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Throughout this paper we shall use the following notations:

N: the set of all positive integers,

P: the set of all rational prime numbers,

N@)={ne N; n=«x} (for x: real),

S(x): a subset of N(x),

#(S(x)): the cardinal number of S(z),

w(n): the number of distinet prime factors of =,

Q(n): the total number of prime factors of =,

|7 ]: melg (Im—np@}), i.e., the distance from n to its nearest prime.

The letterg p, ¢ will always denote prime numbers. We shall write
log, x=log log x and log, x=log log log =, and use z(x), 7(x; k, I) and Li (x)
in the usual sense.

§1. Statement of results.

Since the value of w(n) or that of {2(n)— w(n)} fluctuates irregularly,
we shall observe

V(S( )) — 'ne%(x) (D('n) W(S( )) —neS(x) {Q(n) — w(n)}
= S@y) T R @y

each of which can be regarded as an average of w(n) or that of
{2(n)—w(n)} for a given subset S(x). For S(x)=N(x), the value of V(N(x))
or that of W(N(x)) is, so to speak, “standard” average of w(n) or that
of {2(n)—w(n)}). As is well known ([1: THEOREM 430]):

(1.1) V(N@))=log, z+ A+ 0( 10; x) ,
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(1.2) WN@) =3, —L— +0@™)
» p(p—1)

where A=7+3, {log (1—1/p)+1/p}, and v is Euler’s constant. On the
other hand, a few results are known as to the value of V(S(x)) or that

of W(S(x)) for specially chosen set S(z). For example, H. Halberstam
([2]) proved that if g(X) is an irreducible polynomial with integral

coefficients and S*(z)={g(p); » € P, g(p)=x}, then
V(S*(x))~log, « .

However, we can not decide whether V(S*(x)) is larger than V(N(x)) or
not, because no estimate is obtained for error terms for this S*(x).

In this paper we shall consider a positive valued non-decreasing
function f(x) majorized by C(logx)™* with a constant C and a positive
<1, and the subset Mg(x) of N(x), whose elements m are composite
numbers satisfying 1=<||n|=f(x), i.e., neP and nel[p—flx), p+(2)],
where p is the nearest prime to n. For this M,(x), we shall prove

THEOREM 1. For the set My (x) defined above, we have

1
p(p—1)

+O((log x)*(log, x)(log; %)) ,

(1.3) V(M () =log, x+ {A+ p¥ —log 2+ a,(x)}

where ay(x) 18 a function satisfying

—;—éaf(w)él ,

and the constant implied by O-symbol depends at most on & and C.

We obtain from this theorem and (1.1),

1 1
—log2+—+0(1) .
pp—1) g2t gtel)

V(M (x))— VIN@) 22

On the other hand, numerical calculation gives

0.773141< 3, — L <0.773149
»s10¢ p(p—1)

and consequently, for sufficiently large x,

V(M (x))— V(N(x))>0.5799 .
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Concerning the function W(S(x)), we obtain
THEOREM 2. We have

W(My(x))= Z +O((log x)~*(log; x)) ,

1)2
where the constant implied by O-symbol depends only on & and C.

This result shows that

The following two theorems concern special cases of above theorems
where f(x) is constant.

THEOREM 3. Let Ny(®)={neN; 1=||n||=d, n=z} (d>1), then

(1.4) V(Ny(2))=log, x+ {A+E p(p_

+O((log x)*(log. %)) ,

5 log 2+ Bd(x)}

where Bi(x) 18 a function satisfying
1_ <1
?=Bd(x)= ’

and the constant implied by O-symbol depends only on d.

THEOREM 4. For the same N,(x),

(1.5) W(Nqy(%))= Z

1)2+ O((log z)~(log; x)) ,

where the constant implied by O-symbol depends only on d.
Thus we can say that, if we restrict the domain of average to those
composite integers in d-neighborhoods of primes, the corresponding

average of w(n) and that of {2(n)— w(n)} will be definitely larger than
the “standard” averages given in (1.1) and (1.2) respectively (see also

[6D.

I am grateful to Professor M. Tanaka for his kind advices.

§2. Some lemmas.

For an integer i, we put P,(x)={n; n=p+1, n=2 and pe P}, i.e., a
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sequence of shifted primes.

