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§0. Let G be a finite group and let ZG be its integral group ring.
Let U(ZG) denote the unit group of ZG and define V(ZG)={ue
U(Z®) | e(u)=1} where ¢: ZG — Z is the augmentation map. In this paper
we will study the following problems:

Problem 1. How many conjugate classes are there in V(ZG) of
subgroups of V(ZG) isomorphic to G?

Problem 2. Is there a torsion free normal subgroup F of V(ZG) such
that V(ZG)=F-G?

Let S,(resp. A,) denote the symmetric group (resp. alternating group)
on n symbols, and let D, denote the dihedral group of order 2n.

Hughes and Pearson ([3]) raised Problem 1 with related problems
and showed that there is only one conjugate class in V(ZS,) of subgroups
of V(ZS,) isomorphic to S,. Polcino ([6]) showed that there are two
conjugate classes in V(ZD,) of subgroups of V(ZD,) isomorphic to D,. On
the other hand, Dennis ([2]) solved affirmatively Problem 2 in the case
where G=3S,. Recently, Miyata ([56]) has solved Problem 2 in the case
where G=D,, n odd. He has also solved Problem 1 with an additional
hypothesis that the class group of ZD, is of odd order.

Our main results are as follows:

[I1 Let G be a finite metabelian group such that the expoment of
G/G’ i3 1,2, 3, 4 or 6, where G' is the commutator subgroup of G. Then
there is a torsion free mormal subgroup F of V(ZG) such that V(ZG)=
F.G. ,

[II1 (1) Let A, be the alternating group on 4 symbols. Then there
are 4 conjugate classes in V(ZA,) of subgroups of V(ZA,) isomorphic to A,.

(2) Let S, be the symmetric group on 4 symbols. Then there are
16 conjugate classes in V(ZS,) of subgroups of V(ZS,) isomorphic to S,.

§1. Let G be a finite group. For an ideal J of ZG, we write
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Ul+-J)=UZG)N(1+J), where 1+.J is the set of all elements of the

form 1+j, jeJ. For NG, denote by &; y the natural map from ZG to

Z(G/N) and set I(G, N)=Keres;y. Note that ¢,, is the augmentation

map of ZG and V(ZG)=U(1+I(G, G)). Write e=¢,, and I(G)=I(G, G).
We will use the following result.

PropoSITION 1.1 ([11]). Let G be a finite group and N<|G. Then
NIN'=zI(G, N)/I(G)I(G, N)
under the map nN'—>n—1+I(G)I(G, N), n € N.

Define the map U(1+I(G, N))—I(G, N) by 1+k—k, ke I(G, N). This
map induces a group homomorphism

Ul+I(G, N))/ U1+ I(G)I(G, N))— I(G, N)/I(G)I(G, N) .
It is easy to see that this is an isomorphism. Therefore we get
COROLLARY 1.2. Let G be a finite group and N<]G. Then
N/N'=UQ1+I1(G, N))/U1+I(G)I(G, N)) .

LEMMA 1.3 ([4]). Let G be a finite group and let geG. Then
9—1e€I(G)* if and only if geG’'.

PROPOSITION 1.4 ([4]). Suppose that G is a finite metabelian group,
then UL+ I(G)I(G, G')) is a torsion free mormal subgroup of U(ZG).

Suppose that H is a finite abelian group. Then, by the theorem of
Higman, the only units of finite order in ZH are +h(he H). It is also
known that, if the exponent of H is 1, 2, 8, 4 or 6, the only units of ZH
are +h(he H).

THEOREM 1.5. Let G be a finite metabelian group such that the
exponent of G/G' is 1,2,3,4 or 6. Then there is a torsion free mormal
subgroup F of V(ZG) such that V(ZG)=F-G.

Proor. By Corollary 1.2, U1+ I(G))/U1+ I(G)»=G/G" and
U1l+I(G, @)/ UQA+I(GIG, G')=G' .

