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Examples of Simply Connected Compact Complex 3-folds

Masahide KATO

Sophia University

In this note, we shall construct a series of compact complex
manifolds $\{M_{n}\}_{n=1,2,3},\cdots$ of dimension 3 which are non-algebraic and non-
kahler with the numerical characters $\pi_{1}(M_{n})=0,$ $\pi_{2}(M_{n})=Z,$ $b_{3}(M_{n})=4n$ ,
dim $H^{1}(M_{n}, P)\geqq n$ , and dim $H^{1}(M_{n}, \Omega^{1})\geqq n$ , where $\Omega^{p}$ is the sheaf of
germs of holomorphic p-forms. These examples show, in particular,
that, it is impossible to estimate $h^{p,q}(M)=\dim H^{q}(M, \Omega^{p})$ of a compact
complex manifold $M$ in terms of its $(p+q)$-th Betti number, contrary
to the case of dimension 2 or the case of kahler manifolds. To con-
struct these examples, we employ a method of connecting two manifolds
together to obtain a new one (see \S \S 3 and 4).

The discussions with Mr. H. Tsuji was very stimulating, to whom
the author would like to express his hearty thanks.

\S 1. We shall construct, in this section, a complex manifold $X$ of
dimension 3 with a projection

$p:X\rightarrow C$

such that
(i) $X-p^{-1}(0)$ is biholomorphic to the product of a primary Hopf

surface $ S_{\alpha}=C^{2}-\{0\}/\langle\alpha\rangle$ and $C^{*}=C-\{0\}$ with $\alpha=\exp 2\pi ia$ ;
(ii) $p^{-1}(0)$ is simply connected, and is a union of two primary

Hopf surfaces biholomorphic to $ S_{\beta j}=C^{2}-\{0\}/\langle\beta_{j}\rangle$ $(j=0,1)$ with $\beta_{\dot{f}}=$

exp $2\pi ib_{j}$ which intersect each other normally in an elliptic curve,
where $a\in C$ is a fixed constant satisfying ${\rm Im} a>0,$ $b_{0}=a^{-1}$ , and $b_{1}=(1-a)^{-1}$ .
Let aeC be a fixed number such that Ima $>0$ . Then $\alpha=\exp 2\pi ia$

satisfies $0<|\alpha|<1$ . The multiplication $\xi\mapsto\alpha\xi$ for $\xi\in C^{*}=\{\xi\in C;\xi\neq 0\}$

defines a holomorphic automorphism of $C^{*}$ and the quotient space $C=$

$ C^{*}/\langle\alpha\rangle$ is an elliptic curve. Denote by $[\xi]$ the point on $C$ corresponding
to $\xi eC^{*}$ . Take three copies $W_{\dot{f}},$ $j=1,2,3$ , of $C^{2}$ , on which we fix
standard systems of coordinates $(x_{j}, y_{j})$ . Let $X_{j}=W_{j}\times C$, and let ( $x_{j},$ $y_{j}$ :
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$[\xi_{j}])$ be their coordinates. We form the complex 3-fold $X$ by patching
$X_{\dot{f}}’ s$ as follows:

$X=\bigcup_{\dot{g}=1}^{3}X_{j}$ ,

$\{$

(1)

$x_{2}=x_{1}y_{1}$

$y_{2}=x_{1}^{-1}$ on $X_{1}\cap X_{2}$ ,
$[\xi_{2}]=[\xi_{1}x_{1}^{a}]$

$\dagger_{[\xi_{1}][\xi_{3}x_{3}^{a}y_{3}]}^{x_{1}=x_{3}^{-1}y_{3}^{-1}}y_{1}=x_{3}=$ on $X_{3}\cap X_{1}$ .

