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Introduction

The study of chaos is very important not only from a mathematical
but also from a physical and biological point of view. One parameter
family of continuous maps, from interval to itself, is an especially im-
portant example and recently the study of them has made great progress.

In this article we will examine unimodal transformations. Our aim
is to extend Sarkovskii’s result ([6], [7]) and to calculate the topological
entropy of the transformations. A continuous map from interval I=
[a, b] (—oo<a<b< =) to itself will be called unimodal if there exists a
unique point ¢ € (a, b) such that

i) fle)>f(x) for any xz€|a, b] x+c

ii) f is monotone increasing in [a, c]
and

iii) f is monotone decreasing in [c, b].

Here we only treat those maps which satisfy

i) I=[0,1]
i) fA)=0
iii) fle)=1

and

iv) 0<f(0)<1.
In general, all unimodal transformations except some trivial ones can be
reduced to this case. If f is linear in both [a, ¢] and [c, b], f is called a
unimodal linear transformation. Concerning unimodal linear transfor-
mations, see [1].

§1. Notations and preliminaries.

Let © be an aggregate of all the formal symbols
Received March 10, 1980
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(kh ll)(kzy lz)' o (km ln)

where n=1, k, is a nonnegative integer and %, ---, k,, I, ---, 1, are
positive integers. An element of 6, which will play a major role in the
following, will be called an orbit. We shall define some notations. Let

O =k, B)---(kh, 1), 0=k, D). (k2, I2) € O(E>0) .
Then we define
0'0>=(kt, 1)- - - (kh,, 11 )(R2, 13)- .'.(ki2, l;,) €0 .

Let 6=(k, l)---(k,, 1l,) €6. Then we define
1) #60=n
i) [0|=231 (bt 1)
iil) 0=k, L)k, L)  (1=i=n)
iv) o0'0=(kirsy liz))- -+ (Fn, 1,) 0=1=m)
v) (@)'=6
@™=(@™0 (m=2 and k,>0)
and
vi) we call ¢ is even (odd), if D7, [, is even (odd), respectively.
Moreover we define ¢ for convenience; that is, for any ¢ ©€

i) 0,=9¢
ii) ¢0=04=0
iii) #¢=1¢|=0

iv) ¢ is even.
Now we can introduce a partial order in ©. We begin with the orbits
for which #6=1. Define the relation < as

i) (k, )<(¥',1l) whenever k>¥,

ii) (k, 2l)<(k, 2U'+1) for any k, Il and U/,

iii) (k, 2l)<(k, 21+2), for any k, I,

iv) (k, 2l+1)<(k, 2l—1), for any k, .
Let 6,60’€¢6. Suppose that there exists (¢=0) such that 6,=6, and
0;+,707+,. Then define §>6" if 6 and 6’ satisfy one of the followings,

i) @, is even and d*(0,.,) >0%(0;,),

ii) 0, is odd and ¢*(4,.,) <c*(0..,). _
Up to now the concept of orbits has been defined formally. Related
with a unimodal map f, which we shall fix until §8, the following
meaning is given to this formal concept. Define f.=flp,0 and fr=Fflw.a-
Then for 6=(k, l,)---(k,, l.) €6, we identify 6 with fi» fir...fh fl,
moreover we identify ¢ with the identity. Let

i) D[#]=domain of f, @
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ii) R[0]={0x; x € D[0]}.
Notice that both D[6] and R[6] are intervals. Moreover if D[f]=[a, b],
then

[6a, 6b] if 6 is even
[6b, 6a] if 6 is odd .

If R[6]=]0, c], 6 is called complete.

We now define the special orbit ¢ which is called the expansion of
zero. This is one of the keys of this article. We say that ¢° is Markov
if there exists some n > 0 such that

i) f0=0

ii) f™0+0 for O<m<n.

Then there exists two expressions of f*. Let 6 and &' (6<6’, |0|=|0'|=n)
be such expressions. In such cases we define 6° by

R[6]= {

0°=600--- .
We call 6 periodic with period m(or period #;) if
05=(0%)" ™05 _mts/m
for any j and there exists no » < m such that
O = (O™ .

If f is not Markov, let 82 ® be the orbit which satisfies 0e€ D[6] and
let 6° be the inductive limit of 6. We denote

60= (8, L)(KE, 1)+ - .
LEMMA 1.1. Suppose (k, 1)> 3, I)). Then (k, 1) is complete.
LEMMA 1.2.

