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Introduction

The simple continued-fraction expansion of real numbers is an im-
portant concept in the theory of numbers. And the continued-fraction
expansion defined by Hurwitz is also important because it is the expansion
by the nearest integers. These two continued-fraction expansions give
rise to many interesting problems not only in the theory of numbers but
also in ergodic theory. More precisely, many people, starting with Gauss
and Lévy, treated endomorphisms from an interval into itself induced
from these continued-fraction expansions, and obtain many interesting
results; see, for example, Lévy [1], Kuzmin [2], Hurwitz [3], Shiokawa
[6] and Nakada-Ito-Tanaka [6].

In this paper we treat a one-parameter family of continued-fraction
expansions, which we shall call a-continued-fraction expansions. We note
that these a-continued-fraction expansions reduce to the simple continued-
fraction expansions in case a=1 and to the continued-fraction expansions
of Hurwitz in case a=1/2. We treat the following three problems:

(1) To investigate the rate of approximation by the nth approxi-
mants.

(2) To determine the form of the density function of the invariant
measure for the endomorphism induced from an a-continued-fraction ex-
pansion, which we shall call an a-continued-fraction transformation.

(8) To investigate how the ergodic properties of a-continued-frac-
tion transformations change when the parameter a changes.

As for (1), we give in §2 the following result:

(i) In case 12=a=<(V'5 —1)/2, we have

x— fl"‘gg’ fg < 1/2—5-Iq,.(w, o), ez, a)lg(y—f’z:}—)—" :
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(ii) In case (V5 —1)/2<a<1, we have

— P D i, 0, e, @2 (LEL)
q.(z, a) 2

Here p.(x, a)/q.(x, @) is the nth approximant of the a-continued-fraction
expansion. In this section we also derive some relation between an a-
continued-fraction expansion and the simple continued-fraction expansion.

Concerning (2), we give the explicit form of the density function of
the invariant measure for a-continued-fraction transformation in §8 (See
Theorems 3.1 and 3.2.) in case 1/2=a<(V'5 —1)/2. The essential idea
used in this derivation is the same as that of [6]. We have not succeeded
in deriving the form of density function in the case of (V5 —1)/2<a<1.

In §4, we investigate ergodic properties of a-continued-fraction
transformations. It is almost clear that these transformations are ergodic
and also exact (see [7]). In this paper we only give the result stating
that in the case of 1/2<a<(/5 —1)/2 the values of the entropy of
these transformations are independent of « and are given by
7*/(6 log (V5 —1)/2)).

Recently, H. Nakada obtained some interesting results concerning a
one-parameter family of transformations given by

ram 2] 12]
X X |
for 1/2=<a<1. These transformations are closely related to, but slightly
different from, the transformations we consider in this note.
In concluding these introductory remarks, we would like to thank

Professors Yuji Ito and Hitoshi Nakada for their interest in the problem
and for valuable advice.

§1. Definition and fundamental properties of a-continued-fraction
transformations.

Let X, be the interval [a—1, @) where a is a fixed real number be-
tween 1/2 and 1 and let [z].=[x—(a—1)] for any real number z. We
then define a transformation S, on X,, which we call an a-continued-
fraction transformation, by

——l:—-l for x+0,

for x=0.

(1)
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If we write, for any real number z,

(2) ay(x, a)=[x].
and
1
(3) oz, a).——_-{[_;l for a+0
oo for =0,
(4) a.(x, e)=a(Sz7'2’, ) (nz=1),

where «'=x—[z]., then we obtain the continued-fraction expansion of the
following form:

B 1| S 1 |
(8)  e=elm Ot e e @ | Ta, 9+ 5
_ 1| S 1| 1|
(@, @)+ la(x, @) |a(x, @) N * l@na(z, @) |0 (, @)

where w,(x, a@)=a,(x, @)+ Srx’=1/Sr'«’. As usual, we put

1 1, . 1 |
(6) Pl @) _ gz, @) b e 2]
Qn(x a) ’ l 1(3'/, a) ‘a’n-—l(m) a)
and obtain the following formulae for all n=1:
pn(w: a):an—-l(x9 a)p'n—l(w; a)+p'n—-2(x, a) ’
(7) 2.(x, A)=a,_,(x, A)q, (%, &)+ g, (2, @) ,
p,,,(x, a)Qn—l(w’ a)—pn—l(xy a)Qn(w} a>=(__1)n ’

8 Pa(, Q)+ Se 0", (@, @)
(8) T (@, )+ 8w g, (@, a) |

where we set p_,(x, @)=0, p(x, @)=1, q_,(x, a)=1 and q,(x, @)=
Let Z(a) be the set of all 1ntegers which appear in the a-contmued-
fraction expansion, that is,

(9) Z(a)={ie Z U{}; i=a,(x, a) for someA xeX, and ke N}
and let us define the mapping +, from X, to I Z(a) by
(10) "[/‘a(x)z(a’l(w, a)’ a’2(x, a)’ ) a’n(xy a), . ) .