$\left\{\begin{array}{ll}x_{3}=x_{l}y_{2} & \\y_{3}=x_{2}^{-1} & on X_{2}\cap X_{8},\\[\xi_{8}]=[\xi_{2}x_{2}x_{2}^{-a} & \end{array}\right.$

It is easy to check that the patching is well-defined. Let $p$ be the
holomorphic mapping of $X$ onto $C$ given by

(2) $p=\left\{\begin{array}{ll}y_{1} & on X_{1}\\x_{2}y_{2} & on X_{2}\\x_{8} & on X_{3}.\end{array}\right.$

We shall show that the fibre space

$p:X\rightarrow C$

has the desired properties (i) and (ii), and see also some additional
facts. Consider the following two 2-folds $S_{0}$ and $S_{1}$ in $X$:

$S_{0}$ : $y_{1}=0$ in $X_{\iota}$ , and $x_{2}=0$ in $X_{2}$

(3)
$S_{1}$ : $y_{2}=0$ in $X_{2}$, and $x_{3}=0$ in $X_{3}$ ,

which are biholomorphic, respectively, to the primary Hopf surfaces
$ S_{\beta_{j}}=C^{2}-\{0\}/\langle\beta_{j}\rangle$ , $j=0,1$ ,

where $\langle\beta_{\dot{f}}\rangle$ is the infinite cyclic group generated by the holomorphic
automorphism

$\beta_{j}:C^{2}-\{0\}\rightarrow C^{2}-\{0\}$

$w$ $w$

$(x, y)\mapsto(\beta_{j}x, \beta_{j}y)$ .
In fact, let

$\varphi_{01}:S_{0}\cap X_{1}\rightarrow S_{\beta_{0}}$

be given by
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$\left\{\begin{array}{l}x=\xi_{1}^{a/1}\\y=x_{1}\xi_{1}^{1/a}\end{array}\right.$

and let
$\varphi_{02}:S_{0}\cap X_{2}\rightarrow S_{\beta_{0}}$

be given by

$\left\{\begin{array}{l}x=y_{2}\xi_{2}^{1/a}\\y=\xi_{2}^{1\dagger a}\end{array}\right.$

Then

$\varphi_{0}=\left\{\begin{array}{ll}\varphi_{01} & on S_{0}\cap X_{1}\\\varphi_{02} & on S_{0}\cap X_{2}\end{array}\right.$

gives a biholomorphic mapping of $S_{0}$ onto $S_{\beta_{0}}$ . Similarly, let

$\psi_{12}:S_{1}\cap X_{2}\rightarrow S_{\beta_{1}}$

be given by

$\left\{\begin{array}{l}x=\xi_{2}^{1/\langle 1-a)}\\y=x_{2}\xi_{2}^{1/(1-a)}\end{array}\right.$

and let
$\psi_{13}:S_{1}\cap X_{3}\rightarrow S_{\beta_{1}}$

be given by

$\left\{\begin{array}{l}x=y_{8}\xi_{8}^{1/(1-a)}\\y=\xi_{3}^{1/(1-a\}}\end{array}\right.$

Then

$\psi_{1}=\left\{\begin{array}{ll}\psi_{12} & on S_{1}\cap X_{2}\\\psi_{1\theta} & on S_{1}\cap X_{8}\end{array}\right.$

gives a biholomorphic mapping of $S_{1}$ onto $S_{\beta_{1}}$ . By (2) and (3), we
see that $p^{-1}(0)=S_{0}\cup S_{1}$ . Since $S_{0}\cap S_{1}$ is in $X_{2}$ and $S_{0}\cup S_{1}$ is given in $X_{l}$

by $x_{2}y_{2}=0,$ $S_{0}$ and $S_{1}$ intersect with each other normally in the elliptic
curve

$\{(x_{2}, y_{2}:[\xi_{2}]):x_{2}=y_{2}=0\}$ ,

which is biholomorphic to $ C^{*}/\langle\alpha\rangle$ . Note that $[\xi]\mapsto[\xi^{b_{j}}]$ gives a biholo-
morphic $\prime map|$ of $ C^{*}/\langle\alpha\rangle$ to $ C^{*}/\langle\beta_{j}\rangle$ . Thus we see that $X$ has the pro-
perty (ii) when we show the following.