It is clear that UQ+I(G, G')SUQ+I(G)*). Since G/G’ is an abelian
group, UQ+I(G/G')*) N (G/G')={1} by Lemma 1.8. Hence, by the assump-
tion on the exponent of G/G’, U1+ I(G/G')*)={1}. Let n:U(ZG)— U(Z(G|G")
be the natural map. Since z7(U1+I1(G)*)S U1+ I(G/G')*)={1}, UL+ I(G)><
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Ker z=UQ+I(G, G')), and therefore UL+ I(G®»=UQ1+I(G, G')). Hence

|V(ZG)/UQ+I(G)IG, GY)]
=|V(Z@)|UQ+ 1G] | UL+IG, G')/UQ+IGHIG, G)|
=|G/G’| |G'|=G] .

On the other hand, by Proposition 1.4, U1+ I(G)I(G, G")) is a torsion free
normal subgroup of V(ZG). Therefore it follows that U1+ I(G)I(G, G'))-G=
V(ZG). Thus UQ+I(G)I(G, G')) is a torsion free normal subgroup of
V(Z@), as desired.

REMARK 1. Let K be a finite group. Suppose that there is a torsion
free normal subgroup F of V(ZK) such that V(ZK)=F-K. Let H be a
finite abelian group. Put G=KXH. Then there is a torsion free normal
subgroup F of V(ZG) such that V(ZG)=F-G.

SKETCH OF THE PROOF. First, we will show that UQ+I(G, H)I(G))
is torsion free. Take an element u of finite order in U1+ I(G, H)) and
write =3 a;h,+ i, +1 Djnh;kn, Where h, h;(resp. k,) range over elements
of H(resp. K) and a, b;,€Z. Since &g u(u)=2,a;+2u, +1 0imkn=1 in
Z(G/H), there exists a, such that a,#0. Then, by [1, (3.1)], a,;=1 and
_u=h;,c H. ForanyheH(h+1), h¢ U1+ I(G, H)I(G)) by Lemma 1.3, hence
UQL+I(G, H)I(@) is torsion free. Next, set F=UQ+I(G, H)I(G))-F.
Then F' is torsion free and [V(ZG): F1=|G|. Therefore F is a torsion
free normal subgroup as desired.

REMARK 2. For any finite group G and any integer n=8, n€ Z,
consider the natural map f,:V(ZG)—V((Z/nZ)G). Then, by [1, (3.1)],
Ker f, is a torsion free normal subgroup of V(ZG) such that [V(Z(G):
Ker f,]<o. But [V(ZG): Ker f,]#|G| in general.

REMARK 3. Suppose that G is a finite metabelian group which is a
semidirect product of G’ by a subgroup H of G. Since H is an abelian
group, by Proposition 1.1, Corollary 1.2 and Lemma 1.3, U1+I(H)) is
torsion free and V(ZH)=H x U(1+I(H)*). Set

F=UQ1+IGIG, G))-UL+I(H)) .

Then F is torsion free and [V(ZG): F]=|G|, but it is not a normal
subgroup of V(ZG) in general.

§2. Let A, be the alternating group on 4 szmbols 1,2 3and 4. Set
N={1, (12)(34), (13)(24), (14)(28)}<]A, and define N=1+(12)(34)+(13)(24)+
(14)(23) in ZA,. Let ®w be a generator of A,/N.
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Hereafter, the unit group of a ring R will be denoted by U(R).
Consider the pullback diagram

ZA,— L ZAN)=Z[w]

A l

ZA,/(N) —— (Z/AZ)[w] .
From this diagram we get the Mayer-Vietoris exact sequence (e.g., [7]).
(1) 1—UZA)— U(ZAJN))x UZ[w])— U(Z/4Z)[w])— 1 .

The exactness of the last map follows from the fact that D(ZA,)=0
(e.g., [10]). Since U(Z[w])={=*1, +w, +=®?’} we have an exact sequence

(2) 1—UZA)— U(ZAJ(N)— U(Z/AZ)[0])K—1, @)—1 .

