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Introduction

When the theory of Sato-hyperfunctions appeared in 1958, J. Sebastiao
e Silva attempted to construct a space of ultra-distributions which con-
tains the space ' of tempered ultra-distributions and the space H’ of
all distributions of exponential growth and is stable under the Fourier
transformation. He defined the space which he named the space of
ultra-distributions of exponential type and obtained some important
results for one-dimensional case [10].

(On the other hand, he studied the space ' of tempered ultra-
distributions for the one-dimensional space. Hasumi [1] extended the
space for the n-dimensional space and obtained some valuable results.)

The n-dimensional case was studied by Y. S. Park and M. Morimoto
[11]. We defined the space Q(C™) which was included and dense in the
spaces H(R") and $(C") and stable under the Fourier transformation.
The dual space Q'(C") of Q(C*) includes the spaces H'(R") and £'(C™).
The elements of the dual space Q’(C*) are called the Fourier ultra-
hyperfunctions in the Euclidean n-space.

The extension of the theory of Fourier hyperfunctions in T. Kawai
[6] to vector valued case was studied by Y. Ito [2], Y. Ito and S.
Nagamachi [3], [4], and other mathematicians.

In this paper, we establish the theory of Fourier ultra-hyperfunctions
valued in a Fréchet space.

Our results are roughly as follows. Let @Q,(T"(K); K') be the space
of all continuous functions f on R"+¢K which are holomorphic in the
interior of R*+1K and satisfy the estimate:

sup {exp (z, )| f@)|; ne K', ze R*+iK}< oo,
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where KC R2(resp. K'C R?) is a convex compact set with non-void interior
K(resp. K'). We put

QT™(K); K")=lim ind QTXL); L) ,

K'ccL’

where T"(K)=R"+iK and LcCR? and L'CR? are convex compact sets.
For an open set U of R: and an open set U’ of R?, we put

Q(T"(U); U')=lim proj Q(T™(K); K) .
K'ccUu’
Then the spaces Q(T*(K); K') and Q(T*(U); U’) are nuclear (Theorem 2.1).
Therefore, the e-topology coincides with the z-topology on the tensor
product space Q(T™(U); U)RQRT*(V); V'). The space Q(T™(U); UNQ
Q(T*(V); V') is dense in the space Q(T™*(Ux V); U’'x V') (Theorem 2.3).
The induced topology on the tensor product space Q(T™(U); U)K
Q(T*(V); V') from the original topology of the FS-space QT (UX V);
U’'x V') coincides with the m-topology. .
Consequently we have the canonical isomorphisms:

QUT™~(U); UNKQTY(V); V)=Q(T**(Ux V); U'x V') and
QT~(K); K"NQQT™(L); L") =Q(T™(KxL): K'xL') .

We have the similar canonical isomorphisms for the dual spaces
Q(T~(U); U, Q(T~K); K'), Q'(C™) and Q'(R™).

For a Fréchet space E, we define Q'(T"(U), U’; E) to be the space
of all continuous linear mappings from Q(T™(U); U’) to E. Similarly we
define Q'(T*(K), K'; E). Q'(T*(R"), R*; E) is denoted by Q’'(C*; E) and
Q'(T"(0), (0); E) is denoted by Q'(R"; E). An element of Q'(C"; E) (resp.
Q'(R"; E)) is called a Fourier ultra-hyperfunction (resp. Fourier hyperfunc-
tion) valued in the‘-Fréchet space EZ. We prove the canonical isomorphisms:

Q(TU), U'; B)y=Q(T~(U); URE, etc. .

For feQ(T™U); U’) and geQ(T*(V); V'), the convolution frg is
defined by f=* g(x+zy)_s fu+iv)g((®+1y)— (u+1v))du, where z, u € R,
veUand ye V+ U. Then f*g belongs to Q(I"(U+V); U'nV’), which
allows us to define the convolution between feQ(T"(U’); U) and
SeQ(T«(V"), V; E).

We have the useful diagrams for the test function spaces and their E-
valued spaces (Proposition 4.2 and Theorem 4.8). The Fourier transforma-

tion .# establishes a linear topological isomorphism: Q' (T*(U), U’; E)>
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Q(T*(—U"), U; E) (resp. Q(T*(K), K'; E)5Q(T(—K), K; E)).