PROPOSITION 1. $p^{-1}(0)$ is simply connected.
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PROOF. Since $\pi_{1}(p^{-1}(0))$ is generated by the elements of $\pi_{1}(S_{0}\cap S_{1})\cong$

$Z\oplus Z$, it is enough to show that each generator of $\pi_{1}(S_{0}nS_{1})$ is null-
homotopic in $\pi_{1}(p^{-1}(0))$ . Let $s$ and $t$ be real numbers such that $0\leqq s\leqq 1$ ,
and $0\leqq t\leqq 1$ . Put

$\gamma:[0,1]\rightarrow X_{2}$ , $\theta_{1}e[0,1]$ ,

$\left\{\begin{array}{l}x_{2}=0\\y_{2}=se^{-2\pi\theta_{1}}\\[\xi_{2}]=[e^{2\pi la\theta_{1}}]\end{array}\right.$

and
$\delta_{t}:[0,1]\rightarrow X_{2}$ , $\theta_{2}e[0,1]$ ,

$\left\{\begin{array}{l}x_{2}=te^{-2\pi l\theta_{2}}\\y_{2}=0\\[\xi_{2}]=[e^{2\pi(1-a)\theta_{2}}]\end{array}\right.$

Then we see easily the following:

$\gamma([0,1])\subset S_{0}$ for all $s$ , and $\gamma_{0}([0,1])\subset S_{0}\cap S_{1}$ ,
$\delta_{t}([0,1])\subset S_{1}$ for all $t$ , and $\delta_{0}([0,1])\subset S_{0}\cap S_{1}$ .

Moreover $\gamma_{0}$ and $\delta_{0}$ generate $\pi_{1}(S_{0}\cap S_{1})$ . To prove the proposition, it is
enough to show that $\gamma_{1}$ is null-homotopic in $S_{0}$ , and that $\delta_{1}$ is null-homo-
topic in $S_{1}$ . By (1), $\gamma_{1}$ is given in $X_{1}$ by

$\left\{\begin{array}{l}x_{1}=e^{2\pi i\theta_{1}}\\y_{1}=0\\[\xi_{1}]=[1]\end{array}\right.$

Hence $7_{1}$ is null-homotopic in $S_{0}\cap X_{1}\subset S_{0}$ . Similarly, $\delta_{1}$ is given in $X_{s}$ by

$x_{3}=0$

$y_{s}=e^{2\pi i\theta_{2}}$

$[\xi_{3}]=[1]$ .
Hence $\delta_{1}$ is null-homotopic in $S_{1}\cap X_{3}\subset S_{1}$ . Q.E.D.

Let

$W=\bigcup_{j=1}^{8}W_{j}$

be the complex 2-fold defined by patching $W_{\dot{f}}’ s$ as follows:
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$\left\{\begin{array}{l}x_{2}=x_{1}y_{1}\\y_{2}=x_{1}^{-1}\end{array}\right.$ on $W_{1}\cap W_{2}$ , $\left\{\begin{array}{l}x_{3}=x_{2}y_{2}\\y_{3}=x_{2}^{-1}\end{array}\right.$ on $W_{2}\cap W_{3}$ ,

$\left\{\begin{array}{l}x_{1}=x_{a}^{-\iota}y_{\overline{a}}^{1}\\y_{1}=x_{3}\end{array}\right.$ on $W_{3}\cap W_{1}$ .

Then the projections
$(x_{j}, y_{j}:[\xi_{\dot{\ell}}])\mapsto(x_{j}, y_{j})$

define a projection
$\pi_{z}:X\rightarrow W$ .

Note that $X$ becomes a complex analytic fibre bundle over $W$ with the
fibre $ C^{*}/\langle\alpha\rangle$ by means of this projection. Let $t$ be the holomorphic
mapping of $W$ onto $C$ given by

$t=\left\{\begin{array}{ll}y_{1} & on W_{1}\\x_{2}y_{2} & on W_{2}\\x_{3} & on W_{3}.\end{array}\right.$

Then we have the commutative diagram of projections:

$X\rightarrow^{\pi_{X}}$ $W$

$\backslash _{p_{\searrow}^{\backslash }\nearrow t}/C$

.
Take the primary Hopf surface

$ S_{\alpha}=C^{2}-\{0\}/\langle\alpha\rangle$ ,

which is defined by identifying $(x, y)eC^{2}-\{0\}$ with $(\alpha x, ay)eC^{2}-\{0\}$,
where $\alpha=\exp 2\pi ia$ . Let $[x, y]eS$ denote the point corresponding to
$(x, y)eC^{2}-\{0\}$ . Put