Because |U((Z/4Z)|w))|=24, |U(Z/4Z)[w])/{—1, w)>|=4. Define a represen-
tation T of A, to GL(8, Z) by

1 0 0 0 1 0
(12)(34) — [0 -1 0| and (123)—> [O 0 1}
0 0 —1 1 0 0

Then we can extend T linearly to the map from ZA, to M,(Z) which is
denoted by the same symbol 7. By the map 7T, an arbitrary element
U =a,+a,(12)(34) + a4(13)(24) + a,(14)(23) + b,(123) + b,(243) + b,(142) + b,(134) +
¢,(132) +¢,(234) +¢;(124) +¢,(143) of ZA,(a,, b;, c,€ Z, 1<1, j, k<4) is repre-
sented by the matrix

01+02—03—64 al—‘a2+a3_a4 bl'_"b2+bs_b4
bl_bz—ba+b4 01—02+03'—04 0/1-—az—a,3+a4

a1+a2"_‘a3_‘a4 b1+b2—b3_b4 01_62_03+04
(3)

Putting this matrix to 0, we get a,=a,=a,=a, b,=0,=b,=b, and ¢,=c,=
¢;=c¢,. Therefore Ker T=N-ZA,. Thus T induces an injection from
ZA,/(N) to My(Z). For xzecZA, denote by & the image of « under the
natural map ZA,—ZA,/(N). An arbitrary element p,+ p,(12)(34) +
0,(13)(24) +¢,(123) + ¢,(12)(34)(123) -+ ¢,(13)(24)(123) +»,(132) +,(12)(34)(132) +
r,(13)(24)(132) of ZA,/(N)(p., q;, r. € Z, 1<1i, j, k<83) is represented by the
matrix
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D +0.—D; Q+@—q T Ar,—7,
(4) Ti—T+1s Di—Det+D; Q—q:+Qs
' Q—q—q T—T—Ty D—D:—Ds

Viewing p, as variables, the diophantine equation

Di— D+ D=2,

{p1+p2—~pa=w1
D= P Dy=1,

has a solution in Z if and only if »,=2,=x,(mod2). Applying the same
way to ¢; and 7, we get

0 1 0]
U(ZA,/(N))={AeGL(S, Z)|A=E(mod2), or A=|0 0 1}mod2),
100

0 01
or A=(1 0 0}(mod2)} .
0 1 0

By (1), an element u=a,+a,(12)(34)+ a,(18)(24)+ a,(14)(23)+ b,(123) +
b,(243) + b,(142) + b,(134) + ¢,(132) + ¢,(284) + ¢,(124) + ¢,(143) of ZA, is in
UZA) if and only if fi(u)e UZAJ(N)) and fi(u)e U(Z[w]). Since
UZlo])={£1l, 0, £@*} and f,(u)=3i, a;+ (i1 0;) O+ (ki c)@? u s
in U(ZA)) if and only if the matrix of (8) is in GL(3, Z) and (3%, a,,
Z:'=1 b.i’ p 3 er)=(=*1, 0, 0), (0, *1, 0), or 0, 0, =1).

By the same way as in U(ZA,/(N)), we get

. Y 2 x, odd, y;, 2, even and
UZA)={|z, =« e GL(@, Z , or
( o) 2 2 Y, ( ) ﬁ}y,—sﬁzkEO(mod@ o
Ys 23 @4 i=t k=1
y; odd, z,, 2z, even and 2, odd, y;, x; even and
, 8 1<+, 7, k<38} .
;3_:@55_*, 2, =0(mod 4) o s y,-si‘, 2,=0(mod4) "7
=1 =1 j=1 =1 .