LEMMA 1. Suppose |i|<logx, then

_ 1 L@
CEVED m(n>_{1og2m+4+;g. oy leg 2 o) -

where the function o,(x) satisfies

1 log, = log,
2.2 —4+0 ) =1 —=2
2.2) 2+ <loga:)"5‘(x)" +O<logx> ’

and the constants implied by O-symbols are absolute.

PROOF.

3, @)= 3 3 1= 3, nlx—i;q, —1)+0@) .
nePy(X) p3z—1 q‘fﬂ%-:i gsz—1

Here we write y=2—1 and we divide the right-hand sum:

2y g, —9)= 3 wly; 9 —D)+ N 7wy g —1) -

9=y qsvy Y <¢gsy

We shall now evaluate S,=3 .7 7(y; ¢, —i) and S,=>\v; <, T(W; @, —1).
Bombieri’s theorem ([3]) shows that

5, Wi —d={ = —}Liw)+0(

¢sVyi—B ¢sv51-8 P(q)

)

logy/ '

where [=log ¥ and B is some suitably chosen positive number, and we
have by Brun-Titchmarsh’s theorem ([4: THEOREM 3.8])

S, wwq, —i)=0(L&Y)

Yyl—B<esvy Ing Y

Since 341-5<0svi 1/P())=0(log, y/log y), we have

5= {2;,— 90}q)} log Y * O(yl}:;%zyy>

={log2'y+A+Z
P

1 Y
—log 2 +8,(x) ,
p(p—1) }1ogy' ‘

where

s(@)=0(Y28L)

As to S,, Goldfeld’s result ([5]) shows that
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1 y Y log, y
r(Y=S,==— 2L +0(L—==22),
Wz28.z5 o+ (loggy)

where the constant impli’ed by O-symbol is absolute. Thus we have (2.1),
if we put

0.(@) = {S; + s.(w)}/x(log x)™* .

0,(x) satisfies (2.2) since [7|=Zlog x. q.e.d.
Let F' be a positive number, let b, (1=<:i<g) be integers satisfying
1<b,<b, <+ -<b,<2F, and put

D,=max (II ——-——)

1sps2F \pis p—1
P,,,... (®)={p; p=2, p+b,e P,1=i=¢},
Py,,.... (%5 k, )={p;'p € P,,,..., (), p=I(mod k)} ,
where k£ and [ are relatively prime integers.

LEMMA 2. Let a be an integer such that |a|<logx, then

I 3 4Py, .0, (05 0, ) =(8D;) - O( L1 L)
¢sz log?tt

1) 3 HPy, 0, (@5 0", a) =D, - 02 ) .
amse log**tt

PROOF. We make use of the following two estimates, both of which
are deduced from [4: THEOREM 2.4]: '

— . r
(2.3) #(Pbl,-n,bg(x))“'DFg O(lcg"+1 x> ’
kE O\t x/k
2.4 P, ..,(x; Kk 1)y=D;° Of ——=2 Y.
(2.4) B(Py o, 5 b, )=Ds(—05) (logg“ (30_))
~ k

We get from (2.3), by partial summation, that

2.5) oS, (08 =D 0<log” )-

For von Mangoldt’s function 4(n) we have

msz pePy ...,
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= 3 log(p— a)+0( Z log @)

pePp,,..., b, (%) Sgsz—a

PE P ure,byt2) {log » "'O(;)} +a-O(log )
= 2 logp+0(log 7).

Then from (2.5)

msz pePy,,..., bg(z:m a)A(m) D O(logﬂ )’
and especially, we obtain
(2.6) 3 S (logg)=Dy-0(2-).
gsz pePp,..., bglziq,a) lo go

Now
Sy @ G N={ T + 5 W Payns, @, 0))
=T+T,.