$Y=S_{\alpha}\times C$

and consider the set

$E=\{([x, y], s)\in Y:y=s=0\}$ ,

which is biholomorphic to $ C^{*}/\langle\alpha\rangle$ . Let

$q:Y\rightarrow C$

be the projection to the 2nd component. Take two copies $Z_{j},$ $j=1,2$ ,
of $C^{2}$ , and we form a complex 2-fold
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$Z=\bigcup_{j=1}^{2}Z_{j}$

as follows. Letting $(u_{j}, v_{j})$ be a standard system of coordinates on $Z_{j}$ ,
we identify $(u_{1}, v_{1})$ with $(u_{2}, v_{2})$ , if and only if

$\left\{\begin{array}{l}u_{1}=v_{2}\\v_{1}=u_{2}^{-1}\end{array}\right.$

There is a holomorphic projection

$\pi_{r}:Y\rightarrow Z$

defined as follows. Let

$Y_{1}=\{([x, y], s)eY:x\neq 0\}$

$Y_{2}=\{([x, y], s)eY:y\neq 0\}$ .
Then $\pi_{Y}$ is given by

$\pi_{Y}|Y_{1}:u_{1}=s$ , $v_{1}=x^{-1}y$ ,
$\pi_{Y}|Y_{2}:u_{2}=xy^{-1},$ $v_{2}=s$ .

Note that $Y$ becomes a complex analytic fibre bundle over $Z$ with the
fibre $ C^{*}/\langle\alpha\rangle$ by means of this projection. There is also a holomorphic
mapping

$\mu’:W\rightarrow Z$

given by

$u_{1}=y_{1}$

on $W_{1}$ , $\{$

$v_{1}=x_{1}y_{1}$

$u_{1}=x_{2}y_{2}$

$v_{1}=x_{2}$

on $W_{2}$ , $\left\{\begin{array}{l}u_{2}=y_{\epsilon}\\v_{2}=x_{8}\end{array}\right.$ on $W_{8}$ .

Then $\mu$ is the blowing-down of $W$ which contracts
$l=\{(x_{1}, y_{1})eW_{1}:y_{1}=0\}\cup\{(x_{2}, y_{2})\in W_{2}:x_{2}=0\}$

to the point
$P=\{(u_{1}, v_{1})eZ_{1}:u_{1}=v_{1}=0\}$ .

Now we shall prove the following proposition, from which the property
(i) of $p:X\rightarrow C$ follows easily.

PROPOSITION 2. There is a biholomorphic mapping

$\Psi:X-S_{0}\rightarrow Y-E$

which makes the diagram
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$X-S_{0}\rightarrow^{\Psi’}Y-E$

$\downarrow\pi_{X}$ $\downarrow\pi_{Y}$

$X-l\rightarrow^{\mu’}Z-P$

eommutative.

PROOF. Define $\Psi$
’ as follows:

$\Psi’|X_{1}:\left\{\begin{array}{l}x=\xi_{1}y_{1}^{-a}\\y=\xi_{1}x_{1}y_{1}y_{1}^{-a}\\s=y_{1}\end{array}\right.$

$\Psi’|X_{2}:\left\{\begin{array}{l}x=\xi_{2}x_{2}^{-a}\\y=\xi_{2}x_{2}x_{2}^{-a}\\s=x_{2}y_{2}\end{array}\right.$

$\Psi|X_{3}:\left\{\begin{array}{l}x=\xi_{8}y_{3}\\y=\xi_{8}\\s=x_{3}\end{array}\right.$

It is easy to see that $\Psi$
’ is well-defined and gives the desired biholo-

morphic mapping. Q.E. $D$

\S 2. We shall construct a compact complex 3-fold $M_{\iota}$ with $\pi_{1}(M_{1})=0$ ,
$\pi_{2}(M_{1})=Z$, and $b_{3}(M_{1})=4$ . Let $\tilde{V}$ be the vector bundle of rank 2 defined
by the Whitney sum $P_{P^{1}}(1)\oplus p_{P^{1}}(1)$ of two line bundles of degree 1 on
$P^{1}$ . Take two copies $\tilde{V}_{1},$ $V_{2}$ of $C^{3}$ . Let $(\xi_{j}, \zeta_{j}, s_{j})$ be a standard system
of coordinates on $\tilde{V}_{j}$ . Then $\tilde{V}$ is obtained by taking the union $\tilde{V}_{1}U\tilde{V}_{2}$

identifying $(\xi_{1}, \zeta_{1}, s_{1})$ with $(\xi_{2}, \zeta_{2}, s_{2})$ , if and only if