Section 1 is concerned with definitions and some properties of the
test function spaces; section 2 with some theorems for the test function
spaces and their tensor products; section 8 with Fourier ultra-hyper-
functions valued in a Fréchet space; and section 4 with multiplication,
convolution, and Fourier transformation.

I deeply thank professors A. Kaneko, M. Morimoto and H. Komatsu
for their continuing interest, suggestions and help in preparing this
paper.

§1. Definitions and some properties of the test function spaces.

We recall some definitions. <7(R") is, by definition, the space of all
C>-functions on R" with compact carrier. S (R") is, by definition, the
space of all rapidly decreasing C~-functions on R". For an open convex
subset U’ of R, let H(R"; U’) be the space of all C~-functions @(x) on
R such that for every element 7 of U’, the function exp ({7, x))P(x)
belongs to the space & (R"). Then, Z/(R")C H(R")=H(R"; RY»C H(R";, U")
and 2 (R") is dense in H(R") and in H(R"; U’). Let 2 be an open set
in C* and let 2°(R) be the space of all holomorphic functions defined on
Q. We endow &(R) with the topology of uniform convergence on every
compact subset of 2. £(2) is a Fréchet space.

We will use the notation T"(A)=R"+iAcCR"+iR"=C" for a subset
A of R" in order to clarify the dimension.

Let 9(T"(U’)) be the space of all holomorphic functions (C) on
T»(U’) such that for any K'ccU’' and any m=0,1, ---, |z m < 0,
where ||4|lx..=8up {|C?)], L€ T*(K"), 0=|p|<m}. An element of the
space H(T*(U") is called a rapidly decreasing holomorphic function on
T~(U'). Then, (T*(U")) is an FS-space. We denote H(C™)=H(T"(R™)).

DEFINITION 1.1. Suppose a convex compact set KC R} (resp. K '"CcR?)
has a nonempty interior K (resp. K'). Then we denote by Q,(T"(K); K')
the space of all continuous functions on T"(K) which are holomorphic in
the interior T*(K) of T*(K) and satisfy the estimate:

(1) sup {exp ((x, P)|f@)|; 7€ K', 2€ TH(K)}< oo .
Q,(T~(K); K') is a Banach space with the norm
(2) | 7 |,z =sup {exp =z, Y |f(@); 7€ K', z€ T*(K)} .

If K,cK, and K/cK, are convex compact sets of R and R?, then
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we have the canonical injection induced by the restriction mapping:

(3) Qu(T™(Ky); K))=>Qy(T™(K,); K7) .
We put
(4) QT™K); K')= lignc icr;d Q(T™L); L"),

where LcR? and L’'CR? are convex compact sets.

For an open convex set U of R” and an open convex set U’ of R?,
we put

(5) UTW); U)=lim proj @y(T~(L); L") .

L'ccUu’

The inductive limit and the projective limit are taken following the
canonical mappings (8). We will denote QREC"N=Q(T*(R™; R™), which is
the space of entire functions supra-exponentially decreasing on any
horizontal bands. We will denote Q(R")=Q(T*(0); (0)). The space Q(R")
of infra-exponential real analytic functions was denoted by (D) in
Kawai [5].

PROPOSITION 1.2. The space Q(TYK); K') (resp. Q(TU); U")) endowed
with the locally comwex inductive (resp. projective) limit topology is a
DF'S-space (resp. an F'S-space).

In fact, the restriction mapping (3) is continuous and compact. The
space Q(T™(K); K’) (resp. Q(T"(U); U")) is the inductive (resp. projective)
limit of the increasing (resp. decreasing) sequence of Banach spaces by
the injective restriction mappings (3). Hence Q(T"(K); K') (resp.
Q(T™(U); U")) is a DFS-space (resp. an FS-space). (See Komatsu [6].)

Q.E.D.

The following proposition asserts the relation between the spaces
Q(T*(U); U’) and the spaces $(T(U)).

PROPOSITION 1.8. For open convexr sets Uc R} and U’'CR?,
Q(T™(U); U') is the space of all holomorphic functions ®(z) on T™(U)
such that for every ne U’, the function exp ({m, 2))p(z) belongs to the
space H(T(U)).