[(&, IO, c] of L is even

R[(ki, )]= [0, (&, ©)0] if I is odd .

The proofs of both lemmas easily follow from definition.

§2. The existence of the orbits.

In this section, we will show the necessary and sufficient condition
for D[8]+#4(0cO). First we consider the orbits which are complete.

LEMMA 2.1. Suppose 6 is complete and D[0'1+#¢, then D[66']l+#¢ and
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R[06’')=R[0'].
The proof easily follows from the intermediate value theorem.

COROLLARY 2.2. Suppose that both 0 and 0 are complete, then 60’
t8 also complete.

COROLLARY 2.3. Let 0=(k,, L,): - - (K, 1). If (ki 1)> (S, 1) for 1<i<m,
then 6 18 complete.

LEMMA 2.4. For 0€6, if there exists i such that o'0<6%_,, then
D[6]=9.

ProoF. It is sufficient to consider the orbit ¢ which satisfies 6<<6}.
Then there exists 7(1<7<4#6) such that

0 =0‘,’-_1(k5, l:‘)' : ’(kso, 9))
and
(k;, 1;)<(KS, 13) if 65_, is even
(k;, 1;)> (K3, 13) if 65_, is odd

where #;=4¢.
i) If 6, is even, then R[6}_,]c[6;_,0,c] and 65_,0€ D[(%S, I3)]. On
the other hand

D[(k;, 1;)- - - (Foso, Lo)l D(k;, 1,)]

Thus D[(k;, 1;)- - - (K, Lip)] N R[65_]=¢ and hence D[6]=¢.
ii) If 6;_, is odd, then R[6}_,]c[0, 65_,0]. Thus it also follows that
D[6]=4.
Let
6(0°)={0 € 6: 6'0=0%_, for any 1(0=i1<#0—1)},
B+(0°)=1{0 € 8: 60> 0},_, for any i(0<i<$0—1)},

0°(0)={0=(ky, L) - - (k,, L,) € 6(6°): (ky, 1) = (K1, 1D), (kyy 1)> (B2, 1Y) for 2<i<m},
and let

(") ={0=(ky, 1) - - (ka, L) € 6(0°): (Ky, L)>(Ki, 1) for 1si=<n}U{g} .

We already know that any 6 € 6°(6°) is complete.
For 0 €6(0°) we define two integers n and m as follows.
i) Let n be the largest integer for which 6=6,, .0, where t=#6..
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If such % does not exist, we define n=0.

ii) If n=0, we define m=0. If n=1, let m be the largest integer
which satisfies

1) 6,=04_n0n
and

2) 6%_, is odd.
We also define m=0 if such m does not exist. We say that this 6 is
of (n, m)-type.

LEMMA 2.5. If 6€8+(), then 0 is (0, 0)-type.

LEMMA 2.6. Suppose 0c6°0°). Let j be the largest integer such
that 0=0%k;+1, i+ - - (kyo, ls). Then we get

i) 2f 7<#6, then @ is complete.

ii) If j=46, then

[6360, c] if 6 is even

& wl:{[o, 03,01 of 6 is odd .

PrROOF. ii) we show this assertion by induction. If #¢=1, we have
already proved the assertion. Assume that the assertion holds for #0=mn.
For 000 (#0=n+1) we get

o1 ([620, ¢] if 6, is even
1 R[”“]—{[o, 0] if 6 is odd,

2) (kps1, lati) is complete,

3) 02&0 € D[(kn+1’ ln-l-l)]’
Thus the proof of ii) follows.

i) If R[6IND[(k;sy, l;+1)]=¢, then there exist the following two
cases.

a) If 6 is even, then we get from the assumption

050> (K41, Lj+1)7'0
and
630> (Bji1y Liv1)7"e -
This is a contradiction, because
kv, Lj+)0>c  if (Bjiy, Ui4) 18 even,
or

0311y 14)0<0  if (Kj4sy liy,) is odd .
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b) If 6} is odd, then we also get

030> (Foj44, 154,)7%0
and
030 <(k;4s, L) 7"e .

Thus we can show the contradiction in the same way. As (k;4,, ;1)
(K341, li+1) we can show R[6}]1DD[(k;4y, U;+1)]- Moreover we already know
that (k;4., lit1)- « - (e, Lis) is complete. So this completes the proof.