We call elements of 4,(X,) the a-admissible sequences. Let o be the
shift operator on JI¢ Z(«) and let p be the formal mapping on [ Z(a)
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defined by

(11) p(wly @y -0, D, - ')=

Then we obtain the following:

PROPERTY 1.1. (i) po+,=identity map on X,.

(ii) oGoqe=qr,°8S, on X,.

(iii) poo=S,0p on ¢ (X,).

We will give the proof of (i) in Remark 2.2 of §2. If we assume
that (i) is valid, then (ii) and (iii) are almost clear. By (ii) and (iii), we
obtain the equivalence between (X,, S,) and (vo(X,), 0), the symbolical
dynamical system associated with the a-continued-fraction transformation.

For any integer a and any element @ of [[* Z(a), let a-@ be the
element of JI Z(a) defined by

a n=1,
(12) (@a-®)(n)= {a)(n—l) n=2 .

Let @, and w,_, be the elements of [ Z(a) defined by
L] (L ll
(13) {""' [al “”“(a I:a )
Wp_y = (a—1) .
Then we obtain the following:

PROPERTY 1.2. p(w,)=a.

ProoF. It is clear that 1/a—[1/al.€ X,. So, by (i) of Property 1.1,
we get o(y.(1/a—[1/al)=1/a—[1/a]., and we have

E]ﬁdmé{ 1)) —a.

It is convenient to define the order < in the set Z(a) as follows:

o(@y) =

O, (V)<®,_,(1)—1< -+ <—fk<—k—1< -+ <0< -+
<I<l—-1< -+ <0,(1)+1<w,Q1) .
And let us define the order in the set [[* Z(a) in the following manner.

Let w and ® be two elements of [P Z(a), then w<®' will mean that
there exists a natural number n such that w(i)=w'(3) for i=1, --., n—1
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and that o(n)>w'(n) (resp. @(n)<w'(n)) if n is even (resp. odd). Then
we obtain the following two lemmas:

LEMMA 1.1. An element w of [[F Z(a) is a-admissible if and only
if the values p(o'®w) are well-defined and lie in X, for all 1=0,1,2, ---.

PrROOF. The “only if” part is clear. Suppose that the latter condi-
tion is satisfied, and let z=p(®). Then z=1/(a,(z, a)+8S,x), p(w)=
1/(w(1)+p(cw)) and plow)e X,; so we get a,(w, ®)=w(l). In the same
manner we can show a,(x, @)=w(n) for any »=1, and so we obtain
+Jro(®)=w, which means that w is a-admissible.

LEMMA 1.2. Let @ be an a-admissible element of 117 Z(a) and let a
be an integer which satisfies @,,=<a-w<w, Then a-® 3 also a-
admissible.

ProOF. By Lemma 1.1, it is sufficient to show that a—1=p(a-w)<a.
Let us show that p(a-@w)<a. If a<w.(l), then a<w,(1)+1; so

1 1

o O = @) = o) T 1T o@)

and from p(@w)=a—1>p(cw,) —1 it follows that

1

O DT pew)

On the other hand, if a=w,(1), then w>ow,; so we get o(w)>p(ocw,)
because @ and ocw, are both a-admissible. Therefore, we have

1 1

Ol O= @ oD ey

We can show by essentially the same manner that a—1=<p(a ).

It is convenient to extend the notion of a-admissibility to the set

*w Z(c). We call the element @ of the set J[*. Z(a) a-admissible if

and only if (w(k), w(k+1), ---) is a-admissible as the element of [] Z(«)
for any ke Z. We use this notion in §3.

§2. Approximation theory.

In this section, we discuss the approximation by a-continﬁed—fraction
expansions, in analogy with the approximation by the usual continued-
fraction expansion (the case of a=1). Let = be any fixed real number
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and let a.(a), p.(a) and g,(a) be the values defined in §1. (To simplify
the matter, we omit x# in these notations.) Also let z,(a)=Srz’. More-
over, in the case of a=1, we also omit a and write simply a,, »,, ¢,
and x,. We then consider the following several statements concerning
these quantities for any pair of non-negative integers n and m:

(Da(®)=Dp s Dutrs(@)=EDp1, ,

Az 14 0)=2qn , Qui:(¥) = E Qs ,

z(a)=2x,.€[0, a),

Pu(@)=tDp , Puts(X)=E D1z,

Bi o 0@ =%0m ; Gui:(®)=Fqpss,

z()=2,—1e[a—1, 0),

(Pa(@)= E£Dpt1 sy DPut1{Q)=FDpss »

Cim: {2n(@)=Eqmt1 s Guts(®)=TFQpis ,

Zn(X)= —Tpi, €[a@—1, 0),

DP(@)=EDpt1, Pan(@)=TF Dmi2t+Dmt) »

Df,,,,: q,,(a) =T Qp+t1 q,,+,(a) = :‘.(Qmﬂ‘*‘qﬂﬂ) ’
z()=1—2,,€(0, a) .