We omit the proof of Proposition 1.8. The following lemma is
standard and we need it in the proof of the following proposition.
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LEMMA 1.4. Suppose X; (resp. X}) and Y; (resp. Y;) are locally
convex wvector spaces (resp. dual spaces). Assume that we have the
following commutative diagram: ‘

X, — X, — Xy ¢— -+
N/ NSNS
Y, « Y, < Y, —

(Tesp X]_ —_ X2 n— X3

NN

Yx—“—’Yz""’"’Ys ce)

Then we have lim proj X;=1im proj Y; ('resp. lim ind X}=1im ind Y3).
ProroSITION 1.5.
(i) QI™K); K")=lim igd QTU); U") .

K'ccUu’
(i) QT"(U); U")=lim proj QT"(K); K") .
K'ccU’
PROOF. (i) By formula (4) in Definition 1.1, we have
Q(T™(K); K')=lim ind Qu(T™(L); L)
cclL
K'ccL’

We choose a sequence {U;} of open convex sets such that .--L;D U;,D
LJ’+1D Uj+lDLj+2' .. ‘—’Kc We have

s o — Q(T™(Ly); Lj) — Qu(T*(Ly11); Lisn) - - - — Q(T™(K); K)

N/ N/

e —— QTYU); Up) — QT™(Uysn); Uj) — -+

Hence we get, by Lemma 1.4, lim proj Q(T™(U;); U;)=1lim proj @,(T*(Ly; L3,
from which results (i).

The proof of (ii) depends also on Lemma 1.4 and is similar to the
above. Q.E.D.

§2. Some theorems for the test function spaces and their tensor
products. '

THEOREM 2.1. The spaces Q(T™(U); U") and Q(T*(K); K') are nuclear,
where U (resp. U') is an open convex set im R} (resp. R}) and K (resp.
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K') is a convexr compact set in R> (resp. R?).

PROOF. We employ the fact that the space .S“(R") of rapidly de-
creasing C~-functions in R", is nuclear. Let L be a convex compact set
in R with non-void interior. We define

(6) & (TY(L))={f e C~(T~(L)); For any N, p, q,
sup {|(L+|=x()¥(8/0x)*(3/0y)'f(x, ¥)|; x € R", y e L} < oo},

where feC~(T"(L)) means that f is a C~-function on the interior T~ L)
and for any multi-indices p, ¢, the derived functions (0/ox)*(3/oy)"f (x, ¥)
are continuous on T*(L). If we define a topology on the space .&° (T~(L))
by the seminorms:

| llv.p.e=sup {| 7 (3/02)?(3/0y)*f(%, )|; ¢ € R*, y € L} ,

then S”(T*(L)) is a nuclear space.

Indeed, ¥ (T™(L)) is the quotient space of “.4(C™), where C"=R"+
tR", by its closed subspace consisting of the functions vanishing on
T™(L). This follows from the Whitney extension theorem applied on
the sphere S*, the compactification of R".

For any convex compact set L’ and ¢>0, we choose a C>-function
P.,(x) satisfying the condition

sup (z, 7)>§¢L'..(w)§svueg, (x, 7).

Then #(T*(L)) exp (— @, .(x)) is also a nuclear space. Hence the space
F(T™(L)) exp (—@y...(x)) N Z(T(L)) is nuclear. As we have

(T)  QUT™(K); K')=lim ind S(TL)) exp (— P,-..()) N P(T(L)) ,

K'ccL!
>0

the space Q(T™(K); K') is nuclear.
The nuclearity of the space Q(T"(U); U’) results from the nuclearity
of the space Q(T*(K); K') and Proposition 1.5. Q.E.D.

COROLLARY 2.2. On the temsor product space QIT~(U); UNK
Q(T*(V); V') the e-topology coincides with the w-topology, where UC R™,
U'CR?, VCR? and V'CR? are open convex sets.

PROOF. See Theorem 50.1(f), p. 511 in F. Tréves [12].

THEOREM 2.3. The tensor product space Q(T™(U); UHQRT(V); V)
18 demse in the space Q(T™*(Ux V); U'x V).
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PROOF. Let f(z)e@Q(T**(UxV);U'xV’'). For £¢>0, we denote
C(e)=(me)~™+t™/2, Let us define the function F.(z):

(8) F()=1@ 1 0 exp (-1#)

=C(e) S J(w) exp ( —-—:—(z— w)’)dw ’

Im w=(%g, g
where (u,, v,) € UX V is a fixed veetor, 2=(2,, -, Zmin)y W=(Wy, ***, Wnin)
and (z—w)*=3""(z;—w;):. Then F,(2)e@T™"(UxV),U'xV'), and