$\left\{\begin{array}{l}\xi_{1}=\xi_{2}s_{2}^{-1}\\\zeta_{1}=\zeta_{2}s_{2}^{-1}\\s_{\iota}=s_{2}^{-1}\end{array}\right.$

Put $l_{0}=\{\xi_{1}=\zeta_{1}=0\}\cup\{\xi_{2}=\zeta_{2}=0\}$ and $\tilde{V}^{*}=\tilde{V}-l_{0}$ . Let $\alpha$ be a holomorphic
automorphism of $\tilde{V}^{*}$ defined by

$(\xi_{j}, \zeta_{j}, s_{j})\mapsto(\alpha\xi_{j}, \alpha\zeta_{j}, s_{j})$ on $\tilde{V}^{*}\cap\tilde{V}_{j}$ ,

$j=1,2$ . Put
$ M=\tilde{V}^{*}/\langle\alpha\rangle$ .

Then the canonical projection $\tilde{\pi}:\tilde{V}\rightarrow P^{1}$ induces a projection
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$\pi:M\rightarrow P^{1}$

and define a structure on $M$ of a complex analytic fibre bundle over $P^{1}$

with the fibre $S_{\alpha}$ . Now we shall modify $M$ to obtain $M_{1}$ . Put $V_{j}=$

$(\tilde{V}_{j}\cap\tilde{V})/\langle\alpha\rangle(j=1,2)$ . Obviously, $V_{j},$ $j=1,2$ , are subdomains in $M$, and
$M=V_{1}\cup V_{2}$ . We replace $V_{1}$ by $X$ constructed in \S 1 as follows. Let

$\Phi_{1}:V_{1}\rightarrow Y=S_{\alpha}\times C$

be the natural isomorphism induced by

$(\xi_{1}, \zeta_{1},8_{1})-([\xi_{1}, \zeta_{1}], s_{1})$ .
We have another isomorphism

$\Phi:X-p^{-1}(0)\rightarrow S_{\alpha}\times C^{*}\subset Y$ ,

which is given by

$\Phi=\Psi^{\prime}|(X-p^{-1}(0))$ .
Therefore we can define a compact complex 3-fold

$M_{1}=X\cup V_{l}$

by identifying $xeV_{1}-\pi^{-1}(0)=V_{\iota}\cap V_{2}$ with $\Phi^{-1}\circ\Phi_{1}(x)eX-p^{-1}(0)$ , where
$O\in P^{1}$ indicates the point $s_{1}=0$ . Then $M_{1}$ is a complex analytic fibre
space over $P^{1}$ with the projection

$p_{1}=\left\{\begin{array}{ll}p & on X\\\pi & on V_{2}.\end{array}\right.$

Note that, for $seP^{1},$ $s\neq 0,$ $pr^{1}(s)$ is biholomorphic to $S_{\alpha}$ and $p_{1}^{-1}(0)$ is
biholomorphic to $S_{0}\cup S_{1}$ .

PROPOSITION 3.
(i) $\pi_{1}(M_{1})=0$ ,
(ii) $\pi_{2}(M_{1})=Z$,
(iii) $b_{3}(M_{1})=4$ , in particular, the Euler number $e\langle M_{1}$) $=0$ .
PROOF. (i) It is clear that

$i_{*}:$ $\pi_{1}(M-\pi^{-1}(0))\rightarrow\pi_{1}(M_{1})$

is surjective, where $i_{*}$ is induced by the natural inclusion. Note that
$\pi_{1}(M-\pi^{-1}(0))\cong Z$ is generated by a closed path contained in a fibre of
$\pi$ . Since $p_{1}^{-1}(0)$ is simply connected by Proposition 1, we infer that $i_{*}$
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is a zero mapping. Hence $\pi_{1}(M_{1})=0$ . (ii) Since $\pi_{1}(M_{1})=0$ , it is enough
to show that $H_{2}(M_{1}, Z)=Z$ by the Hurewicz isomorphism theorem. Let
$\Delta$ be a small disc around 0eP1. Then we have the Mayer-Vietoris
sequence with Z-coefficients:

