a@+1)~1 <1forany(r, 1) €[1,00) x (Ag, 00).

First, let us prove thab () is continuous. Namely, setting(z, h) = p(t + h) — p(2),
we prove that lim_.o u(z, k) = 0. Using the formulao(z) = 1/{a(?) + p(t + 1)} and the
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notationd(z, h) = a(t + h) — a(t), we obtain
@, W) =1—{d@, h)+pn@+ 1 m}o+h)p@)]
=|—d(t, h)p+h)p(t)
+{dt+Lh)+ut+2,)pt+hp@)pt+h+ Lo+ 1)

2N-1 J
(30) < | 3 C0IHdG+ jw] [pt+ R+ il + i)}‘
j=0 i=0
2N-1

+ ‘,u,(t +2N.h) [] oG +h+i)pt+i)
i=0

Here we note that, fat € N,

J . . . .
@D vt h) El_([)p(t+h+i)p(t+i) < {i’(’;?ifz)kpfff) it =2k,
Then, since lim, . p(t) = 0, the second term of30) converges to zero a& tends
to co. In consequence, by a standard method, lim,_o|w(z, k)] = O follows from
limy—od@ + j, h) = 0 for finite ;.
We now define the sequen¢e(n)} = {b(n, 1)} by (10) with p, = p(n, A). Denoting
{b(n)} by |b,| as before, we see that it has exponential decay as follows:

(32 |bul < |bw|exp{—M ~4(n —n)°/20} for even positive integers’ <n < M.

Similarly, for any even positive integeréM < rM < M, we have

M r
(32) |Drm| < 1byrp] exp{—?/ Iog(1+s4)ds} , byl =baM,N).
Let us prove32). First, from(28) and(29), the following relation holds:
|bn+2| 1 1
33 = , 0
(33 b | on+10n+2] < R <13 CERYIT n>

If n =rM is even, then
brml < 1bol{1/(1+ (I/MYHHL/ L+ B/M)H} - AL/ A+ (M — 1)/ M)

Sincebg = 1, we have
rM/2

log|brml < — Y log{l+ ((2k — 1)/M)*} < _M / log(1 + s*)ds .
k=1 2 Jo

Since we havelog(l + s%)) > 253 and log1 + s%) > s%/2 for 0 < s < 1, it follows that
Jo 1091 + s%)ds > r3/10 for 0< r < 1. Therefore we have

(34) |byy| < exp(—Mr°/20) forevenrM =n <M.
Also, in a manner similar t634), it holds that ifn —n’ =rM — r'M is even,
(34) |bru| < byl €XPI—M (r — r')°/20} .
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We have(32) immediately from(34). Therefore, for odd = r M, we have likewise
log|bym| < log b1 M/r log(1 + s*)ds < log 1| Mr5+ !
M| < - — < -t —.
91ori 97 1M g rsds gio1 20  20M*4

Hence, we have the estimate of exponential decay

|bym| < b1l exp(l/ZOM“) exp(—Mr5/20> forodd n =rM.
Note that it follows from Lemma A-3 thdb1| = |p(1, 1)| < (14 2¢)Y/2, since it holds that
a(n+1,A)/a(n, )) < 1+ 2c¢ for all r andi. Now we state the following theorem.

THEOREM 5. Under the assumption (28), {b(n, A)};>; defined by (10) with p, =
p(n, 1) satisfiesb(z, 1) > b(t + 2, 1) and has the exponential decay property:

2 "2n®
b(n, ) < Clexp{ -0 } n>1
for some C; > 0. Moreover, there exists a constant C > 0, such that p(z, A) satisfies the
estimate

(35) limsups(mAl® < C,

A—00

where S(A) = sup ., . (p(t, ) — 1). Incidentally it holds that
maxp(t, 1); 1 > 1, A € (Ao, 00)} < (1+ 20)Y/2.