Now we have the following

LEMMA 2.1. (i) Az, must be followed by either A%, m+, 01 BE,, niv
(ii) Bj. must be followed by either CkL, ., 0r DE  ni..
(iii) Ci. must be followed by either CF., .+, 0r DF.\ s
(iv) * Dz, must be followed by one of the following six statements:

ES F ¥ F F F
A:+2,m+2y Bn+2,m+2; Cn+2,m+2’ Dﬁ+2.m+2’ An+1,m+s’ Bn+1,m+3°

PROOF. We only prove the statements concerning p,(a) and p,, be-
cause those for ¢,(a) and ¢, can be proved in the same manner.
(i) If Af, is satisfied, then we have

1 1
Tmi1= T Qi Tpyi(@) =—-— Cpyi(C) .

L d m

In case 0=z,,,<a, we have

Cpi () =0Cpyy L1 (Q) =y
Pnio(@) = F Qi D1 E D= gy /SRPPN

so we get A7, ... In case a=<z,,, <1, we have
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i) =iy +1,  Tpp()=Tpi—1,
Cmiz=1, Pmts=DPmizt Pmts
D s2(Q) = £ Uiy + D)Pmirs £ = £ (s D1+ Do) E Pt 5
= (Pmizt Dmtr) = EPumis »
so we get By, i
We omit the proof of (ii) and (iii), for these cases can be proved in
the same way as (i).

(iv) Suppose that Df, is satisfied. In case 1 -a<z,.,<1-1/(a+1),
we have

Gp(@)=1, Dni2(Q)=F (Pmis T Pmt1) EPmi1= F Pmi2 »
xn-f—l(a) = 1 - 1 = "'"xm+1 ’
—Lm+1 1 —Lmt1
1— 1

Tpio(@) = =Tty Cpio(@) = —1l—a,.(a),

m-+1 m+1
(LPNEES 1 Qe -

xm+1
Then, if 0=x,,.<a, we have
Cpio(@) =0y —1, X y2(Q) =Lpmiz »

Dpis(0)=F(Cpmi2—1)Dmi2F Dmis T Pmi) = F Dmss »
so we get A7, ...; and, if a=z,.,<1l, we have
a’m+3:1 ’ pm+4=pm+3+pm+2 ’
Qi () =y Lyt 2o(X) =L —1,
Pnis(@) = FOUpisPmisF Dmie T Pmt) = F Dmts »

so we get Bi, nis. In case 1—1/(a+1)<z,,,=1/2 (in this case we have
12=5x,(x)<1/(a+1)), we have

Opt2=2 , () =2,

Gpnm i —2=1an g ()= —p=Bmn=l,
Tm+1 Lm+1 1—%psy 1—2p4
Pnts=20mt2F D1 » Dp12{0) =TF2(Dpi2F Pmi) EDmi1=F Pmss »
mm+1
Cpis————— Ay,
=TT 22, +3 9
Tara(@) =Bt g (@)= —— =i _1_q,,(a) .

2xm+1 -1 1 —297,,,,+1
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Then, if 0=z,,,<1—a, we have

Cpio(W) = —(@pis+1), Lpio(Q) = —Lppss
pn+8(a) = i (am+8 + 1)pm+3 $ (pm+2 + pm+1)
= (CmtsPmts+ D) = E Dnta s

so we get Ck, ..o and, if 1—a<aw,,;<1, we have

a’n+2(a) = - (a'm+8 + 2) ’ a:,,+2(a) =1-— Lonts s
pn+3(a) = -_-I: (pm+4+ pm+8) ’

as above, and so we get D7, ,... In case 12<%,,.,<1, we have

1
Lmt1

Pmis=Pmizt Dpir (80, P (@)=TF Dmis) »

._1’

Qpis=1, Cni2=

93,,,+ 1

omis= Qs
1— Tm+1
— 1 — Ly
Tyyi(0X) = —Qpp(Q)=—7mt1 1 Apii(@) .
—Vmt1 1-— H

Then, if 0=2x,,,<a, we have
Cpis(@) = pys+1, L s1(Q) =X p 15
Pni2(@)=F(Cmist D)PmisEDpi1=F Drs »
so we get A7, ... and if a<z,.,<1, we have
i i(@)=0pis+2,  Tpy(@)=Tpis—1,

Opmis=1, Pmi6=DPmist Ppmis »
pﬂ+2(a) - .'T'. (pm+4 + pm+s) = .‘T".pm-Hi ’

so we get BJ, .is

LEMMA 2.2. For any mon-negative integer n, there exists an integer
m=n such that either

(14) p(@)=*tp, , ¢.(@)=*q,, ,
or
(15) Pu(@) = £ (Dpi1+Dw) » 4u(®) = £ (qmi1+qw) »

28 valad.
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PrROOF. In case 0Zx—a,<a, we have
a(a)=a, , x(@) =2, , p(a)=p, , q.(a)=q,,
so we get Aj,. In case a<x—a,<1, we have

a,=1, P,=a,+1, q.=1,
a(a)=a,+1, x(a)=x,—1,
p(@¥)=a,+1=p,, ¢,(a)=1=q,,

so we get Bj,. So, by using Lemma 2.1 inductively, we obtain the
conclusion.