F'(z) converges to f(z) in the space Q(T™*"(U x V), UxV') as e—0. On
the other hand, the Riemann sum

(9) é‘{ F(w)C(e) exp _(—-%(z—wf)z)dw;

converges to F.,(z) as N— oo in the space Q(T™*"(Ux V); U'x V'), where

Z2=(Ryy ) Bmin)s Wi=(Wyy, ***) Wipmsn)s (Z—w)=D74" (2; —wii) and dw,=
;n—.*i“ Aw”‘. As

Fw)C(E) exp (—-z—w)*)dw,

- =f(w,)C(e) exp ( ——% ,231 (z;— wt,-)z) ,I:il dw,;

o (<2 5 rmwa) I,
the Riemann sum IV, f(w,)C(e) exp (—(1/e)(z—w,))dw,; belongs to
QT™(U); UNRKRAQ(T(V); V). Q.E.D.

THEOREM 2.4. Let .7 be the induced topology onmn the space
QUT™(U); UNKQRT(V); V") from the original topology 7, of the FS-
space QT (UxV); U'xV'). Then the topology .7~ coincides with the
w-topology.

PrROOF. By Corollary 2.2, the n-topology coincides with the e-topology
on Q(T™(U); UNKQQ(T(V); V'). If we equip QT™(U); UNKXT(V); V')
with the topology .7, the bilinear map

10)  Q(T™(U); UNxQ(T™(V); V)—Q(T™(U); UNQKT(V); V')

defined by (f, 9) —>fRg is continuous. Since the n-topology on the space
QIT™(U); UNKRR(T*(V); V') is the strongest locally convex topology for
which the bilinear map (10) is continuous, the 7-topology is finer than the
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topology .. On the other hand, if {f,} is a sequence of elements of
QUT™(U); UNKRK(T™(V); V') converging to zero for the topology .7, then
the sequence {f,}] converges to zero for the e-topology. Hence the
topology .7~ is finer than the &-topology. Q.E.D.

Consequently we have the following canonical isomorphisms:

THEOREM 2.5. (i) Q(T™~(U); UNRQT(V); V') =Q(T~(U x V);
U xV'), where UcRr, U'CcR?, VCR: and V'CR? are open convex

gsets. . :
(i) QIT~K); KNQQTL); L) =Q(T~(K x L); K'x L"), where
KcR?, K'CcR?, LCR? and L'CR? are convex compact sets.

As special cases, we have the following canonical isomorphisms.

COROLLARY 2.6. (i) Q(T"(U))@Q(T"( V=T (Ux V)).

(ii) Q(C")®Q(C") Q™).

(iii) Q(T"(If NRQTL)) =Q(T***(K x L)). -

(iv) QR™QIJQUER")=Q(R™™").

As for the spaces of type 9, the following theorem is valid. We
mention it without proof.

THEOREM 2.7. .@(T"‘(U))@@(T"(V)):—’:@(T"‘*"(Ux V).

COROLLARY 2.8. H(C™RH(C")=H(C™+™).

§3. Fourier ulra-hyperfunctions valued in a Fréchet space.

DEFINITION 3.1. For a Fréchet space E, we define Q'(T*(U), U’; E)
to be the space of all continuous linear mappings from Q(T*(U); U") to
E, namely

Q(TU), U'; E)=LQ(TY(U); U'); &) .
Similarly we put |
Q(TY(K), K'; E)=L(@Q(T*(K); K'); E) .
We will denote Q'(C"; E)=Q'(T*(R"), R"; E) and Q'(R"; E)=Q'(T"(0),

(0); E). An element of Q'(C™; E) (resp. Q'(R™; E)) is called a Fourier
ultra-hyper function (resp. Fou'me'r hyperfunction) valued in the Fréchet

space K.
DEFINITION 3.2. Suppose SeQ'(T*(U),U’; E) and KccU, K'ccU".
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The product set Kx K'cR*"x R" is said to be a carrier of S, if S can
be extended to a continuous linear mapping of Q(T*(K); K') to E.

PROPOSITION 3.3. Let E be a Fréchet space.

(i) QW) U; B)=@(TU); U)RE,
where UCR: and U ' CR? are convex open sets.

(i) Q(IT™K), K'; B)=Q(TK): K"QFE ,

where KC R? and K' C R? are convex compact sets. In the above foé'mulas;
Q(T*U); U and Q'(T™K); K') are dual spaces of Q(T™(U); U") and
Q(T*(K); K’) respectively.