THEOREM 2.7. Let 0 €6(6°) be of (n, m)-type.
1) If n=m=0, then 0 is complete and 6 € 6+(6°
ii) If n>0 and m=0,

[650, ] if 6 is even

R[a]z{[o, 8:0] if 6 is odd .

iii) If both n and m are positive,

[620, 65.0] <f 6% is even

R[0]=
161 {[02,.0, 6,01 <f 6° is odd .

PROOF. Let 6=0,,_ g'--.0% such that

fy—ee—iy
Oso_s,...—s,€0°(6°) and 6*€O%°)1=k=p, $6*=1,) .

Then we prove the assertion by the induction on p. If p=0, it is
trivial that 6 is of (0, 0)-type and complete. If p=1, then # must
be of (n, 0)-type (n=0); and we have already proved the assertion, in
Lemma 2.6.

Now we assume that the assertion holds for any »<p. Let 6=
66 - - 0P (#6" =1, 1<r<p+1).

i) If @ is (0, 0)-type, then 67+ must be complete. At the same time
it is trivial that R[6'-.--6?]DD[6**'] by the assumption of induction.
Therefore 6 is complete.

ii) Suppose that 6 is of (n, 0)-type (n>0), 47-.-6***=4° and that
67 --67 is of (m—1,,, m')-type. In a similar way as in Lemma 2.6, we
can show the following four assertions.

1) 6._.,.0¢eD[or*]

2) R[06*-- -6 D D[o*- - -67*]

3) 6, 0¢D[6*"] if m'>0

4) 67+ is complete if 6;_;  is odd
and
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Got. .. ool — {00,010, O, O] if 65, is even
5). }.3[001 6%]= {[ o ,’lpo"‘l g ol it 05 : :1 s eyer
Thus it is trivial to see ii).

iii) Suppose that 0 is (n, m)-type (n, m>0), 6 --67"*=¢; and that
gr--.0°"1=¢%. If 69-..6" is of (m—1,— -+ —1,4,, m)-type (m'>0), then
6ri,...wi,,,0€ D[07---6*"] and 6., 0¢D[67---67"]. This contradicts the
fact that 6¢---6"' is odd and D[6"---677']50. Therefore we get, by the
assumption of induction,

R[6°- - -6-1]=[0, 62 0]cD[6.] .

—ip——ipty

This proves the theorem.

COROLLARY 2.8. D[0]##¢ if and only if 0 € 6(6°). Moreover, if 0¢
O1(6°), then 6 18 complete.

PROOF. If 6e6(8°), we have already proved D[f]#¢ in Lemma 2.4.
For 0€6(0°) we proved in Theorem 2.7 that R[0]#¢. Therefore we get
D[6]+#¢, thus the first assertion is proved. On the other hand, if fe
0+(6°), then 6 must be of (0, 0)-type. Hence we get the second assertion.

COROLLARY 2.9. ¢76:=6;_; for any jA<j=<i—1).
This corollary easily follows from Corollary 2.8.
COROLLARY 2.10. If 8¢ ©O(0°)\O*+(6°) is complete, then 6° is periodic.

PrOOF. By the definition, we know §=606; for some ¢(1=i<#6). If
6 is even, then # must be 0. This shows that 6} is periodic.

On the other hand, if #° is odd, then #} must be ¢. Thus we get
631, 1)=803,, and 631, 1)0=0. This completes the proof.

§3. The existence of the periodic orbits.

In this section we consider the periodic points and we will extend
the result of Sarkovskii [6] [7]. We call

{, fo, -+, f*x; fio+fix for 0<i1<j=<k—1 and ffr=x}

the periodic orbit of f with period k.

In ® we introduce an equivalence relation. For 6, € 6, we define
0'~6 if and only if there exists #* 62e¢ @ and positive integers =, u;
such that 6'=()™, 6*=(#*" and that 6°=0"F0}»:_, for some k. It is
trivial that this relation is the equivalence relation. Let [6] be the
quotient space defined by the equivalence relation and for €6 let [6]
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be the equivalence class to which ¢ belongs.
For 0=(k,, l,)- - -(k,, L,) €6, let

(i} =(kt+l; li+1)‘ * '(km ln)(kly l1) tc '(kiy li)
for 1<i<n-—1.

Moreover for [0]€[6], let
ulen= 01?[5] %0
and
[0]1=inf {6 € [6]: $6=1([6))} .

We also say that [0] is odd, even or complete if [f] is odd, even or com-
plete, respectively.

Now we can introduce the order on [6]. We define [6]<[6?] as
([6'])?<((6%1)%, where p-U([6'])=q-L([6?]) is L.C.M. of ([6']) and l{e%).