REMARK 2.1. (i) In case a=1/2, we can show in Lemma 2.1 that
from D7, only two case A],, ... and B, ..s follow; so we can show in
Lemma 2.2 that only (14) is valid in this case.

(ii) In case 1/2<a<(V'5 —1)/2, we can show in Lemma 2.1 that
from Dj, follow only four cases, CF.mizs Diiomier Aiiimes and BF s,
so we can show, in addition to Lemma 2.2, that |p.(a)] and |g.(a)] are
increasing in n.

In the usual continued-fraction expansion we have
(16) | o — 2o (——-—-—-‘/_5—‘1 )"

dn 2

2 _
S _”2’ n
S—r=q ¢,>

(see [4]). Using these relations, we have the following

PROPOSITION 2.1. (i) In case 1/2<a<(V 5 —1)/2, we have

_P@)] o 2 gy, V5 -1y
an  |e-2 <T@, ln@>(X5) T
(ii) In case (V5 —1)2<a<l, we have
_ D) 2 V5 —1\"
(18) o2 g, @i, la@i> (L5

PROOF. In the case when (14) is valid, we have

and
lq,(a)l=qm>(l/§2;l)"”g(—‘{ffi)"” .
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In the case when (15) is valid, we have

Pairt TP Pmirt Dm
Aui1 T TlQm Ami1qm
_ l—z,
(i1 + TnGn) @mis T Tm)

lx _ D)
2.(c)

But, in this case we have z,e(1—a, 1), so

l—cx, < a < a ]
Admi1 + Conlom o Amt1 + (1 - a)qm o (1 - a/2)(qm+1 + qm)
So we get
— pn(a)l S a —2
E B | STz 9@
and

10a(@)| = s+ T Z > (‘—/——52'“—1)'";(—‘/12——1)"”.

It is sufficient to note that from a< (V' 5 —1)/2 it follows that a/(1 —a/2)=
2/15, and from a<1 it follows that a/(1—a/2)=<1.

REMARK 2.2. Now we can prove (i) of Property 1.1, noting that

w=1LI£ —g’—'(—(%)=p(q[ra(w)) for any xze€ X,.

§3. The density function of the S,-invariant measure.

For any Borel set A and any integer a, let 1/(a+A) be the set of
real numbers 1/(a+x), xc A. The following sublemma is essential for
the calculation of the density function.

SUBLEMMA. For any Borel set A, an integer a and a real number
x, we have

(19) 1 S dy =S _dy
(a+x)? Ja (1 +_;:j*l___5y)2 e+ (1+xy)?

PrROOF. It is sufficient to establish the following identity for any
real numbers s and ¢t (8<t), which is proved straight-forwardly:

1 St dy _ Sl/(a—l—c) dy )
@raF (L) e ey
atx '
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Let us define the set R,(x) of real numbers for any x € X, as follows:

1 l+ 1 ‘-l‘ 1 ‘+ cees (...a_za_lao-q]ra(w))
lao la—1 la’—-2

20)  R@={
is a-admissible} .

Then we have the following

LEMMA 3.1. If R,(x) is a Borel set and satisfies

(21) Ro(x)= 1 a.e.

a.'!ba(z):a%mlssible a +.Ra( 1 )
a+x

for every xe X, (here symbol >, means the disjoint union), then

= dy
fla)= SRa(x) 1-+ay)*

gives the density function of an S,-invariant measure.

ProoF. It is sufficient to show that

(22) f@=__ = ~ (=)

a- V¥, (%) :@-admissible (a+x)2 atzx

but this can easily be proved by using sublemma and the assumption of
this lemma.

Now let us calculate the density function of the S,-invariant prob-
ability measure for several a’s. '
(I) Tne case of 1/25a<2—1"2.

LEMMA 3.2. If 1)2=a=<2-1V"2, then

{a)tx':(zy bZ) b37 b4’ ° ') ’

(23)
a)a—l—":('—z} b2+1’ b3, b4’ ot ') ’

where —E_<b2< o (by=-c0 im the particular case a=1/2; b,= —3 in case
a=2-1V"2).
PrOOF. It is clear from

1_
a

(24) a—1< 2<a=»1/“2“—1<a§‘/—52’i,
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(25) a—1§?1—1+2<a v 52_3 <a<2—-V7T,

that w,(1)=2 and w,_,1)=—2 if and only if 12<a<2—1V'2. Now let
®,=(2, b, by, b, ---), then we have p(w,)=a, and from the relation

Ay 1l g+ L1y 1|

(26) “12 "ot -2 ' [®6+D+a

14

(which can easily be shown), we get 1+p0(—2, b,+1, b, ---)=a, that is,
o(—2, b,+1, b;, ---)=a—1. But, from this, we obtain p(b.+1, b, ---)=
1/(¢—1)+2, so, by using Lemma 1.2, we see that the sequence (—2,
b,+1, b;, ---) is a-admissible. So we have w,_,=(—2, b,+1, b;, ---). The
inequality —3<b,< ~ can be shown easily.