The proof for the exponential decay is similar to the proof above. In order to 68w
we first consider the open regidn= {¢r € [1, 00); p(¢) > 1}, which is divided into the
countable union of open intervals= ), _, I, eachl; being a connected component/of
Note that the number df, satisfying|l;| > 1/;j > 0 does not exceef{ M — 1) for any integer
j > 1, sincel is contained irf1, M). The length I;| of eachl satisfiegI;| < 1. Indeed, if
|I| > 1, then we have a poimt satisfyinge(t1) o (t1 + 1) > 1, which is a contradiction.

Let us first study the values af such thatS(x) > 0. Sincep(s, A) is continuous and
po(t, 1) tends to zero as — oo, we examine theo(z,A) — 1 in (70, M), supposing that
p(t5, A) — 1 > 0 is the maximum. For simplicity, let us denagby 70 and omiti. There
exists a positive numbér = h(A) < 1 such thap(fp + h) = 1. We first consider the value
lo(to) — 1| = |u(to, h)| = |p(to + h) — p(t0)|. Then(30) yields

N-1

> (~Did(to + j. hyvjto. )| + (o + N. h)|vy-1(t0. )| .
j=0

(36)  [p(0) —1f <

Now we defineN to be N = min{2k € 2N; 2k > M1}, wheres > 0 is determined later.
Then, from|vy_1(fo, h)| < 1 it follows that

1
36 N, h 1t h)| < ——— < M?/N?2 < M2,
(36) [ (to + MNvv—1(to, h)| < 2ot M) < M?°/N*° <
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In order to estimate the first term {86), modifyingv; = v;(to, 1), we define a monotone
decreasing sequen¢g; }:
vo=v=p()>1 Di=vi=pF)pto+hplo+Dpto+h+1) <1,
5. = Jvi-1 1 pllo+ Dplo+h+j)>1,
77 lv;  otherwise

Sincep(to+ j) < 1forrg+ j > M, we havey; = v; in this case. Moreover, it follows from
the definition ofS(x) thatv; — v; < {(1+ S(A)2 — 1}9;. Note also that; > v; implies
Vjy1 =vj41,Sincep(t)p(t + 1) < 1 holds. Hence we obtain

N-1

Y (=Did(o+ j, hyv;
j=0

(37) = v

Y (=Dido+ j. )i,

j=0

M—tg
> (=Did(to+ j, b —v))
j=2

< -

Note that forr > M, 1 < a(), p(t) < 1andv; — v; = 0. For the first term o{37) we use
Abel’s criterion for summability:

k n k
(39) (ur}:f;a,>b1 < ;a,b, < (sgp;a,)bl,
where{b;} is a monotone decreasing positive sequenceb lf is increasing, we haves8)
with a; andb; replaced by, ;11 andb,, respectively.
Now, by the mean value theored\to + j, h) = a’(to + j + 0h)h for somed = 0(j) €
(0, 1). Thus the monotonicity of’(r) implies that{d(zo + j, )} is a monotone increasing
sequence, since h < 1. Then the following estimate follows fro38)

k
> (=Did(to+ j. h)

Jj=0

(39 <d(tg+k,h), k<N-—1.

Applying again Abel’s criterion to the first term ©87), sincerg < M, it follows from (28)
and(39) that

N-1 ‘
> (=Did(o+ j. h)b;
j=0
c
< W(to +N—1+4+h0)p(to) < c(M L+ M+ M2 (SO, t0) +1).

<ld(to+ N —1,h)|vo = |a'(to + N — 1+ h6)|hp(t0)

(40)

Here we used the increasing order of(r) assumed in(28) and put S(A,70) =
SUR,</<co(p(t, A) — 1). Suppose thay satisfies 2(1 + p)(M — 10)/M = 1/3, wherep
(1+2¢)Y2. Then it follows from(28) and the inequality; — ¥; < {(1+ S(x, t0))? — 1}D;

A
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3S(A, 10)V; < 6S(%, 1) that

M—tg
D (=Did(to+ j +hoph(; — v))
j=2
< (M - ro>§({(1+ S, 10))? — 1)) < }m, f0) .
M 3

(41)