Let

[61(6°)={[6] € [6]: ([6])*=62itony for any n} .
DEFINITION. A periodic orbit of f,
{p, fo, ---, f*'p: p=S"p and p<f'p for 1<i<n—1}
is called of [f]-type if
pe D[([0)™] for any m=>1.
Let for [#] e[6]
A[lo]]= ) DI1OD"]

and

Ifiell= N (A6h~Aftel] -

Then A[[6]] is either empty, {one point} or an interval. On the other
hand, if A[[6]] is not empty, then I[[f]] is {one point} or an interval.
It is easy to see that the smallest point of any [f]-type periodic orbit
belongs to I[[#]]. Thus, if I[[#]] consists of a point, then this point
belongs to a unique [f]-type periodic orbit and any point x e A[[eTN\ZLIo1)
is attracted to this []-type periodic orbit with period |[[#]l. On the other
hand, if I[[6]]=[p, ¢l(»<g), then the situations are different according
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as [@] is even or odd. (See below.)

i) If [f] is even, then x<y(x, y € A[[A]]) implies [flx<[fly. Thus
both p and ¢ belong to different [#]-type periodic orbits with period |[9]];
and any ze€ A[[60]] such that z<p(resp. #>q) is attracted to the orbit
which contains p (resp. q). Moreover, for any x € I[[f]] we have one of
the following.

1) 2 belongs to some [#]-type periodic orbit with with period |[6]|.

2) {([6)™x}z-_.. is monotone increasing (or decreasing) and lim,, ... ([f])*z
and lim,._. ([f])x belong to different [f]-type periodic orbits with period
G

ii) If [0] is odd, then x<y(x, y € A[[#]]) implies [f]x>[fly. There-
fore p and g belong to the same [f]-type periodic orbit with period 2|[6]].
Moreover there exists a unique point x, € I[[¢]] which belongs to a unique
[6]-type periodic orbit with period |[6]]; and any x € A[[6]]\I[[6]] is attracted
to the periodic orbit which contains both » and ¢q. As in i), for any
x € I[[0]] (x<x,) we have one of the following.

1) « belongs to some [f]-type periodic orbit with period 2|[4]|.

2) {([0)*x}r-_.. is monotone increasing (resp. decreasing) and
{({6)*a}>._. is monotone decreasing (resp. increasing); and one has
([6])"x < 2, < ([6])**+x for any n. Moreover lim,_... ([§])**x and lim,, ... ([6])***'x
(lim,__.. ([0])*z and lim,__., ([f])***'2) belong to the same [f]-type periodic
orbit with period 2|[4]| or |[4]].

Now we consider when I[[f]] is not empty, i.e., when [f]-type
periodic orbit exists. The next two lemmas will give us the solution.

LeMmMmA 3.1. If [6] €[©1(6°), then I[[0]] is mot emply.

PROOF. To show this it is sufficient to prove that D[([f])"] is not
empty for any n. On the other hand, by the assumption we get
o'[01=[0], therefore the rest of the proof easily follows.

LemMA 3.2. If I[]6]] s not empty, then [0] € [€](6°).

The proof of this lemma is trivial, so we omit it. Then we consider
the property of A[[6]] and I[[6]].

LEMMA 3.3. Suppose [0] is complete, then A[[6]]=I[[]].
ProoF. Let z,=([6])~"c and y,=([])-"0. If [A] is even, then we have
USYS  SYeST= 0 ST ST,

where 2.=lim,_... z, and y.=lim,_.. ¥,. It is easy to prove that both y.
and z.. are the endpoints of A[[A]] and at the same time they belong to
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[6]-type periodic orbits.
If [6] is odd, then

LSYSHS - SYSTeS - SYsST.ZY,

where

Yo=lim &,,,,=lim y,,
n—oco

n—00

and

To=lim x,,=lim y,, ., .
n—r00

fn—00

The case where [d] is even is analogous to the above.

LEMMA 38.4. Suppose that A[[6]] does mot coincide with I[[0]], then
0° s periodic and [0]=[6°]. (cf. §6).

PrROOF. Let [d] be of (n, m)-type. Then by Lemma 3.3 it follows
n>0. Assume that [§]>6%;,. Then each of the following contradicts
the minimality of [f] or the assumption on [f];

i) 6.0¢e D[[6]]

ii) 6% is odd
and

iii) m>0.