From here to Theorem 3.1, we assume that 1/2<a<2—1V 2. Let us
define two functions m,(x) and m,(x) as follows:

1-8 if . (@)Sow,
g if A (2)>ow,,

—B if (@) =ow,
ﬁ - 1 if "l"a(x) > 0'(0,,_1 »

(27) m, (%) = {

(28) My () = {

where @=(V'5 —1)/2. Then we obtain the following Lemmas 3.3-3.6.

LEMMA 3.3. Let a-y.(x) and (a+1)-4,(x) be both a-admissible. Then
we have

1 _ 1

a+m1(aix) - (a+1)+m2(—(-‘;-_|_—%m—) .

(29)

(Here we note that .(1/(a+x))=a-r(x).)

RROOF. It is sufficient to show that

)

If a>b, or if a=b, and +,(x)<o’w, (=0’w,_,), then we have a - (r)> 00,
and (a+1): () >0w,_,; 80 we get m,(1/(a+x))=B and m,(1/((a+1)+x)) =
B—1. On the other hand, if a=b, and .(x)=0c’w, (=0°w,_,) or if a<b,,
then we have a-+,(2) <ow, and (a+1) 3 (r) S0w@,_,; so we get m,(1/(a+2))=
1—g8 and m,(1/((a+1)+2))=—2B.
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LEMMA 3.4. If @, - - @, @, (%) t8 a-admissible, then we have

(30), my@)<-tly .4 1l
lal |a2 Ia,,

=m,(x) .

PROOF. Let us prove this lemma by induction on n. Let a;-4 ()
be a-admissible. Then () <o®, (Or .(x)>0w,) yields a,<38 (or a,<2,
respectively) and . (2) <0®,_, (Or . (x)>00,_;) yields a,>—2 (or a,> —3,
respectively), so we get (30),, that is,

mz(w)éaléml(x) .

Now let us assume that (30), is valid for some n»=1. Let a,,.a,--:
@.a, - y.(%) be a-admissible, then by the induction hypothesis we have

mﬁﬁﬁ%%+m+mﬂéw<1>,

from which it follows that

(31) STt gt tp S ——
a,+ ml(a1+x) 1 2 »tl @ +m2<a1+x)
If y.(2)<0w,_,, then, by Lemma 3.3 we have
1 - 1 ,
m+ﬂm(%im>__—2+wu(_;;w>
but, since (—2):r,(x)<ow,, we have
1 = 1 = —B=my(x) .
Sem(og) e

On the other hand if +.(x)>o0w,_,, then we have

1 1

a1+ml<a1}l—x> —3+m1( 1+ )

In this case we can show (—38)-4,(x)Sow, in the following manner: If
1/2sa<2—1V"2, then b,> —8, so we have (—8) - (¥)<0w,. If a=2—-V"2,
then b,= —38, but this time we have oW, ,=0®,, S0 Yu(%)>0OW,_ ,=0"W,
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implies (—38):+r(x)<ow,. So, we have

1 1
== =RB—1=m,(x) .
1 ) —3+1—2
-3
+m1( ~8+x
In the same manner we can show that
1
=m(x) ,
a1+m2( 1 ) 1
a,+2x

so from (31) we get (80),,,, which completes the proof.

LEMMA 8.5. If ---a, - a;a, -y (x) 18 a-admissible, then the func-
tion po(a, @, -+, a,, ---) 18 well-defined, that 1is, there exists a limit of
the sequence

(32) {_1_|+_1_|+...+ 1|;n=1,2,---}.
la, |a. |a,

PROOF. As in the proof of Lemma 3.4, we can show that, for any
natural number » and m,

(33) 1I+---+ 1 |s1|+...+_1_'g 1|+..._|_ 1 |

|a, la,+2" ~ |a, | Gurm | @y |a,+x"
where
x’:ml( 1 I + 1 |> , xn____mz( 1 |+ 1 I)
|a, la,+x | a., | a,+x
or
x’=m2( 1 l—l— —}—____]‘_.l-) , a;"=m1(_:!'_|+ S . 1__'_) .
| a, |a,+x |a, | @+

But the distance between the upper bound and lower bound of (83) is
bounded above by |z’ —x"|/|q./?, and this value converges to 0 as n— co.
So the sequence (32) converges to some real number.

LeEMMA 3.6. (i) For any xe€X,, the set R,(x) coincides with the
interval [m,(x), m,(x)] modulo rational numbers.
(ii) For any xe X,, we have (21).