PrOOF. See Proposition 50.50, p. 522 in F. Tréves [12]. |
COROLLARY 3.4. (i) Q'(C™ E)=Q'(C"RE.
(ii) Q'(R" E)=Q(R“QL.

PROPOSITION 3.5. We have the following canonical isomorphisms for
the dual spaces:

(1) QUI™U); UNRQ(T(V), VIZLQIT™U); U Q(ITV); V)=
Q(T™(Ux V), U'xV').
(ii) Q(I'™(K); K')QQ'(T™(L); L') = LQT™K); K'); Q(T™(L); L)) =
Q(T™(Kx L); K'xL').

PROOF. (i) is obvious by Proposition 50.7, and formula (50.16), p. 524
in F.Treéves [12]. The proof of (ii) is clear by Theorem 2.5 (i) and
Proposition 50.7 and formula (50.16) in F. Tréves [12].

COROLLARY 3.6. (i) @’ (C’")®Q’(C")~Q'(C"‘+“)

(i) QER"IQR")=Q(R™™).

PRrROPOSITION 3.7. We have the following camonical isomorphisms:

(i) QIT~U), U'; BYRQ(TYV), V'; F)=

' QI ~(UxV), U x V' E®F),
(ii) Q(IT™~XK), K'; BYRQ'(T*L), L'; F)= ~
QI KxL), K'xL'; EQF),

where E and F are Fréchet spaces and the tensor products are topologzzed
by the e-topology or the m-topology in each statement.

PrROOF. Tensor products of locally convex Hausdorff spaces are com-
mutative and associative. From Propositions 3.3, 3.5 and the above
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mentioned properties, the statements are obvious. Q.E.D.

COROLLARY 38.8. Let E and F be Fréchet spaces.

(i) QC~ E)XQRQ(C™ F)=Q(C; EQF) ,

(i) Q(R™; E)YRQ(R"; F)=Q(R™*"; EQF),
where the temsor products are topologized by the e-topology or the =-
topology in each statement.

We mention without proof the results concerning the spaces of
type 9.

PROPOSITION 3.9. $£'(C*; E)=$'(C"KE.
PROPOSITION 3.10. £'(C™&X$'(C™)='(C*).
PROPOSITION 3.11. £'(C™; E)R9'(C™; F)=%'(C™+"; EQF).

§4. Multiplication, convolution and Fourier transformation.

For o e Q(T™(U); U’), we define the Fourier transformation .# @ of
® by

FoO=30)=\_ p@-+iy) exp (—ia-+iy, D)o .
Then, & gives a linear topological isomorphisﬂi:

QT~U); U)—s Q(T~(U"); —U) .

For every feQ(T*(U); U') and geQT™V); V'), focQT~UNV);
Uu+v.

PROPOSITION 4.1. For feQ(T™(U); U"), geQT™V); V'), we define
the convolution f*g of f and g as follows:

Fro@+iy)=| futivig(@+iy)—@+iv)du

=\ f+iv, o, utiv)
X g((@y—u) +i(y— ), -+, (Ba—Un) +2(Yu—v,))du, - - -du, ,

where x, uc R*, ve U and y€ V+U. Then fxg 18 defined independently
of v and belongs to QT (U+V); U'NV’'). The correspondence (f, g)—
f*g i8 continuous.

PrROOF. This can be seen directly from the above definition.
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élternatively, we can employ the obvious identity & (f*g) =f-g. Since
FeQT~U"; —U) and §eQ(TV'); —V), f-§ clearly belongs to the
space QT(U'NV"); —(U+V)). Hence fxgeQ(T*(U+ V), U'NnV’). The
continuity is obvious. Q.E.D.

PROPOSITION 4.2. We have the following diagram:
QT(UY; U x QUI(VY; V)~ IUn V); U+ V)

1..9’
QTU"Y; — U)X QITHVY; — V)~ QU+ V"); =UN V),

lf’xﬁ’

where the horizontal arrows () and (*) are the multiplication and the
convolution respectively. The vertical arrows are the Fourier trans-
formations.