Therefore we get R[[0]]=[630, c] and 60 satisfies one of the following;

i) 60>z for any xe D[[6]]

i) 630<z for any « e DI[[6]].

If the case i) holds, it is trivial that A[[#]]=I[[#]]=¢. Otherwise, if we
define z,=([0])*630 and y,.=([d])*c, then x, is monotone decreasing and y,
is monotone increasing. Thus we get A[[6]]=[lim, .z, lim,_ .. ¥%,] and
therefore it is trivial that I[[6]]=A[[f]]. This contradicts the assumption.
Hence we get [6]=8]s,. The rest of the assertion easily follows.

To summarize the above results, we get:

THEOREM 3.5. There exists at least onme periodic orbit of [6])-type if
and only if [0] € [6](6°).

COROLLARY 3.6. If there exists [0)-type periodic orbit, them there
exists [0']-type periodic orbit for every [0'] which satisfies [0']>[6].

This is the extension of Sarkovskii’s result ([6], [7]). If we define
{k} =inf {[6] € [6]: |[0]| =K} .
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Sarkovskii gives the order of {k} (k=1, 2,3, --:). On the other hand we
define all the orders on [@]. Actually, it is not so easy to define {k} € [0].

EXAMPLE 1. _
{2k +1}=[Q, 2k)] .

This shows that the existence of a periodic orbit with period 3 implies
the existence of periodic orbit with period 5 ete.

ExXAMPLE 2. Define a,, «;, -+, a,, -+ as
a,=(0. 1)
a,=(1.1)
a,=(1.3)
and
o, =0, 0, o0, _» (n=3) .

Then we get [@,]=a,. And we can conclude that if [0]<[a,] (n=1),
then [f]=[a;] for some 7 (0<i<n—1). This shows that {2*}=[«a,] and
that the existence of a periodic orbit with period 2* implies the existence
of periodic orbits with period 2! (0=I<k—1).

Let

[F]=1{6; 6 is an inductive limit of some {6"},>, such
that 6"=[6"] € ® and 6 is admissible},

where 0 € [@] is called admissible if ¢'0,=6,_, for any 1=<i<j. Hereafter
we identify [6] € [6] with 6=[F][F]: - -, then it is not difficult to see 6 € [O].
Thus we can consider [0]c[6].

We have already shown that any expansion of zero belongs to [6];
moreover, for any [§] €[@], it is not difficult to make a transformation
whose expansion of zero is [6].

§4. Topological entropy.

In this section we will treat the topological entropy. Let
q N
Eo={5={At}£"=1; N< o, A, is open and iLLin:)[O, 1]} ,
and let

N
El={§={Ai}§"=1; N< o, A, is an open interval and L_,!A,:)[O, 1]} .
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Moreover, let us define, for any ¢¢€ 5,,
h(f, £)=Tim L log Card {A € “\_/1 f—‘e} ,
n—o N, =0

where Card {-}=the number of the elements of the set {-}. Then we
define the topological entropy by

W(f)=sup h(f, ) .
But by the compactness of [0, 1] we get
h(f)=§;15p k(f, &) .

On the other hand we get for ¢ec =,
Card {# € 6(0); |0|<n—1 and 6,<(1. 1)}
<Card {A e:\_:/: f -‘5}
<Ex (¢) Card {# €6(8); |6l=n—1 and 6,<(1.1)},

where Ex (¢)=the number of the endpoints of the intervals which
belongs to ¢, and 6° is the expansion of zero of the transformation f.

Thus we get

h(f)=Tim L log Card {6 € 6(6°); |6|=<n—1 and 6,<(L. 1)} .
noo N
Therefore we will write h(6°) instead of h(f).
The type of 6 plays a major role in computing h(6°). We have the
following lemma.

LEMMA 4.1. If 6} is (p, @)-type, then 683,., is either of (p+1, g+1)-
type or of (p+1, 0)-type. Moreover if 0., is of (p+1, 0)-type and ¢>0,
then 0., 18 of (q+1, 0)-type.

PROOF. Suppose that 6},, is neither of (p+1, ¢+1)-type nor of
(p+1, 0)-type. Then there exists 1<r=gq such that 6., is (p+1, r)-type.
Thus we have

a) 077%05,>0,,,

b) 65,. ,0,=0;,,.