Note that, sinc&(1) < p—1,we have; —v; < ({(1+S(2, to))z—l})ﬂj < (1+p)S(A, 10).
Combining(36), (36), (37), (40), (41) and the above inequality, we obtain
2c
M-8
Here puts = 1/3 and suppose that2M*~% < 1/3 for largei. Then there exists a positive
constantVg such that folM > Mgy

1
S(h,10) < M~ 4 (8G-,10) + 1) + 3801, 10)-

S(ho10) < 3L+20)M~2 . M =M@ = (VA + 173,
from which we obtain, folM > My,
Sn) <M+ %(S(k, 1) +1)+ Sk, 11)/3+ S, 10)/3, t1=1t0— (M —10).
Therefore we have
SO, 11) < 3(1+2c)M~23(1+(1/3)), for M > Mo.
Repeating this proce$a/ /(M — 19)] + 1 times, we obtaig35) with

ko
(42) C =3(1+2¢) <1+ %) , ko= [6c{1+ (1+20)Y%)]+1.

5.2. Positiveness qgi;(0). Now we return to the proof of Theorem 2. Frai25),
ém,n Change signs alternately in. The seriey o> > &n.n converge absolutely.
Hence, by(26), we obtain

00 00 ) ) ) )
DD G | 2D D G| 2| D Gum
(43) n=—00 m=—00 n:]éo m:go n:loén:n+]éo
423 1D Sl 42D Y Emn|-
n=1' m=n n=1" m=n+1

We decompose the first term in the right-hand side into

o0 o0 o0 o0 o0
Z Z Em,n < |C~'1,l| + Z Em,l + Z Z Em,n .
n=1"' m=n m=2 n=2' m=n
First, let us consider
o0 1 o0 m
~ -1
(44 D mn = n=N bl Py o= (D" [T nf1bml,
m=n m=n i=n+1
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where[ ]/, 1 n;" = 1form = n. Note thatfork = 1,2, ..., ax41 = arp2(A) = a“V(k, 1)
satisfies the condition@8). Therefore we consider the case where 2. The tern¥y 1 can
be estimated separately at the final part of this section.

Now, we verify

-1
O< max N, <C,

—o0o<n<oo

in the following way. First note thav,, .1 = ’7:+1—’7;+1 > max{nj;rl, ap}. Then, forn > M
it holds thatN, 1 > @, > 1. ForO<n < M we haven;jrl > 1/6, sincen:ljr2 < 2 and
Myeaysp > (L4 Gni1Gny2 + (@ny1/ans3)) " > 1/3. It follows from supf, +1/a, < 4 and
Lemma A-3 thaw:;rz < 2. Thus we can tak€ = 6. For negative: we have the same result.
ThusN, !, is uniformly bounded im and.

Here, we decompose the main par{4#) into

M

> m{(—l)'"+l [1 n,-+|bm|H +

m=n i=n+1

49 [Pyl =

o0 m
Yo 0w [ o 1bwl|-

m=M+1 i=n+1

Note that only the second term remains foe- M. If we suppose thaf[;_, . | fl,-+ and|b,, |

are monotone decreasing, then both termédl) are estimated by/|b,|. Indeed, Abel's
criterion for summability is applicable to the first term. In the second term we can verify that
mn;"|bn| is monotone decreasing. Now defihg by

Z;m =b, Iif loml <1, bp_1 if [om]| > 1.

We see, from(33), that the sequencgb,,|} is monotone decreasing. Note thﬁi‘t has a
property similar to quasi-monotonicity. So let us use the same not&tionalso for{n;r}.
We now consider the modification &f(n, m) = ]‘[;":nJrl ’7,'+ defined by

B(n,m) = B(n, m) ifn;’n'fl, B(n,m—1) ifn;’n'>1.

Then it follows that

M
> (=D mB(n, m)|by|

m=n

(45) < 2M|by| .