" PROOF. First of all, we show that R,(x) 3 m,(x), my(x). If 4.(2)<cw,,
then we have '
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—1_p=_1l 10, 1] 1. ...
m(x)=1 ﬁ—|3+l—3+|3+l—3+ ’

co o (—B3)3(—8)3- (%) is a-admissible ,

from which it follows that m,(x) € R.(x). On the other hand if . (%)>0®.,
then we have

a1} 1], 1 11, ...
ml(x)—ﬁ_'12+l—3+l3+|—3+ ’

oo o (—8)3 (—8)2-4,(x) is a-admissible,

whence follows that m,(x) € R,(x). In the same manner, we can show
that m.(x) € R,(x). Now it is easy to show that, if a, - a; P (%) is
oa-admissible, then values

_]_'_‘.-*—-. -+ 1 l and __]'_L—'—..-_'_ 1 I

lal ‘a’n+x’ la’l |a’n+x"

are contained in R,(x), where &’ and 2" are as in the proof of Lemma
3.5. And as in the proof of Lemma 3.5, the distance between these two
values converges to 0 as n— o, so we get (i) by using the results of
Lemma 3.3. By using (i) and Lemma 3.3, we can easily show (ii).

Now let us give the form of the density function f.(x) of the S,-
invariant probability measure.

THEOREM 3.1. Let 1/2<a=<2-1"2. Then we have

1 1 . 1 . _ 1
log (8+2) (w+,8+2 x—ﬁ—l) Woa 1§x§a— +2
_ 1 1 _ 1 . 1 1
@Y @)= log (B+2) <w+,8+2 x—ﬁ—2> of a—1 +2<xéa 2
1 ( 1 1 if —%{-——2<x<a.

log (B+2) \o+B+1 x—B—2

PrROOF. By Lemmas 3.1 and 3.6, it is clear that the function

(35) f(x)=8"‘““’ dy 1 1
mg () (1+wy)2 @ -- 1 x4 1

m,(x) my()

is the density function of the S,-invariant measure. So it is sufficient
to calculate the normalizing constant C. But we get
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(36) C—1=S:_1 I 1 Vg
(m+ mzl(:v) * mzl(w) /
Ya-2 A « 1/ (a—1)+2 a
=Sa—1 _x_:l-(/ig—x-}-_Z-—!_Sua—z?le—%—f——T_Sa—zt ;——ig::i-—&/(aqwzz—_:l::g
o (3+8)@+s+DE@—p-2(Lr—p)
(a+,8+1)(—61?+,6’—1)(a—11—B+1)(a—,8—2)
=log (B+2) .

(II) The case of 2—1' 2 <as=(5 —1)/2.

LEMMA 3.7. If 2—1V"2 <a<(V'5 —1)/2, then

{a)a=(2, —8, b, by, - )

@, =(—38,2, b,—1,b, ---)
where —3<b,<8. If a=(01"5 —1)/2, then
{wa=(2, —3,8 -3, ---)
W, =(—3,8, —8,3, ---).

(37

(38)

PrROOF. It is clear from (24) and

(39) a—1§—1-+3<a«=2—v 2<a§§ili,

a—1 2
that ,(1)=2 and ®,_,(1)=—8 if and only if 2—-1"2 <a<(V'5 —1)/2.
And also we have

(40) a-1s—t +3<a—2-12 §a<3—“2_- V'3
1 _,
(44
(41) a—1s— 1  _9cq. V3 _, V51 ,
T, 3 2
a—1

so, except for the case a=(1"5 —1)/2, we have ®,(2)=—38 and w,_(2)=2.
Now let w,=(2, —8, b, b,, ---), then by using the relation (26) twice, we
obtain
(X=p(2, _3, ba, b4, b ')
=1+p(—2, _“2, ba, b4, v ')
=1+p0(-3,2,b—1,b, ---),
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that is
o(—3,2,b0,—1,b, ---)=a—1.

But by using Lemma 1.2, we can show that the sequence (—3, 2, b,+1,
b, ---) is a-admissible, so we have (87). And —3<b;<3 is almost clear.
If a=("5 —1)/2, then 1/a—2=a—1 and 1/(a—1)+3=—(a—1); so (38) is
clear.

From here to Theorem 3.2, we assume that 2—1"2 <a=(1"5 —1)/2.
Let us now define m,(x) and m,(x) as follows
1-p8 if Y(x)Sow,
(42) m(x)={1—7 if 0w,<+.(¥)<0’®,_,
B if W, 1= P(2),
—y if  (x) <0o’w,
(43) mz(x) —_ B —1 if szng'll"a(x) é OWy_y

"’;1 i 00 <),

where y=1"2 —1. Then we obtain the following Lemmas 3.8 and 3.9.

LEMMA 3.8. Let a-+r.(x) and (a+1)- () be both a-admissible. Then
we have

(44) 1 _ 1

a—l—'mq(aix) - (a+1)+m2<m) .