Let 4: GL(3, Z)— GL(3, Z/2Z) be the natural map. Since

| 10 0 010 00 1
WU(ZAJ(N))) = [o 1 0/, |oo 1], |10 o},
001 10 0 010
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we have Nors,z22) ("'/"(U(ZAJ(N)))) =
Noron(U(ZA/(N)) =U(ZA,/N)) -

(U
0
1
0

~

0011
ZA,/(N))) - 0 1 0 J Hence
:l> Slmllarly We see that

T
PR

o
0
0
1

C O

' B 00 17\
Nozon(U(ZA))= U<ZA4/(N>>-<[ 010 >
(100]

(001 \
LEMMA 2.1. Ny, (A)==2A4,-(|010])\.
, 100

/

PROOF. First we willshow that U(cent(ZA,/(N)))={=+1} where cent(ZA,/
(N)) is the center of ZA,/(N). Let u=p,+ 0,(12)(34) + 1,(13)(24) +¢q,(123) +
q,(12)(34)(123) + ¢,(18)(24)(123) + r,(132) + 1'2(12)(34)(132) + 'r,,(13)(24)(132) be
an element of U(cent(ZA,/(N))). Since T(u)e T(cent(Q®: ZA,/(N))) =
cent M(Q), T(u) is a diagonal matrix. Hence, in (4), q,=¢,= Q=r,=7,=

=p,=P;=0. Therefore U(cent(ZA,/(N)))={x1}. Every element of
ZA4/(N ) can be written as a Z-linear combination of elements in A4,. So,

if an element of GL(8, Z) normalizes A,, then it also normalizes U(ZA,/(N)).
001
Thus NGL(a,Z)(Alr);NGL(S,Z)(U(ZAG/(N)))° Clearly {(1) (1) 8} € Ngrs,n(A,). Let

010 001
X € Ngpis,2(A)NU(ZA,/(N)). Then X=E, or [0 0 1}, or [1 0 0} (mod 2).
100 010
00
10

010 1
Since T((123))=|0 0 1:, (mod 2) and T((l32))£—l: 0] (mod 2), X acts
100 010

trivially on A,/N. On the other hand, the automorphism group of A, is
isomorphic to S,. Hence there exists Y e Aut 4, =S, such that XY acts
trivially on A,. Therefore Y acts trivially on A,/N, and hence Ye A,.
Since XY e (cent(ZA,/(N))={+1}, X'Y==+1. Consequently X=+7.
This completes the proof.

By the result of [8], there are 3 conjugate classes in GL@, Z) of
subgroups of GL(8, Z) isomorphic to A,. The representatives are as
follows: v

010 —1 0 0 010 0 —1 17
wW.,=410 0 1], 0 1 0} , W,= [0 0 1} , |0 —1 O” ,
1 00 1 00

0 0 -1 1 -1 0



INTEGRAL GROUP RINGS 155

01 0 -1 -1 -
W,=4/0 0 1}, 0 0 1}
1 00 0 1 0

Since, for any X e GL(3, Z), X*W.XZ U(ZA,/(N)), i=2, 3, a subgroup
G of V(ZA,) isomorphic to A, is conjugate to A, in GL(8, Z). Further

001
G and A, are conjugate in Ny, (U(ZA))= UZA,JN))- <[:g 1 0]> .
00

THEOREM 2.2. There are 4 conjugate classes in V(ZA,) of subgroups
of V(ZA,) isomorphic to A,.

001
PROOF. Let X, Y be elements of U(ZA,/(N))-(|0 1 OJ> Then XA, X!
100

and YA,Y 'areconjugatein V(ZA,) if and only if there exists Z ¢ V(ZA,) such
001 .
that Y"'ZX € Ngp5.0(A)=A,- <i [O 1 OD (Lemma 2.1),i.e., Y'V(ZA)XN A,
100

001 001
+]1010 >¢¢. This condition is equivalent to X-'Y e U(ZA,)-({0 1 0]).
100 100

Therefore the number of conjugate classes in V(ZA4, of subgroups
001 '

of V(ZA, isomorphic to A4, is [U(ZA4/(N))~<[2 (1) 8J> U(ZA) -

{EHIE

§3. In this section, we will consider S,, the symmetric group on 4
symbols 1,2,3 and 4. We now write S,={(g, t|0*=1=1, 70T '=0"1),
Then we have

LEMMA 3.1. 0—0'+7—0r+0%, —5+20+20°— 407+ 40%c and 1—20 +
20° 420"t —20%7, 0512, are units of ZS,.