Note thatB(n, m) = B(n, m) holds ifm > M.
Now, we need to consider

M
(46) > (=" m (B(n, m)—B(n,m)) by | .

m=n

M
> (=0 B(n. m) (1| — b)) ‘+

m=n

Here, by virtue of monotonicity ob,,| andB(n, m), Abel’s criterion for summability can be
applied to each term a#6). Since|b,| — |bym| = (MaxX{|pm| — 1, 0})|by|, using the notation
Sm(A) = (maX{|pm| — 1,0} < S(A) = max, S, (1), we may rewrite the first term a#16) as
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follows.

M -
> =" m B, m)(1b | — |bm|>‘

k
(47) <|bal| sup Y (=D)""'m B(n,m)smm‘
n<k<M ,,—,
k M
< |bal| sup Z(—l)m“mB(n,m)Sm(A)‘+|15n|{S(A> > mB(mm)}.
k=n,n+1,—,

m=n+2

Let us now recall the argument in the proof(8#). Then, replacingy by »;", we obtain

48 B(n,m) < (1+SO)B(,m),  B(n,m) < expl—M~*@2(m —n)/21)°/20}.

From (48) and exg—M ~4(2[(m — n)/2])°/20} < exp{—M ~*(m — n — 1)°/20}, we have
M M+1

Z m B(n,m) < / rexp{—(M ™t — n — 2)°)/20)dt
2

m=n+2 n+t
M—n—1

M—n—1
= / s exp(—M 4 s°%/20)ds + / (n + 2) exp(—M ~*5°/20)ds
0 0
1 1
< M? / r exp(—Mr°/20)dr + (n + 2)M / exp(—Mr®/20)dr
0 0

1 L 1 L
=z M? / y =3/ exp(—My/20)dy + c(n+2M / y 45 exp(—My/20)dy
0 0

1 M 1 M
=z MB8/5 fo x 735 exp(—x/20)dx + g(n +2)M*/° /O x5 exp(—x/20)dx

< 2453V 2/5 M85 4 (22/5HV3r (/5 MY (n + 2) = CyME® + CobMY3(n + 2) .
Thus the second term ¢47) is bounded by
2\bp1{3(2c + DM 2PYCIM®® + CoMY5(n + 2)) = b, |{CY MM + I M ¥ + 2)} .
The first term of (47), which is the sum of terms with different sign, is smaller than
b, |{2(C M~2%/3)}(n + 1). Hence for some positive constaits andC, we have

M
@9 | 31" B, m)((b| — b))

m=n

< |ba{CLM M5 4 CoM? S (n + 2)}.

As for the second term a#6), we can obtain the same estimate a¢i9), that is,

M
D 0" (B(n, m) — B(n, m))|by]

m=n

(49) < |bu[{C1M MY 4 CoM? ¥ + 2)}
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since we havé8(n, m) — B(n, m) < S, (M) B(n, m). From(45), (45), (46), (49) and(49) it
follows that

o m
DY T 0 bwl | < bal(eaM +c2M?*n), n = 2.
m=n i=n+1
We want to show that the right hand side @B) is much smaller, by ratio, than the
guantity given by(27), for sufficiently largeM. Since the terms in the right hand side(48)
are estimated in the same way, we only remark on the first ter@3)f (see Proposition 6

and Corollary 1). Then, fron¥4) and limy—. oo M?/1 = 1, we have

(50) 271 D Emn

n=2"' m=n

00
- Z|bn|2(CM71n 4 M85 ,2)
n=2

wherec andc’ are some constants. Now we can see that for each firthie term in(50) is
evidently small, whenV is large. In order to se&0), we divideN into two parts{n; 1 <

n < ko) and{n;n > ko}, and takekg = sM1¥1> with small positive constant which is
determined later. Then the terms(®0) for n < kg are smaller than the corresponding terms
in (27), and forn > ko we obtain the following inequality using@2) with »” = 0 and(35):

oo
Z |bn|2(CM_ln + C’M—28/15n2)
n=ko
o
< [ @+ S0 exp—M45/10) (cM Yt + ¢/ M~28152)4;
ko

o
<1+ S()L))Z{c/ s eXp(—M2/3s5/1O)M13/15ds
B

o0
+ c’/ 52 eX[X—MZ/ssS/lO)MM/lSds} ,
8

which converges to zero for any fixed positive numbas M tends toco.