PrOOF. As before, we prove that

ekt )

If a>b;—1 or if a=b,—1 and . (¢)=c’w, (=c’w,._,), then we have
@ P ()= 0°w,_;, and 0w,_,> (a+1) (%) =0’w,, so we get m,(1/(a+x))=8
and m,(1/((a+1)+2x))=8—1. On the other hand, if a=b,—1 and A, (x)>
o’'w, (=06*w,_,) or if a<b,—1, then we have cw,<a-vy.(¢)<o’w,_; and
(@+1) -, (x) <0*®,, so we have m,(1/(a+x))=1—v and m,(1/((a+1)+2))=
—.

LEMMA 3.9. If a, : -+ @, @, (%) 18 a-admissible, then we have

(45),, mz(w)é——l-—l+—ll+ +—1|—§m1(w) .
lal Iaz Ian
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PROOF. We can show this lemma in essentially the same manner as
in Lemma 3.5. First we prove that

1 =m,(x) , 1

atmy(——) a+m(—1)

=my() ,

when a-4.(x) is a-admissible. We only show the former inequality. If
Yr.(¥)<0w,, then we have a<3, so by Lemma 8.8, we have

1 < 1

a+mz<zi—;) B 3+m2(—?£-;) .

In this case we can show 0°w,<3-4,(x)<0w,_, in the following manner.
3P (x)<0w,_, is clear because ow,_,=(2, b;—1, b,, ---). And we can show
that ¢’0w,<8-0w, if a<(1V'5 —1)/2, so we have 0°w,<8-00,<3-.(*). So
we have

1 1
= =1—B=m,(x) .
1 3+5—-1
3+m2(3+x)

If ow,<+r.(x)<0’w,_,, we have a<2 and ow,_,<2-4.(x), sSo we have
1 < 1 _ 1

cim(Gty) 2emlgry) 2+

=1—v=m,(x) .

If o’w,_,<+.(x), we have a<2 and ¢*w,<2-+,(¥)<0w,_,, S0 we have
1 < 1 1

a+m2(aix> B 2+m2<2_]"_x)_ 2+8-1

=gB=m,(x) .

Now we can prove Lemmas 3.5 and 8.6 also in the case of
2—V 2<as(V' 5 —1)/2 by using Lemmas 3.7 and 8.8. And then we
obtain the following

THEOREM 3.2. Let 2—V 2 <ax<(V' 5 —1)/2.
(i) If 2—V 2 <a<(T+V'13)/18, then we get

(46) Wy 1 <D <OW <L O Wy, <OW,_, < W,

so we have
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(1 (1 1 : o
log (8+2) \z+8+2 m—7——2> of zela—1, p(c°w,))
1 1 1 : .
log (8+2) (x+6+2 —x—6—2> if zelol@d), p(ow.)]
1 1 . 1 . .
(A7) fu(x)=( log (B+2) (m L 7+3 - 5_2) if e (o(ow,), 0(0°@,_1))
2
1/ 1 : .
log (8+2) \x+5+1 z—B— 2) if welpl’e.), plo@...)]
1 1 : | |
\log (8+2) \x—l—ﬁ—}-l x— 7_3> if xe(p(0®.), ) .

(ii) If (T+v'13)/18<a<(10—Vv" 2)/14, then we get
(48) Wy 1 <O0W,<0W,<0W,_, <OWy_ 1 < Wy

80 we have

1 (1 1 . B
(log (8+2) \x+6+2 x—7—2> if wela—1, p(ow.)]
log (2""2) ( :1.‘..3 - x_:’——Z) if x e (p(aa)a), ‘o(o-zwa))
R AL
2
a\W) = 10g(3+2)<w+’7+3 r—B—2 ) 1
' 2
1 1 1 . .
log (8+2) <x+,3+1 o x—ﬁ-z) if xe€[p(0*®,_y), (oW, )]
1 11 .
\log (8+2) <w+3+1 x~7_3) if we(p(0W.n), @) .

(i) If 10—v'2)/l4<a<(V'b —1)/2, then we get
(50) Wy, <OW, <O W< OWy_ 1 <O Wy, < W,y

so we have

| A S | ) if zela—1, p(ow,)]

log (B+2) \x+8+2 x—y—2

1 1 _ 1 . 2
log (5+2) (m+___7+3 w—v—z) if we(p(ow,), p(c°w.))
2
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1 1 1 .
- if zelp(0’w.), plow, )]
(51) fu(x)=¢ log (B+2)(x+:/“2}'_3 x‘ﬁ—2>
1 1 _ 1 . 2
s (88 (w L a+8  z—v —3) if ze(0(0w._,), p(0°®,_,))
2
1 (1 1

log (8+2) \z+8+1 _x——'r—3> o welp@io.), a) .
(iv) The case a=(T+1"13)/18 (resp. (10—1"2)/14, (5 —1)/2) can be
considered as the degenerate case in (i) and (ii) (resp. (ii) and (iii), (iii)).

PROOF. It can easily be shown that the function (85) is also the
density function of S,-invariant measure in this case. And we get the
same value 1/(log (@+2)) as the normarizing constant. If we consider
the proof case by case according to the order of w,, cw,, ¢'w,, ®,_,,
0®,_, and ¢’®,_,, then we obtain (i), (ii) and (iii). (iv) is almost clear.