PrROOF. By direct calculations, we have (6—o0 '+7—07+0%)'=0—
o'xt—07t + 0’c, (—5+420 + 20°—407 + 40%c) ' = — 5420 + 20* + 407 — 40°T
and (1—20+20%+20""'—20'*r)'=1+20—20°— 20t + 20+, 0<4< 2.

We note that some of the units in Lemma 8.1 were obtained by
Taussky ([9]). Consider the pullback diagram

ZS, »ZS,/(0—1)=Z][7]

| |

Z8,/(0"+0+1)—>(Z[3Z)|7] .
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From this diagram we get the exact sequence
(6) 1—U(ZS,)— U(ZS,/(6*+0+1)) X U(Z[7]) — U(Z/32)[7]) — 1 .

The exactness of the last map follows from the fact that D(ZS,)=0.

By [3], there exists a monomorphism ZS,/(6*+0+1)—> M(Z). An
arbitrary element a,+a,6+b,7+b,37 of ZS,/(6*+0+1)(a,, b;e Z, 1<1i, j<2)
is represented by the matrix

[a1+b1 —az—b1+b2]
a,+b, a,—a,—b, |
Therefore U(ZS,/(c*+0+1))= {[g Flecree, Z)]a+csb+d(mod 3)}. Set

F= {[3 3] eGL(2, Z )'a+csb+d(mod 3)}. By the above discussion we
efine a monomorphism ¥:U(ZS,)— Fx U(Z[z]).
Consider the commutative diagram

can

U(ZSy) —— Fx UZ[z])

o| s

U(F.S)—~—GLE, F)x UF]) ,

\ghere F,=Z[AZ,  and $ are natural maps and ¥ is induced by . Then
¥ is an isomorphism. :

LEMMA 3.2. |Coker ¢|=4.

PROOF. It is easy to see that the natural map GL(2, Z )—GL(, F,)
is surjective. Set H=Ker{GL(2, Z)—GL(2, F,)}. Since FH/H=F/FnH,
[FH: F)=[H: F ( H] is a divisor of 4. Because [3 ﬂ [_1 2] e H\(Fn H)
and B ﬂ {:_1 (1):' ¢ FNH,[H: FNH]=38. Therefore [F'H: F'J=4 and hence

FH=GL(2, Z). Itfollows that F—GL(2, F,)is surjective. Since Ul (FIz]) =
{x1, =7, £1+27, 247}, |Coker $|=2. By (5), |Coker ¥ |=4 and Fx
U(Z[z])=Im ¥ x U(Z[z]). To prove |Coker ¢|=4, it suffices to show that

[#-*(Im $): Im @]=2. Let x=(|:(])‘ ‘1’] ~1) e Fx U(Z[z]), then ¥'oip(w)=
—1+420+20%*€ U(F,S,). If we put = —b+420+20*— 407 +40%c, then e
U(ZS;) by Lemma 3.1 and ®(u)= —1+20+ 202 Next, we will show that

- o@( ([(1) (1)], z-)) =2+4+0+0°—7—07—07¢ Im . Suppose conversely that

there exists u e U(ZS;) such that p(u)=2+0+06*—7—0r—0%c. Then we
may write u=2+0+0*—t—07—0r+4f +497(f, g € Z[o]). Since Es,.<(U) €
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U(Z[z]) ={=x1, =7}, f and g must be written as f=a,+a,0+(—1—a,—
a,)0%, §=b,+b,0 +(1—b,—b,)0® for some a; b;c Z. Therefore u=2-+4a,+
(1+4a)o+(—3—4a,—4a,)0*+ (—1 + 4b,)z + (—1 + 4b,)ot + (3 — 4b, — 4b,))a’r.
Hence we have

.w(u)_<[1+4(2a0+a1+2b0+b1) —4(1+a,+2a,+b,—b,) ] )
4(a,+2a,+b,+2b,) 1+4(1+a,—a,—2b,—b,) )

Since the determinant of this matrix is 1+4(14 8a,)+16(2a,+a,+2b,+b,)
(1+a,—~a,—b,)+16(1+a,+2a,+b,—b,) (a,+2a, +b,+2b,), we get 1-+ 3a, +
4(2ao+a1+2bo+b1)(1+ao‘_‘a1“2bo*“b1) + 4(1 +a, + 2a, + b, — b,)(a, + 2a, + b, +
2b,)=0. But this is equal to 1+8a,+12(a+a,+a.a,+a,+b,+b,+a—bz—
b.b,—b}) which is a contradiction. Therefore [¥(Im &): Im @]=2.