Let us now return to the termsy 1| and \Z,‘j‘;z 5,41,1\. Since they are represented re-
spectively by(N2/A)b1|? and (N2/M)[b1] [ o o (=D 1m [T 5, 1 17 |bwl|, these values
are also much smaller than the value given(By). Note that(27) contains only the terms
for oddn. However, we remark that the quasi-monotonig®p) plays an important role in
compensating the even terms. Now note that the first and the second te@visane positive
asM tends toco. Indeed, it is verified by showing that limipf. « |6,| > (25/39",n < M,
which are derived from the formula

1 1

1+ (aj/ajr1) 1+ ()’
( + (/)
(+2+ /(G +2)?’
The inequality(51) follows from (35) and(1 + ajaj 41 + (aj/aj+2) "t < pjpjt1. j = 1.
Here we see that tt{g‘(j)}?‘;2 is a monotone increasing sequence satisfyi® = 10%/17?

-
bl >
(51)

FG) = j>1.
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and lim;, f(j) = 1. Since 1> f(1) = 3?/5% > 107/17%, we have liminfs_oo |p;| >

(1 + (10%/17%)~Y for j > 1. Thus we can show th&€/x in Dg‘) is much smaller than
the first term ofo‘) for larger. To see this, it suffices to not€32 — 1)/3%)b% = ((32 —
1)/3%)b%(p2p3)* andpzp3 = (14 azaz + (az/as)) ™ = (1+araz + (10/17?)~*. Therefore
we obtain thath‘) > |Dg‘)| if B = ka < 1 is sufficiently close to 1. Hence in this case we
have

(52) pP > DYy

Thus the proof of Theorem 2 is complete.

Now we note that, as remarked before for sufficiently sngalk- 0, we obtain(52)
from the representatiorisgk) andDg‘). Itis desirable to verify52) for closed interval of in
(0, 1), that is, fora belonging to a compact regigy/2+§’, 1/8'] with small positives’, using
the explicit formula forDik) + Dg‘) given rigorously. In this region, since all the terms are
uniformly bounded and all the series are rapidly and absolutely convellgge"h'andDék) are
uniformly continuous. So the numerical computation is possible by choosing finite numbers
of points. Incidentally, we remark thatis a solution of(9) which is resolved by a successive
approximation method for the implicit function.

APPENDIX. Continued fractions are used by many authors to analyze delicate prob-
lems (see for example [9]). For the convenienteeaders we collect some basic results on
which our arguments are based.

PROPOSITION A-1. The problem (1), (2) and (3) is equivalent to the problem (1),
(2) and (3).

PrROOF The first equation il) is verified by taking the rotation and the divergence
of (1). Conversely, from1’) by the same process we hailg operated byA. Note that the
inverse operator oA exists on the subspace consisting of functions with mean value zero. As
for the periodicity, for example) (x, y) = ¥ (x, y + 27), we note the relations

(s,y) (s,y+2m) (x,y+2m)
Yx,y+2r)—¢¥(x,y) = < + +/ )udy—vdx
(x,y) (5,) (s,y+2r1)
(s,y+2m) (s,y+2r1)
= / udy —vdx = / udy, se€(0,2r/a),
(s,y) (s,y)

/o (s,y+27)
/ </ udy)ds = // udxdy = 0.
-/ (s,y) D

Hence it holds that/ (x, y + 27) — ¥ (x, y) = 0, and similarly followsy (x + 27 /«, y) —
Y¥(x,y) = 0. The mean value ofu, = (—v¥)(¥,,), for example, is equal to that of
Yy ¥y = (1/2)(392/dx), which is zero by the periodicity of .
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LEMMA A-1. Suppose that a sequence of positive numbers {a;}7° ; satisfiestherela-
tion 0 < inf;en aja; 41 = 1/p, and put

PP " U 5 R i RV
ay az an

Then thelimit p1 = lim,,_, « p1,, eXists and satisfies

lp1n — p1 < max(l, 1/a?} pY?A+ A/p) L (p/A+ p)"™2, 2<n, neN.