. . $.\rightarrow H_{2}(M_{1}-p_{1}-1(0))\oplus H_{2}(p_{1}^{-1}(\Delta))\rightarrow^{q_{2}}H_{2}(M_{1})\rightarrow H_{1}(p_{1}^{-1}(\partial\Delta))$

$(4)$
$\underline{i_{1}\oplus j_{1}}H_{1}(M_{1}-p_{1}^{-1}(0))\oplus H_{1}(p_{1}^{-1}(\Delta))\rightarrow\cdots$

First we claim that $H_{2}(p_{1}^{-1}(\Delta))=0$ . Since $p_{1}^{-1}(0)=p^{-1}(0)$ is a deformation
retract of $p_{1}^{-1}(\Delta)$ , it is enough to show that $H_{2}(p^{-1}(0))=0$ . Recall that
$p^{-1}(0)=S_{0}\cup S_{1}$ . We consider the Mayer-Vietoris sequence with Z-coeffi-
cients

. . $.\rightarrow H_{2}(S_{0})\oplus H_{2}(S_{1})\rightarrow H_{2}(p^{-1}(0))\rightarrow H_{1}(S_{0}\cap S_{1})$

$\leftrightarrow H_{1}(S_{0})\oplus H_{2}(S_{1})\leftrightarrow\cdots$

By the argument in the proof of Proposition 1, we see that

$H_{1}(S_{0}\cap S_{1})\rightarrow H_{1}(S_{0})\oplus H_{1}(S_{1})$

is bijective. Moreover, it is clear that $H_{2}(S_{j})=0,$ $j=0,1$ . Therefore
we have $H_{2}(p^{-1}(0))=0$ . Next we claim that the kernel of

$i_{1}:H_{1}(p_{1}^{-1}(\partial\Delta))\rightarrow H_{1}(M_{1}-p_{1}^{-1}(0))$

is isomorphic to $Z$. Note that, by Proposition 2,

$p_{1}^{-1}(\partial\Delta)\cong S^{1}\times S_{\alpha}\cong S^{1}\times S^{1}\times S^{3}$

and

(5) $M_{1}-p_{1}^{-1}(0)\cong M-\pi^{-1}(0)\cong C\times S_{\alpha}\cong R^{2}\times S^{1}\times S^{3}$ .
Therefore the l-cycle $\gamma_{b}$ in $p_{1}^{-1}(\partial\Delta)$ defined by $S^{1}\times\{q\},$ $qeS_{\alpha}$ , is a free
basis of the kernel of $i_{1}$ . Hence $H_{2}(M_{1})=Z$ follows from (5) and (4).

(iii) Since the Euler number $e(M_{1})$ is equal to that of $M$, we have
$b_{3}(M_{1})=4$ . Q.E.D.

Take two copies $Z^{\prime},$ $Z$ ’ of $Z$. Let $(u_{j}^{\prime}, v_{j}^{\prime})$ (resp. $(u_{\dot{f}}^{\prime}’,$ $v_{j}^{\prime\prime})$ ) be the
local coordinates on $Z$ (resp. $Z^{\prime}’$) corresponding to $(u_{j}, v_{j})$ on $Z$. We
form the union

$R_{1}=Z^{\prime}UW$

by the identifications:
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$(u_{1}^{\prime}, v_{1}^{\prime})=(x_{1}, y_{1})$ iff $x_{1}=u_{1}v_{1}^{\prime}$ , $y_{1}=u_{1^{-l}}^{\prime}$ ,
$(u_{1}^{\prime}, v_{1}^{\prime})=(x_{2}, y_{2})$ iff $x_{2}=v_{1}^{\prime}$ , $y_{2}=u_{1^{-1}}^{\prime}v|^{-\iota}$ ,
$(ui, v_{1}^{\prime})=(x_{6}, y_{s})$ iff $x_{3}=u_{1}^{l-1}$ ,

$y_{\epsilon}=v_{1}^{r-1}’-1$

$(u_{2}^{\prime}, v_{2}^{\prime})=(x_{1}, y_{1})$ iff $x_{1}=u_{2^{-1}}^{\prime}v_{2}^{\prime}$ , $y_{1}=v_{2}$