§4. The entropy of S,.

It is well-known that the entropy A(S,) of S, the usual continued-
fraction transformation, is given by
1 1 7*
dr=
log2 1tz 6log2

52) (S, = 2§: log «

(see [8]). In the same manner we can show that the entropy h(S,) is
given by

(53) mS)=2|" log lolf.@)iz .
a-—1
As for the value of this entropy, we obtain the following

THEOREM 4.1. For all 1)2=a=<(V" 5 —1)/2, h(S,) takes the same value
7*/(6 log (B3+1)), independent of «.

PrROOF. In the first place, we show that A(S,) is independent of a.
Let 1/2<a<2-—1"2, then we have

1/o0—2 1 «a 1

(54) Ch(Sa) = Sa—l m log ledx'*‘ Sl/a_z w—-l:E-I__l log ledx
/(a—-1)+2 1 a 1
—Sa—l a;-—-ﬁ——l log ledm Sl/(a—1)+2 x—-ﬁ—z log lmldw
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where C=log (3+2). So we get

108‘|1 2a|
(55) C'——h(S,,, _logja—1[, loga
“2 1 a+g+1  a+p+1
a P
logll_za log’Za 1
o 4 Jogla—1
a1 (@—1)* _1 a—B—2
S+t ————p+1
a a—1
200—1
: 1 '
 loga 1 Bla-
a=g—2 (a=1 _1 _ g
a—1
=log a | = + - _
{a _]_._+B a+p+1 « _1__1_13__1 a__,g_z}
a a
1 1 1
+log [a—1| | — —
a+p+1  (a—1 1 1
a—1 s+
1 1 1
+ a—B—2 + (x—1} 1 t;
— 8
a—1
+log |2 —1| ~_12._1__1_+_12_ - 1
=+ ¥ =+p-1
+ 1 1 1 1
(aa—1)? 1 1 (a—1) 1
a—1 o a—1 g
=0.

In the same manner we can show (d/da)h(S,)=0 in case 2—V 2 sa=s
(V5 —1)/2. So, the value of h(S,) is independent of a if 1/25a=<
(V5 —1)/2.

Now let us calculate the value h(S,.). It is well known that A(S,)
is given by

(56) h(S)=2 lim % log g,(¢, 1) a.e. zeX,
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(see [8]). In the same manner we can show that

57) B(S,n) =2 lim % ‘ log q,,(x, -;-) l ae. z€X,.

Let x €0, 1/2) and let

1/"1(‘”):(“19 Ay * 20y Ay, = ')
(58) {

"/"1/2(‘”)=(b19 bzy Ct %y bm ° ) ’
then we obtain the following

LEMMA 4.1. Let us define {t,, k=0} by

{z‘o= —1

(59) .
Te=min{n=7, ,+2; a,=1} (k=1)

and for each matural number m which does not coincide with anylt,
(k=0), let us define N(n) by

(60) Nm)=n—k if 7,<n<tu,.

Then we have, for each m as above, and a.e. x,

(—D'a, f Tt+l<n<r,,—1
(—D¥a,+1) of t,+l=n<z,,,—1 or

61 Bavom = .
( ) rim ’bf Z',,+1<’n=7.'k+1—1
(—D%a.+2) if zt+l=n=7,,—-1,
and
1
(62) tvw(% 3)=0@ 1) or —q,1).

PROOF. From the definition of S,, and from the relations

1], 1] 1 ]_ 1| 1 [
63) la |1 " |b+t |a+1 |[—(b+1)—¢
1] 1 | 1 | 1 |
64 + + = + ,
64) |l—a [—1 |—b—t |—(a+1) |[(GB+D+t

we obtain (61). Using Lemma 2.1 and Remark 2.1, we obtain (62).
By the definition of N(n), we can easily show that

(65) N(n)=n+3, (—1)’N;mn)
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for any n ¢ {t,; =0}, where N;(n) is given by

(66)

Nim)=#{l=isn—j+1; a;=a;p,= -~ =@ =1} .

By the ergodicity of S,, we obtain that

(67)

&5 1 1 . ..
S oe g 1 de if 7 is odd
lim Nim) _ :’: og T
ne M S’ 1 1 ge if j is even,
¢; log2 1+«

where &;,=p(1,1, ---,1, o0, o0, -++) with (1,1, ---, 1, 00, 00, +-+). If we
\____/

notice that £, <&,< --- <&<¢, and that lim,-jw &=p1, 1,1, --)=38, we
obtain

(68)

lim
n—oo n

N(n):Sﬁ 1 1 do— log (8+1) .
olog2 142z log 2

From (56), (57), (62) and (68), we obtain that

(69)

[1]

[2]
[3]

[4]
[5]
(6]
[71
[8]

2 log 2 ®
R(S,) = —= = .
(Se) 6log2 log(8+1) 6log(B8+1)
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