Set N,={l,1+20*(c+0%7, 1+2(6+0%, 1+2(0+0%)+20*(6+0)7, 0<
1=2}S U(F,S,) and N,={o—0*+7—07c+0%). Then Nresp. N,) is a sub-
group of U(F.,S;) of order 8 (resp.2). A direct calculation shows that
0—0*+7—07+0% is commutative with each element of N,.

COROLLARY 3.3. Im @=(xN,XN,):S,.

ProoF. By Lemma 3.1, (=N,xN,)-S,EIm @. But [U(F.S,): (=N, x
N,)-S;]=4. Therefore, by Lemma 8.2, Im @=(+N, X N,)-S,.

Let S,>N=({1, (12)(34), (13)(24), (14)(23)}. Consider the pullback dia-
gram

Z8S,———— Z(S,/N)=ZS,

l o

ZSA/(N) ""—";—" F,S,
1
where F,=Z/4Z. From this diagram we get the exact sequence

U*(ZS/(N))x U*(ZS)—t— UF.S)— 1,

where U*(ZS,/(N))(resp. U*(ZS,)) denotes the image of U(ZS,/(N))(resp.
U(ZSy) in U(F,S,). The exactness of o follows from the fact that
D(ZS)=0 (e.g., [10]). Since U*(ZS/(N)2U*(ZS,), o(U*(ZSHN)))=
U(F,S;). We also have an exact sequence

1—U(Z8S,)— U(ZS/(N)) x U(ZS;) .

Define a representation T, of ZS, to M, (Z)DM,(Z) by
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1 0 0 -1 0 0
Tl((12))=(0 0 1,[ 0 0 —1}),

0 1 0 0 -1 0
[0 0 — 0 0 1
T,((1234)) =( 0 -1 OJ, 01 OJ) .
1 0 0J Ll—1 0 0

Then we see that Ker 7,=N-ZS,. Thus T, induces an injection from
Z8,/(N) to M(Z)DM,Z). For xec ZS, denote by % the image of z under
the natural map ZS,— ZS,/(N). Then an arbitrary element

(6)  wu=a,+0a,(12)(34) + a,(18)(24) +b,(123) + b,(12)(34)(123) + b,(13)(24)(123)
- +¢,(182) +0,(12)(34)(182) + ¢,(13)(24)(132) + d,(12) + d,(12)(34)(12)
+dy(18)(24)(12) +€,(13) +¢,(12)(34)(13) +,(18)(24)(13) + £,(23)
+£,(12)(34)(23) + £,(13)(24)(23)

of ZS,/(N) (a,, b;, ci, di, €, fn€ Z,1<1, j, k, |, m, n<3) is represented by

the matrices
ay G QA by b by
Ay Qg Gy |, by by by ’

Qs Qg Qg bsy by Dy

where

ay=0,+08,—a;+d,+d,—dy, a,=b,+b,—b;+f,+f,— fs ’
C=0+C,—Cyte,+e—6, 8y=0—C+C+fi—fot+fi

Aoy =0y — Ay + A3+ €, —€; 1€, As=b,—b,+b,+d,—d,+d,,

a5, =b,—b,—b;+e,—e,—e,, =0, —C,—C3+d,—d,—d, ,

Qg3 =0 — Ay — A5+ [, — fo— T bu=a,+a,—a;—d,—d,+d, ’
bie=b,+b,—by—fi— f2+ fs bs=c,+c;—c;—e,—e,+ey
bu=e,—CoFCs—fi+t oSy D=0, — 0+ 0, —e,+0,—¢; ,
byy=b,—b,+b;—d,+d,—d,, by =b,—b,—b;—e,+e,+e,
bp=c,—c,—c;—d,+d,+d, and bu=a,—a,—a,—fi+fo+f; .