$(u_{2}^{\prime}, v_{2}^{\prime})=(x_{2}, y_{2})$ iff $x_{2}=u_{2^{-1}}^{\prime}$ , $y_{2}=u_{2}^{\prime}v_{2^{-1}}^{\prime}$ ,
$(u_{2}^{\prime}, v_{2}^{\prime})=(x_{3}, y_{3})$ iff $x_{3}=v_{2^{-1}}^{\prime}$ , $y_{3}=u_{2}^{\prime}$ .

[ 1 indicates the $8elf$-intersection
number of a curve.

FIGURE $R_{1}$

Let
$\pi_{V_{2}}:V_{2}\rightarrow Z$

be the holomorphic mapping given by

$\left\{\begin{array}{l}u_{1}^{\prime}=s_{g}\\v_{1}^{\prime}=\zeta_{2}\xi_{2}^{-1}\end{array}\right.$ if $\xi_{2}\neq 0$ , and

$\left\{\begin{array}{l}v_{2}=s_{2}\\u_{2}^{\prime}=\zeta_{2}^{-1}\xi_{2}\end{array}\right.$ if $\zeta_{2}\neq 0$ .
Define

$\pi_{r_{\tau}}:M_{1}\rightarrow R_{1}$

by

$\pi_{H_{1}}=\left\{\begin{array}{ll}\pi_{x} & on X\\\pi_{V_{2}} & on V_{2}.\end{array}\right.$

Then $M_{1}$ is a complex analytic fibre bundle over $R_{1}$ with the fibre
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$ C^{*}/\langle\alpha\rangle$ and with the projection $\pi_{H_{1}}$ . Similarly we form the union

$R=Z\cup Z$

by the identifications:
$(u_{1}^{\prime}, v_{1}’)=(u_{1}, v_{1})$ iff $u_{1}^{\prime\prime}u_{1}=1$

’
$v_{1}^{\prime}=v_{1}$ ,

$(u_{1}v_{1}^{\prime\prime})=(u_{2}, v_{2})’$’ iff $u_{1}^{\prime}’ u_{2}=1$ , $v_{1}^{\prime\prime}u_{2}=1$ ,
$(u_{2} , v_{2}^{\prime\prime})=(u_{1}, v_{1})$ iff $u_{2}^{\prime\prime}v_{1}=1$ , $v_{2}^{\prime\prime}u_{1}=1$ ,
$(u_{2}^{\prime\prime}, v_{2}^{\prime\prime})=(u_{2}, v_{2})$ iff $u_{2}^{\prime}‘=u_{2}$ , $v_{2}^{\prime\prime}v_{2}=1$ .

FIGURE $R$

Clearly, $R$ is biholomorphic to $P^{1}\times P^{1}$ and $R_{1}$ is the blowing-up of $R$

at $P=\{u_{1}=v_{1}=0\}$ . Let $\mu:R_{1}\rightarrow R$ be the blowing-up. There is a projec-
tion

$\pi_{M}:M\rightarrow R$

given by

$\pi_{H}|V_{1}:\left\{\begin{array}{ll}u_{1}=s_{1}, & v_{1}=\zeta_{1}\xi_{1}^{-1} , if \xi_{1}\neq 0,\\v_{2}=s_{1}, & u_{2}=\zeta_{1}^{-1}\xi_{1}, if \zeta_{1}\neq 0,\end{array}\right.$

$\pi_{H}|V_{2}:\left\{\begin{array}{ll}u_{1}^{\prime\prime}=s_{2}, v_{1}^{\prime\prime}=\zeta_{2}\xi_{2}^{-1}, & if \xi_{2}\neq 0,\\v_{2}^{\prime\prime}=s_{2}, u_{2}^{\prime\prime}=\zeta_{2}^{-1}\xi_{2}, & if \zeta_{2}\neq 0.\end{array}\right.$

The following proposition is clear from the above construction.