DEFINITION 4.3. Let U, V, WcR? and U’, V', W CR? be convex open
sets and let K, L, McR? and K'’, L', M'C R} be convex compact sets.
We assume that UN WoV, KNM>DL and that U'+ W'D V', K'+M'D
L'. If fe@QT(U); U") (resp. feQT"(K); K")) and SeQ(T*(V), V'; k)
(resp. Se@Q(T*(L), L'; E)), then we define fSeQ(T(W), W'; E) (resp.
fSe@Q (T (M), M'; E)) by the formula

A1)  (fS)e)=S(fg) for all geQT(W); W’) (resp. g€ Q(T"(M); M")) .

The legitimacy of this definition follows from the fact that the
correspondence g fg from Q(T*(W); W’) to Q(T*(V); V') is continuous.
Remark that when we can take W=V and W’'= V'’ (which is equivalent
to assuming that V’30), then Q' (T*(V), V'; E) becomes a Q(T™(U); U')-
module. Similar assertion holds for the other type.

We have the following definition of the tensor products of Fourier
ultra-hyperfunctions valued in a Fréchet space.

DEFINITION 4.4. Let Se@(T~U), U'; E) and TeQ'(TY(V), V'; F).
We define ST by the formula

(12) SRT(f®9)=S(H®T(g) for feQT™(U);U") and
geQ(TY(V); V). Then SQTeQ (T (UxYV), U'xV'; EQF).

DEFINITION 4.5. For SeQ(T*(U), U'; E) (resp. Q(T*(K), K'; E)) we
define the Fourier transformation .# S of S as follows:

(13) (FS, fr=X8, FfH=8(FF)
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where fe Q(T*(—U’); U) (resp. Q(T*(—K"); K)).

THEOREM 4.6. The Fourier transformation F establishes a lmea'r
topological isomorphism: :

Q(T™(U), U'; B)——Q(T(—U"), U; E) (resp.
Q(T"(K), K'; E)— Q(T(—K"), K; B)) .
PROOF. We can easily prove it.

DEFINITION 4.7. ‘Let U, V, W, U’, V', W', K, L, M, K', I and
M’ be-as in Definition 4.3. If feQ(T™(U"); U) (resp. fe Q(T*(K'): K))
and Se Q(T(V’), V; E) (resp. Se Q(T"(L"), L; E)), then we define f*xSe
Q(T(W'), W; E) (resp. f*SeQ(T*(M"), M; E)) by the formula

.(14) (f*S)(@)=S(f*g) for all ge QT(W’); W) (resp. g € Q(T*(M’), M)).

The legitimacy of this definition follows from Proposition 4.1.
Summing up, we have obtained

THEOREM 4.8. Let U, V, W, U’, V' and W’ be as in Definition
4.3. We have the following diagram:

QT UY; U)x @IV, V'; B)-T"(W), W, )
lfx.ﬁ" l.r
QUTU", — U)X Q(T(V"), — V; B)-HQ(T"W'), —W; E) .

There are many other sorts of coupling concerning the convolution.
For example, when U’D V', the result of the convolution becomes an
analytic function. In order to present these assertions in a systematic
way, it will be convenient to introduce also the space of exponentially
increasing analytic functions. Here we content ourselves by giving one
additional remark:

- THEOREM 4.9. Let f be a hyperfunction with compact support.
Then fx defines a continuous linear mapping of Q(T*(K), K'; E) into
itself. Assume further that f is slowly decreasing, that is, (Ff)(Q)
satisfies:

(15) given any €>0, there exists n, such that fo'r any &€ R" satisfying
|&|>n,, we can find neC such that

) e—7l<e,

i) [(Ff)n)|=exp(— eISI)

Then f* is surjective.
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In fact, the convolution can be defined via the Fourier transforma-
tion by way of the multiplication of the entire function (ZF )() which
is of infra-exponential growth on every tube with bounded base. The
surjectivity of f* under the assumption (15) is proved by Kawai [5] for
the space Q'(T™(0);0), i.e., for the Fourier hyperfunctions. The method
applies to our space Q'(T"(K); K') without modification. Then the result
extends to Q' (T*K), K'; E)=Q'(T"(K); K’)®E by virtue of Proposition
43.9 in [12], because the operator f* on this space is obviously equal to
the tensor product of f* on Q'(T™(K); K') with 1.

In view of the well known Malgrange inequality, a differential
operator of finite order with constant coefficients satisfies the above
assumptions as a convolution operator, hence operates surjectively on
Q' (T*(K), K'; E). As another example, for given f¢ Q(TY(K), K'; E) we
can always find u e Q(TYK), K'; E) satisfying u(x+1)—u(@)=f(2).
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