. 111
Put £={11 1|. Then we have
111

A,=A,=FE(mod 2)
U(ZS,/(N))= {Al XA, €GL(3, Z):| and
A—A,=0 or 2FE(mod4),
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[0 1 0
A=A4,=|0 0 1l{(mod2),
or
and 1 0 0]
A,—A,=0 or 2E(mod4)
0 0 17 0 0 1
or A=4,=|1 0 0|(mod?2), or A=4,=|0 1 0}(mod2)
and [0 1 0] and |1 0 O
A,—A,=0 or 2E(mod 4) A,+A,=0 or 2f(mod 4)
1 0 07 1 0 0
or A=A4,=(0 0 1{mod2), or A=A4,=|1 0 Oj|(mod2)
and 0 1 0] and [0 O 1
A,+A,=0 or 2E(mod 4) A +A,=0 or 2E(mod 4)

Set U, (ZS/(N))=g:(9.(U(ZS)NU(ZS,/(N)) and V. (ZS/(N)) =
97 (9L V(ZSy))) N U(ZS,/(N)). Then [U(ZS,/(N)): V((ZS,/(N))]=8 by Lemma
3.2 and V(ZS,)={(v,, v,) € Vi(ZS,/(N)) X V(ZS;)|9,(v:)=9:(v,)}.
Since every element of U(ZS,/(N)) is a Z-linear combination of ele-
ments of V,(ZS,/(N)), Navw,z: Vo(ZS,/(N )))%Nags,mz( U(ZS,/(N))) and we get
2

N0L<3,z)z(U(ZS4/(J\_f)))=U(ZS4/(N))-<<E, [—g -8 —2|)). We will show
that Ngye,2: V(ZS/(N)))= Ngvu2:(U(ZS/(N))). Since g95(V(ZS;)JU(F.Sy),

1 2 2
U(ZS)(N)S NopwnVo(ZS/(N))). To show that <(E [—g —g —ﬂ»e

Nyso.22 Vo(ZS/(N))), let u be an element of U(ZS,/(N)) which is represented
as in (6). By a direct calculation, we have

1 2 2 1 2 27
(E, -2 -3 —ZDTI(u)(E’, {-—2 -3 —2} )=T1(u)+(0, (@)

2 2 1 2 2 1
for some (@,;) € M(Z) such that

O+ Cgy + gy = Oy + Qg+ By =gy 1 Ay Ry
=, Oy Ol = 0y + Oy + Oy = Oy + Oy + @y =0(mod 8) .

Let v= 1, + D:,(12)34)+,(T8)24)+ Py (123)+ p:(12) (3D (123)+p,(13)(24)(128)+
Do (182) + D, (12)(34) (132) + p,(13)(24)(132) + pa(12) + ,(12)(34)(A2) +
2(13)(24) (12) + 2, (13) + 1(12)(34)(13) + P4 (18)(24)(13) + P (23) +
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Pe(12)(34)(23) + 0os(13)(24)(23)(py; € Z, L=<i<6, 1<j=3) be the element of
U(ZS,/(N)) such that T,(v)=(0, («a,;)).
Comparing the diagonal entries, we have
PutDie— Pt Dyt Pe— D=0
Pu— D+ Dis+ Doy — Dpo+ D=0
P~ Dio— Dis+ Peor— Doz — Pos =0
801 — D12 — D15~ P — Dz + Dis— D1 + Doz — Dss — Doy + Doz + Des =0{mod 8) .

From this equation it is easy to see that p,,+»,,+ p,=0(mod 4). Similarly
we get p.-1+pa+p¢s‘1=‘0(mod 4)(2=<1=6), hence g,(T;*(0, (a,;)))=0¢€ U(F,S;).