Then from (2.4), we get
T,= Z $(P,y,,....,(; g, @)

gs %3/
=Dt O(qsg“ (q —q;)"“) ' O(log"’:fl x”‘) =@Dp)* O( it;lg(:’%i Z) :

And, concerning 7T,, we obtain from (2.6)

T.= >} #(Psy,-0,(%5 g, @)

53“<GSZ

4 log q ( x )
<= —=2 =D .0 ———) .
- 8 qzs‘é peP,,l,.%g(z:q.a) log x r log?*t x

This concludes the proof of Lemma 2-I).
On the other hand,

”‘Es #(Py,,....s,(2; g™, @)

Lo(Py,....0 (25 0% @)

{qms,au + Z3d<gM<
mzz ma2

r'+T,.
Then from (2.4), we get
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Ti= 3 $(Py,....,®; ¢, @)
qm§,314
m22

=Dy"- O(ﬂ%ﬁiu q"‘(qq,:+ ;)v“) ' O<1og”f* w‘/‘)

=@D,) - 0(=2-),

log?*
because
9" g o)
«"'%zz q™(g—1)"*
And

T.= 3. #(Py,....,(%; 0", )
x314<q"‘§x
mn22

log = x
< 3 n@) - Z=0") .
m=2 X /4
Lemma 2-II) follows immediately from these formulas.
LEMMA 3.
D,=0(log, F') , a8 F—o oo,

Proor. If we put P,=T],<.», it is sufficient to prove I],<, (p/(p—1))=
O(log, P,). Mertens’s theorem shows that I],<. (p/(»—1))=0(log 2), and as

is well known, log, P,=log {3,<. log »}=O0(log z). This concludes the proof
of Lemma 3.

§3. Proofs of the theorems.

Now we start proving our theorems. We put F'=[f(x)], then, from
the assumption on f(x), we have F'<C(log x)'~*. We define

n 18 contained inm at least j-sequences
I(x)={m; ’

among P_g(x), ---, P_(z), P(x), - -+, Pe(x)
Q)=L@)NP.

It is easily seen that

3.1) L(@)DL(x)D---,

and therefore
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(3.1 $(L@)z L@z .

PrROOF OF THEOREM 1. In order to evaluate V(M;(x)), we decompose
its denominator and numerator, respectively, into three terms:

(3.2) (M ()= 3 #(PU@) -3 4L @) —$Q@) ,
@3) 3 em=3 3 em-3 5 om-§ee).
For the first term of the right-hand side of (8.2), we have obviously
z _ x x
3.4) S #@@=2F {02 ) .

To estimate the first term of the right-hand side of (8.3), we can apply
Lemma 1, since F'<log x for sufficiently large 2: -

35 3 3 a)(n)=2F{log2x+A+Z 1 —-1og2+a;(m)} z -
1$1=1 ne Py(z) P p(p——l) log Xy

where ajy(x)=(1/2F) 3.{;-, 0,(x). And, from Lemma 1, a’(x) can be written”
in the form

(3.5  ai@)=a,x)+v(x), %éaf(w)él, 7s(@)=0 %f)’

where the constant implied by O-symbol depends only on C.
For the remaining terms of (3.2) and (3.8), we shall prove that

(3.6) z ¥ (I(2))=F - O(z(log 2)~*~*(log, 7)) ,
3.7) #(Q(@))=F - O(z(log )~*(log, ) ,
(3.8) S, S wm)=F-O@(log x)~(log, z)(log, )) ,

j=2 nelj(z)

where the constants implied by O-symbols depend on ¢ and C. Once
these formulas obtained, we can deduce from (8.4), (8.6) and (3.7) that

(3.2 # (M (@) =2F{1+0((log 2)™(log, )}y zr _,
og x
and, form (3.5), (3.5"), (3.7) and (3.8), that
’ — 1 —
I w(n)-2F{log,x+A+Zp, Ty lo8 2
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+ ay(x) +7,(x) + O((log x)~*(log, x)(log, w))} o

log x
=2Filog, x+ A+ —log 2+ (x
{ g Zp.p(p__l) g (@)
" +0((log #)(log; 2)(log, 2| =
og ¥

Then our Theorem 1 will be immediate from (3.2") and (3.3') .

PrOOF OF (3.6). Concerning #(I;(x)), we obtain from (2.3) the follow-
ing estimate: ‘
#(I(=)= . > {# (Pay—ay,--era1—a (@) + O(1)}

—Fsa§<-+<0;sF
ajeecaj#0

= FiDi. O<1ogf x) .

Since F'=0((log x)*"*) and D,=0(log; ) (Lemma 3),
(3.9) %(L;(x))=F -O(x(log )™~ ~*(log, )" ™)
Let R be a natural integer satisfying R>1+4(1/¢). Then, by the aid of
the relation (3.1') and (3.9), we have
2F R—1 2F
S LS 3 # U@ + 3 $U@)

SR -#(I(x)+2F - (1))

=F - O(x(log ) *~*(log; «)) + F'* - O(x(log )~ V*(log, x)*)
= F{O(x(log )7 *(log, ) + O(x(log )~ **(log, #)* ")}

=F - O(z(log x)"'~*(log, x)) .