PrROOF Put
1 1 1 .
JREE 5 PO S PR N R
a; ai+1 an
For fixedi € N and anyk > i, we can verifyp; ; > pik, pii+1 < Pik+1,--.,and

Pii+2j > Pik+2j, Pii+2j+1 < Pik+2j+1, <k, jeN.

From this inequality we have

Piit2(j—1) > Pii+2j > Pii+2j—-1 < Pii+2j+1, Pii+2(j—-1) > Pii+2j-1, J € N.

Note that|p; » — pi.n+1| IS monotone decreasing in Therefore the limifo; = liMm,— o0 pin
exists if and only if lim,_ « |0i.n — pint1] = O, which means tha{tp,-,n};j‘;i“ is a Cauchy
sequence in this case. On the other hand, by definition, it holds thgt~#at, 2 andm > 2,

m—1
lojm = pjm+rl=Pjmpjm+1l1Pj+1m — Pj+1m+1l = l_[ | 0i,m Pim+11 1 om.m — Pm.m1l -

i=j
Here note that fom € N, we have

loman = pmomral = [(@m) ™ = (am + (L/am11)) 1|
= (@n(L+ aman11)) " < (am(1+ 1/p)) 7 .

Since the assumption 4 inf,,en aman+1 = 1/p yields that sup .y min{1/ay, 1/am+1} <
p2, we havelpm.m — pmm+1| < pY2/(1+ (1/p)) form = n orm = n — 1, which we
denote byn = m(n). On the other hand, singgx = 1/(a; + pi+1.x) for anyi < k, we have
lpikpivrkl = 1=aipix < 1—ai(ai+Q/air)) P <1-A+p)t=pA+p~t, i<k.

Hence, forj satisfying(m — j)/2 € N it follows that

m—1 (m—j)/2
l_[ | 0i,m Pi,m+1| = l_[ |0j+2k.mPj+2k+1m| |0j+2k m+10j+2%+1mr1l < (p/(L4 p)™ 7.
Py k=0

If m — 1is even, then we have

1p1n — PLat+l < lo1m — prm+l < pY2QA+ A/ p) L (p/@A+ p)" L.
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If m — 1is odd, then we have

_ _ 1
o1n — pratal < @1+ p20) "t = (@1 + p2040) | < 51020 — 2011
a
1

1 _ _ _
= —lpzm = p2ms1l = 43 2pY2(1+ @/p)~t(p/@+ p)n 2.
1

In general, we have thgty, — p1a+1l < max(, 1/af)pt/?/(1+(1/p)~Hp/ @+ p))' .
Hence the limit lim), . o p1.» €Xists and satisfies the above estimate.

ProOPOSITION A-2. If we take p1 different from pf, then the solution p,,
n=23,...,0f (7) satisfieslim,_, yo0 | on| = 00.

PROOF  Since lim,_ 400 p,7 = O, there existsig € N such that/p;/| < 1/3 holds
for all n > np. Now suppose thafp,} satisfies the system of equations(if) with given
p1 # py . Forn > no, it holds that

lon = o | = 1(@n—14 (1/pn-1)) — (an-1+ A/p," )| = 10,1 — pa—1l/lpn-10,"4]
=10 = Pl /\Pn—1Pn—2" - propy 105+ 0
Since |on-1---puollon — o | > 3"7™|pt — pyol for any n > no, we see that
limsup,_, o |ox| > 3. On the other hand, from, — p,” = 1/p,—1 — 1/,0:__1, we have
lonl = 11/ 01| = (o 1 + 11/ pu-1l} -
If |pn—1] > 2, then|p,| > 24+1/6 forn > ng+ 1. Hence limsup_,  |p,| > 3 implies that
limsup,_, o 11/ponl < 2. Thus lim,— o p,7 = 0 yields lim,_ 4o | pn| = 0.