Noticing the fact that both 6;_, and 6;,,_, are odd, we get o***-70,,<8°.
This contradicts the admissibility of 6°.
Suppose that 4,,, is of (p+1, 0)-type and ¢>0. Moreover, suppose



EXTENSION OF SARKOVSKII’S RESULTS 145

that 0, is of (g, r)-type and that #),, is of (¢+1, r+1)-type. Then we
get by admissibility

¢) 05.<0"05,

d) 0705, =0",..
In a similar way, we can show

070, >0"7"05,, .
This contradicts the admissibility of 6°.
We now define a sequence of integer pairs p={(s,, ¢,)})-, as follows
i) (31, ql)z(oy O)
ii) s;=min {j>s,,; 65 is (4, 0)-type}

iii) g¢,=max{j; 6;.,; is (s;+J, 5)-type}.
If g,;=, we define N=1.

Let
Card {# € 6(6"); |0)=n 6,<(1,1)}, if n=2
Pin)=4{ 1 , if »=0
0 , otherwise
and
Q. n)= Card {# € ©(6°; |0|=n and (1.1)=6,=63} , if p=0,
P M= card 9 ¢ 6(6; 10]=n, 6,=6% and 6,,,>6,}, if p=1.
Then we get
P(n)= §p_‘, Q(p, n)
=§. Q8 +4q, n)+X(n) ,
where
Xm) 1, if n=6% for some 7 and if r satisfies s;,<7r<s;+q; for some ¢
n)—=

0, otherwise.

To compute Q(p, n) we need some more notations.

LEMMA 4.2. If there exists some i1 which satisfies 8,<q,;, then ¢,
equals co. Moreover 0;, equals (6;)" for any n.

PrROOF. Suppose that s;<q, and that there exists n=3 such that

62,7 (62)"
02“”‘_1):(03‘)’”‘1 ’ for m=n.
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Thus we get
003, > 05 (nv -
Since #;, is odd, we also get
07405, <040, (n-1y= 05 (-2 -
This contradicts the assumption on 6°.

Let
T(p, n)=Card {(a, 8); a+B=n and (1, H=(a, 8)>(kj+s, Lrsd)}

_{1 if Ky tlon=
#*7 10 otherwise,

and
3 T(p, j)P(n—16051—13) » if 6% is even

f, ")={p(n 03— 5. T(p, P(n— 185~ )— Pn—163..) , if 6 is 0dd..

We can easily compute T(p, n).
i) When n=<k},,, we have T'(p, n)=n—1.
ii) When n>kj},,, we have the followmg four cases.

1) When 0., is odd,
a) if n<kl,,+1,, and n—Fk;,, is odd, then we get T(p, n)=k5,,,

b) otherwise, we get T(p, n)=Fk3,,—1.

2) When [;,, is even,
a) if n<kl, -+, and n—Fk},, is even, then we get T(p, n)=

0
pH1T 1:

b) otherwise, we get T(p, n)=kj..
We now consider Q(s;+q;, n) (0<i<N-—1). We have the following four

cases.
i) If ¢,=0 and 4;, is even, then we have

Q(s,+q,, n)=Card {6 € 6(¢°); |6|=m, 6,,=0:, and 0, ,,>0;, .}
= ; T(s;, 5)P(n—16,|—39)
=f(8:+q;, 1) .
ii) If ¢,;=0 and 6;, is odd, then we have
Q8. +4q, n)=P(n— 102i|)—§ Card {(a, B); a+B8=J and
(o, BY= (k3,1 Le, 1)} P (0 — 02| — 3)
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=P(n— Iﬂiil)-—; (T'(s;, 7)+0;,.)P(n—163 | — 5)
=f(8;+q, m) .

iii) If ¢,>0 and #;,,,, is even, then we have

Q3+, n)=3, Card {(a, B); a+B=7 and (K sq,41) Loireor)
<(a, B) <(kqy+1, L)Y P(— 105,40, — 7) +,2, A, n—16)
=§ (T(s:+4:, 3)— T(Qsy 5)—0;,0)P(n—|05,14,|— 5)+ P(n—165,])
_g‘u Q(p, n—|65,))
- =fEt g, 0)— 3 T(gy P~ 1024 — ) — P —102,10,1))
+P(n—lt92i|)—p§i Q(p, n—|6;,]) .

iv) If ¢,>0 and 6; ., is odd, then we have

Q(s;+4q,, n)=§;‘, Card {(a, B); a+R=7 and (kS,4¢.11, 12, 1q,41)
>(a, B)> (ko1 Laye)}P(M— 163 10 | — 5) + , g}ﬂ Q(p, n—|6;,])
=§,‘J (T(q:y ) —T(8:+ sy 5)— 050,40 )P0~ 102, 10,| — 5)+ P(n—165,)
— 2 Qp, n—16)
=f(8:+q, n)—P(n— 1021+qil)+§ T(q., 5)P(n— 105,14l —9)
+P(n—I02ii)—'p§_‘;i Q(p, n—103))) .