This proves (3.6).
(8.7) is proved directly from (2.3).

PROOF OF (3.8). Concerning 3, @(n), we obtain, from our Lemma
2-I), the following estimate:

>, w(n)= P {3 4 (Payayoray—a; (25 @, —ay))+O(log @)}
nelj(z) —F§Z{-<-:;}i%1§F 9=z

= F¥(8D;)"*- O(x(log «)(log, ®))
=F -O(z(log )~ *(log, x)(8 log, «)" ) .

We get, for the same R as in the proof of (3.6), that
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S S on)<R 3 om+2F_ 3, o)

i=2 nelj(z) nelg(z) nelp(z)

=F - O(z(log )™ ~*(log, x)(8 log, x))
+ F' - O(x(log =)~ *(log, )(8 log, x)**)
=F.O(x(log )*~*(log, z)(log; x)) .
~ Consequently, we obtain (8.8) and this accomplishes the proof of Theorem 1.

PROOF OF THEOREM 2. Since we have already obtained the estimate
of #(M,(x)) in (8.2"), it is sufficient to show

E _ 1 1 x
(3.10) pI % 1_2F{§, == 1)24-0( logw)} o
(3.11) S S S 1=F-0(x(log x)-*(log, z)) .

j=2 nelj(z) gm),
ma2

In fact, once we obtain these two formulas, we can deduce from them
that

_ 1 — x
B, (A~ @) =2F{S, 2o+ 0(log ) logy )} 12
Then this formula and (8.2") give a proof of Theorem 2.

We can prove (3.10) in a similar way as in our proof of Lemma 1;
for any 7+ (1=|4|=[f(x)]), we put y=x—1, then

S+ 3+ 5 lawe, -0,

nePy(z) a™in {q"‘s Yy Yy <amsy3s ySlalgmgy
n22 ma2 m22 ma2

and we can prove, again by the aid of Bombieri’s theorem and Brun-
Titchmarsh’s theorem, that

ca™ i) — 1 1 Y
“%‘? " =Y {5"" (p—l)’+o<logy }logy ’
n(y; q~, —1)=0(y") ,

vy <gmsy3/t
mz2

2 7(y; qt, —9)=0@u"") .

y3li<gmgy
mz2

Since y=x+O0(log x), these results give (3.10).
Concerning the formula (3.11), making use of Lemma 2-II), we get
2 Z 1= Z Z #(Pal—ag Gl—llj(x; q." _al))

nelz(x) a™in —FSG}< <¢1$F ™Se
n22 aj eeeee «;#0 “pSy
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=F - O(x(log x)™'~'"~"*(8 log; x) ) .
Then we obtain (3.11) similarly as in our proof of (3.8).

Theorems 3 and 4 can be proved similarly as Theorems 1 and 2
respectively. We remark here that, if we take ¢=1 in our Theorem 1,
we obtain as a corollary that,

V(N@)=log, n+(A+5 —L——log 2+ 8,(x)}

» p(p—1)

+O(HEZL).

Theorem 3 shows that we can improve the estimate of the error term

in this formula into O((log, x)(log x)™*). In fact, in the case of N,(x),
D,=max, o< (IL,; (»/(»—1))) turns out to be a constant, and consequently,

log, * does not appear.

Our Theorem 1 gives only a range of values of ay(x). A more
precise evaluate of a,(x) would be obtained, if an asymptotic formula
of the following form could be proved:

#(Si(x)~C; - n(x) ,

where S,(x)={p; p<wx, p+1i has a prime factor greater than V 'z} and
C, is a constant depending only on 4. In this connection, we have a
conjecture that

¥(Su(x))~(log 2) - 7() .

If this is true, (1.1), (1.2) and (1.8) will give the following interesting
relation:

V(M (x)) — V(N(x)) ~ W(N())

as x— oco. Incidentally I notice that the following asymptotic formula
is easy to prove:

¥(Ty(x))~(og2) -z,

where T (x)={n; n=<x, n+1i has a prime factor greater than V x}.
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