LEMMA A-2. Suppose that each ax(s) is a continuous function of a parameter s €
(so, s1) and satisfiesthe condition in Lemma A-1 uniformlyins. Then p, (s) defined in Lemma
A-1 is a continuous function of s. Moreover, assume that each ay (s) is a continuously differ-
entiable function satisfying dasx—1/ds(s) > O for k € N and dag/ds(s) < Ofor k € N.
Then p1(s) isa monotone decreasing function of s.

PROOF  As p1(s) is the uniform limit of continuous function1 , (s)}, p1(s) is con-
tinuous ins. Suppose; < s2. Then we have

01,2j+1(s1) — 01,2j(52) = (01,2j+1(51) — p1,2j+1(52)) + (p1,2j+1(52) — p1,2j(52)) -
Note that the second term converges to § ssnds to zero. Remark that we can show

dp12; al (s
PL2j+1 (s) < — 1( ) S < 0
ds (a1(s) + (1/az(s)))

foranyj € N and anys. Hence it follows thapi (s1) — p1(s2) < O.

LEMMA A-3. Assume that a positive sequence {a,}> ; satisfies sup,_, an+1/an <

p2. Put p, =ﬂ+ﬁ+---+ﬂ+---, n=12 ... . 1flim,—s pn = 0, then
dap ap+1 ak

SUR <, Pn < P.
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PROOE We see thapy = px(8,2) > p implies that{pk+2j}j?‘;0 is an increasing
sequence. Indeegy = 1/(ax+px+1) andpox+1 = 1/(ar+1+pk+2) yield thatog o/ ox = {1—
ar P (ax+10k+1/akpi)} /(1 — agpi), Where(agapk+1/aror) < (ars1/ar)(1/(pr)?) follows
from pgpr+1 = 1 — arpr < 1. Thereforep, > p implies thatpy < pr+2. Similarly, we have
thatpxr2 < prta < - -+, Which contradicts lin, o 0, = O.

PROOFS OF(i) AND (ii) IN SUBSECTION 1.3. Firstnotethat, > 0,n =1,2,...,
for 8 > 1 andag = oo for B = 1. Therefore (i) follows. To verify (ii) we note

~ 1 1

where

an = 2082+ n?2/(B*B%+n?-1), n=2k k=0,1,2,...,
an = 2(B%2+n?2B2/(\2(B2+n%—1), n=2k+1,k=0,12,....

Then, by considering logarithmic derivatives, we can stdaw/98 < 0 for all evenn and
da,/9p > 0 for all oddn. This implies thaty (8, 1) is a decreasing function if, namely,
g(B1,X) > g(B2, A) holds for 0< 81 < B2 < 1 (see Lemma A-2). Similarly, we can show
thatg (8, A) is an increasing function with respectito

Note that we have lim,og(8,1) = do < 0 and lim, -« g(B,A) = oco. Hence the
solutionr = A(B) of g(B,1) = 0 exists uniquely for8 € (0,1). Moreover,A(8) is a
monotone increasing function. Indeed <081 < B2 < 1 yields that 0= ¢(B81, A(81)) >
g (B2, A(B1)) and g (B2, A(B1)) < g(B2,A(B2)) = O, which implies that.(B1) < A(B2).
Since 0= limg_.0 g(8, A(B)) = limg_o(do + (1/d1)) = —2+ (limg_oAr(B))%, we have
limpg_.0A(B) = V2. 1/6 < p; < 2 follows from(iii) and ¥3 < p; pJ, Therefore, we have
(ii), sincelag| = 2|p5 |.

PROOF OFTHEOREM 4. Here we give the proof of Theorem 4, compared with Propo-
sition 6. The(m, m) element ofD~1 is equal toNn:Jlrl. By an argument similar to that for

Proposition 6, we can verify thaw;l}rl} is bounded inn € Z. Other(m, n) elements of

D1 are also described by, 1, andp;, i =m +1,... ,n,ifn > m. If m > n, we use
Nr;-lu and Yoy vj=n+1...,m Therefore, since),.*, i=m+1,...,nand Yo; .
j =n+1,...,m are bounded, we have the uniform estimate stated in Theorem 4, since

p;rpl.t_l < 1,etc.
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