LEMMA 4.3. For k<N, we have

sptag

iZj,)Q(sﬂrqi, n)= 1,5;‘1, fo, n) .

PrROOF. We will prove by induction.

i) When & equals zero, both s, an g¢; also equal zero. And we
already know that Q(0, n)=£(0, n).

ii) We now assume the equation holds for #<m—1. Then there
are three cases.

1) If q. equals zero, then Q(s,+q., n) equals f(8,+q., 7).
2) If ¢,>0 and 6; ., is even, then we have

QB.,+7, n)=0 for 0=j5=<q,—1
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and

Q(sm-l_qm’ n) =f(8m+Q1m n)_z (T(qmy j)+3i,qm)P(n |00m+qml~j)
+P— 105D~ 3% Qw, n—10%,D -

On the other hand, by Lemma 4.1 we get
3 Q@ n—6,)— 3 £, n—162,) -

Therefore by assumption of induction, we get

tm—1+Im—1

3 Qe t Gy W)= 3y @, ) St Gy W)= 5, Ty P10, )
—P(n— 18} s qua) + Pln—182, )~ 3 f@, 161,

sm—1tdm—1

= E f(py n) +f(sm+qmy n) _Z’ T(qmi j)P(n [03m+qml j)

=

— P(n—10%,,+qm+:)) +P(n—62,)
- Z 2 T(p, DP(n—I10,| - 1051 —9)— > [Pn—|6.,]—165])

Im
0 ls even 00 is odd

—; T(p, 5)P(n—|6:,]—105|— 5)— P(n—|6:,| —63..))] .

Notice that 6; is odd, T(p, 5)=T(S.+p, 5) for 1=p=g,—1 and
that |69 |+165 l——lﬂs,,,+,,| for 0<p=<q.. Thus the above equation can be
written as ’

8m—1+dm—1

= p%o f(p’ n) +f(sm+ Doms n)—; T(qm, j)P(n ‘08m+qml_j)

s tam—1

— PO~ [0y + P— 188D+ 3 £B, ™)
+ 7S [ P 03+ Pln— 031 =37 [P 5)— P 165..D)]
—;’&Oddw.ﬂ,ﬂwrg T(0ay PO 10ep el ) P16 gy
=" s, m) -

38 If ¢,>0 and 6;_,,, is odd, then we can show the lemma in a
same way.

COROLLARY 4.4. For any mn, we get
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8N—-1HIN—

Pmy= 3 flp, )+A().

»=0
COROLLARY 4.5. Suppose that 6° is periodic with period 6. Then
we get

m

Z—}:f(p, n)+Pn—|605%) if 0% is even ,

P(n)= : )
2 [, n)+X(n) if 6%, is odd .
Let

—~16° K, —1 10

X p+1||: pil\‘ xf+l27+1+ pz-‘rll (—1)1(;_‘_1__"%’_]

rx—1 J=0 7=0

if both 6% and 65,, are even;
T e e e L At 5
l: Sy w4 3 (—1)’p+1—"mf:|,
x—1 L i=o =
9@, p)= if 6° is even and if )., is odd;
L p)=

0 0

0 3 !

—16% 41 p+1 Pl

= p+1 0 0 ., 10 0 -

[m"p+1+’p+1+1— S, it — 3 (—-1)‘p+1"’x’] y
r—1 j=1 j=2

if 6% is odd and if 6}, is even;
lO

r+1 0 . .
8 (— 1) |,
j=o

if both 6% and 65, are odd.

0

0 K

-~ | p+1

=104 0 0 0

I:x"p+1+’p+1—- >, xi i+ —
r—1 j=1

This g(x, p) is the limit of f(p, n)/z" if we put z* instead of P(k) for
any k.
Now we first consider the periodic cases. Let 6 be its period. Let

m—1
21— — 1= — (@ — D 3 9(a, p)+w"”3»') ,
=0
if 65 is even;
2= — gl (g — D)2 S g(, D)
= g 2 p b

if 6% is odd,

F(x, 6°)=+

and
; 1 if there exists j such that > (kS-+1)<i< S (B+1)+Ks
i= n=0 n=0

—1 otherwise,
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where k=10;=0. Then we get

169,1—3 169, 1—k—3

0 0
F(x, 6°)=x'm~* — g10m/~2 _ % ‘1_'_10 ot .