2 2
Therefore <(E, [-—g —g —%D>GNGL(3,Z)2(V°(ZS4/ (N))). Thus we get
1 2 2
Neris,z2( Vo(ZS4/(IV)))=U(ZS4/(N))-<(E', [—g —g —ﬂ))

By the result of [8], there are 6 conjugate classes in GL(8, Z) of
subgroups of GL(3, Z) isomorphic to S,. The representatives are as

follows:
00 1] -1 0 0 0 0—-17 1L @ 0
WF{[Olo,[o 0—1}, W,=i{|0 —1 o},001;,
—~10 0 0—-1 0 1 0 o (010
r 0 —1 0] [—1—1 0] M o0 1 0] 1 1 0
m={ T 1 1(,] o 1 o}, W4=<[-—1——1—1,[0—10 ,
-1 0 0] [ 0 0-—1 1 0 0] o o 1
r 1 1 0 r—1—1--1‘) —-1-1 0]t 1 11
Wy=4{—-2—-1-1|,] 0o o 1}, we={ 2 t 1|,|]o0 o —1{i.
§_ 0 0 1] L 0 1 O_J‘ { 0 0—1] {0 —1 OJ}

We see that there are two conjugate classes in GL(3, Z)* of subgroups
of GL(3, Z)* isomorphic to S, which are not trivially intersected with
U(ZS,/(N)). The representatives are as follows:

(/10 0 —17 [ 0 0 1 10 0] [—1 0 0]
L,=+(0—1 0], 010), (001}, 0 0—1),
1 0 ol |-1 0 0 0 1 0 0 -1 0
(/f 0 0 17 F 0 0 —1 —1 0 07 [1 0 0
L2=«(, 01 0f,| 0—1 o),( 0 0—1}, 0 0 1)
-1 00 L1 0 o L 0—-1 o] (0 1 o}
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Hence the conjugate class containing L, is the only one class which is
not trivially intersected with V,(ZS,/(N)). Therefore any subgroup G
of V,(ZS,/(N)) isomorphic to S, is conjugate to S, in GL(8, Z):. Further,

o _ 1 2 2
G is conjugate to S, in U(ZS,/(N))- ((E, [—2 -3 —%]))
2 2

LEMMA 3.4. There are 8 conjugate classes in V,(ZS,((N)) of sub-
groups of V(ZS,/(N)) isomorphic to S,.

PROOF. _!n the same way as in the proof of Lemma 2.1, we see that
U(cent(ZS,/(N)))={=%1}. Since the automorphism group of S, is isomorghic
to S, NNGL(a,Z)z(U(m,@,)(S4)=.-tS,,. Let X, Y be elements of U(ZS,/(N))-

1 2 2
((E’, [——2 —3 —2 )> Then XS X' and YS,Y' are conjugate in
2 2 1

V.(ZS,/(N)) if and only if YV (ZS,/(N)XN(x8S,)#¢. This condition is
equivalent to X-'Y e U,(ZS,/(N)). Therefore the number of conjugate
classes in V,(ZS,/(N)) of subgroups of V,(ZS,/(N)) isomorphic to S, is

1 2 2
[U(ZSJ(N))-((E, [—g —g —ﬂ)) Uo(ZSJ(N))]:&

THEOREM 3.5. There are 16 conjugate classes in V(ZS,) of subgroups
of V(Z8,) isomorphic to S,.

PrROOF. Recall that V(ZS, = {(v, v.) € V,(ZS,/(N)) X V(ZS,)|g,(v,) =
9.(v)}. Set W=V,(ZS,/(N)) x V(ZS,). Then N,(S)=S, By Corollary
3.8, cent(g,(V(ZS,)))=1+20 +20?% and hence N, (V(ZS,)= V(ZS,){1, 6—20—
20%+ 407 —40°7)). Since there is 1 conjugate class in V(ZS,) of subgroups
of V(ZS,) isomorphic to S,([3]), the number of conjugate classes in W of
subgroups of V(ZS, isomorphic to S, is 8. Therefore the number of
conjugate classes in V(ZS, of subgroups of V(ZS, isomorphic to S, is
8x[V(Z8S,)-{(1, {6—20—20%+407—40°7))): V(ZS,]=16.
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