THEOREM 4.6. For [0]€[6], we have h([0])=log v([6]), where Y([6]) s
the maximal real solution of F(x,[0])=0.

PROOF. Since P(n) is defined by the recurrence formula of Corollary
5.4, we know that ‘

P(n)=2. a(v([6D)(v([6]D)" ,

where 7,([0]) is a solution of F(x, [#])=0, and 3, is a sum over all the
solutions F'(z, [#])=0, and a(x) is a polynomial of degree with multiplicity
of 7,([6))—1. Noticing the fact that > 2-! P(k) is monotone increasing,
we get

h([6]) = log max {7,([6]); 7.([6]) is real and a(v.([6]))=0} .

Thus we only need to show that a(v([6]))=£0.

i) We get F(z, [(1.1)])=2—1. Thus the assertion holds for this
case.

ii) We now consider [6] € [6] such that [[F]|>2.
But we need not consider the cases for which we have

[5]:: (kly ll) ot '(km—ly lm—l)(kmy l) .
Because, if k,>1, then we have
F(x, [(ky, 1)+ - (Bmesy Ln_i)(Fem, DY) = Fa, [(ky, 1,)
Tt (km—lv lm—-l)(km— 1; 2)]) .

On the other hand, we have

F(x! [(kh ll)' ‘ '(km—ly lm—l)(]-; 1)]):F(x, [(kly ll)
te (k'm—l’ lm—1+2)]) .

Thus we can identify (k,, L)---(k., 1) with (&, 1) -(bn—1, 2), if k.>1
and we can also identify (&, L) -(kp_y ln_y) (1,1) with (&, 1)---
(bm_1y lm_1+2). Then if 6 even, we have

F(x, )=xF(x, 6')—1 .

Therefore if we assume that both F'(x, 8") and F'(x, §’) are monotone
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increasing for 2>7v(¢’), then both F(z, ) and F'(x, §) are monotone
increasing for #>v(#"). On the other hand if # is odd, we have

F(z, 6)=a2F(x, 0')+1=2(F(x, 8')+x77) .

Therefore if we assume that both F(z, §") and F'(x, ') are monotone
increasing for x>v(6")(0"=(0")"), then we have the equation F(z, 6)=0
has a unique solution for xz>~v(6"). Since

F'(x, )= (F(z, §")+2™)+(F'(2, 6)—a )z ,

we find that both F(x, §) and F'(x, ) are monotone increasing for 2>(f).
This completes the proof.

COROLLARY 4.7. For any n, we have
r({2"H=0 .
PrOOF. We have
F(z, 2)=@—1)@*—1)--- (& '—1) .
The corollary is trivial.

COROLLARY 4.8. For [0] € [O\[O], we have
h([6])=lim log ¥([[6].]) -

PrOOF. Let {n.,... be a sequence for which [f],, is (n:, 0)-type.
Then {n.};». is an infinite sequence, otherwise it contradicts the assump-
tion [0] € [O1\[€].
‘ iy If [6],, is even, then [[61.. 1< [61<[[6].,(1.1)]
ii) If [6],, is odd, we can also show that [[0],,k]>>[0]>>[[6],,k(-1.1)].
Therefore the assertion easily follows.

§5. Concluding remarks.

We call f is of window type if its expansion of zero 6°¢ [6] satisfies

i) [6°]1€[©] and [6°] is odd, and

ii) [6°10>0.
Suppose that f is of window type. Then any « € D([6°]) belongs to D([6°1
for any n. 7

On the other hand, we call f is of island type if the its expansion
of zero 6° ¢ [@] satisfies

i) We can represent §°=6'9%6*--- such that
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6'=6'k, 1) , #=0'"(k—1,2) or 6'=6'(k, 2) F=60"(k+1,1) .
ii) @' is odd, ¢* is even and
0'=6" or 6 for any i=8 4, ... .

iii) Suppose that D[6']=[0, a]. Then 6'a € D[6'] and (6")-'a>6'a.
Suppose that f is of island type. Then any e D([0°]) belongs to D[6]
such that

i) 6=6"0"6"-.. such that
0"=6¢" and 6"=6' or 6 for any ¢ .

ii) max;(i; 0'7*=¢* for 1<i<k}<max, {i; §i**=6* for 1<1=k).
Those are the slight extensions of [1].
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