PROPOSITION 4. The biholomorphic mapping

$\Psi’:X-S_{0}\rightarrow Y-E$

of Proposition 2 extend $s$ naturally to a biholomorphic mapping
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$\Psi:M_{1}-S_{0}\rightarrow M-E$ ,

which makes the diagram

$\Psi$

$M_{1}-S_{0}\rightarrow M-E$

$I^{\pi-1}$ $\downarrow\pi_{F}$

$R_{1}-l\rightarrow^{\mu}R-P$

eommutative.

PROPOSITION 5. There are non-singular rational curves $l_{q}$ in $M_{1}$ ,
parametrized by $q=\left(\begin{array}{ll}q_{1} & r_{1}\\q_{2} & r_{2}\end{array}\right)eGL(2, C)$ with $q_{2}\neq 0$, such that each $l_{q}$ is a
section of $p_{1}:M_{1}\rightarrow P^{1}$ , and has a neighborhood isomorphic to that of a
section of $\tilde{V}=p_{P^{1}}(1)\oplus p_{P^{1}}(1)$ .

PROOF. For each $q=\left(\begin{array}{l}q_{1}r_{1}\\q_{2}r_{2}\end{array}\right)eGL(2, C)$ with $q_{2}\neq 0$ , we define the
section $\sim l_{q}$ of $\tilde{V}^{*}=\tilde{V}-l_{0}$ by

$\{$

$\xi_{1}=q_{1}+r_{1}s_{1}$

on $\tilde{V}_{1}$ , and $\{$

$\zeta_{1}=q_{2}+r_{2}s_{1}$

$\xi_{2}=q_{1}s_{2}+r_{1}$

on $V_{2}$ .
$\zeta_{2}=q_{2}s_{2}+r_{2}$

Then the image $l_{q}^{\prime}$ of $\sim l_{q}$ in $M$ does not intersect with $E$, and has a
neighborhood in $M-E$ which is biholomorphic to a section of $\tilde{V}$. Put
$l_{q}=\Psi^{-1}(l_{q}^{\prime})$ . Then the proposition follows from Proposition 4. Q.E.D.

\S 3. In this section we shall describe a method of connecting two
compact complex 3-folds to obtain a new compact complex 3-fold. Let
$P^{3}$ be a complex projective space of dimension 3 and $[z_{0}:z_{1}:z_{2}:z_{3}]$ be a
system of homogeneous coordinates. We define a holomorphic involution

$\sigma:P^{\epsilon}\rightarrow P^{s}$

by

$\sigma([z_{0}:z_{1}:z_{2}:z_{s}])=[z_{2}:z_{s}:z_{0}:z_{1}]$ .
Let $l$ and $l_{\infty}$ be skew lines in $P^{3}$ given by

$l:z_{0}=z_{1}=0$ ,
and

$l_{\infty}:z_{2}=z_{s}=0$ .
It is easy to check that $\sigma(l)=l_{\infty}$ . For any $r>0$ , and $\epsilon>1$ , we define
the following subsets in $P^{3}$ :
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$U,=\{[z_{0}:z_{1}:z_{2}:z_{s}]\in P^{3}:|zd^{z}+|z_{1}\{2<r(\{z_{2}|^{2}+|z_{3}|^{2})\}$ ,
$U=U_{1}$ ,
$N(\epsilon)=U_{*}-[U_{1/\epsilon}]$ ,

and
$\sum=\partial U$

$=\{[z_{0}:z_{1}:z_{2}:z_{3}]eP^{3}:|z_{0}|^{2}+|z_{1}|^{2}=|z_{2}|^{2}+|z_{3}|^{2}\}$ .
Then $U$, and $N(\epsilon)$ are connected and open, and $\sum$ is a non-singular
real hypersurface in $P^{3}$ . It is easy to show the following two lenmas.

LEMMA 1. For any $r>0,$ $U_{f}$ is biholomorphic to $U$, and $\lim_{r\rightarrow D}U_{f}=l$ .
LEMMA 2. For any $\epsilon>1$ , we have
(i) $\sum\subset N(\epsilon)$ ,
(ii) $\sigma(\sum)=\sum$ ,
(iii) $\sigma(N(\epsilon))=N(\epsilon)$ , and
(iv) $\sigma(U)=P^{3}-[U]$ .
A compact complex 3-fold $M$ is said to be of type Class $L$ if and only

if $M$ contains a subdomain which is biholomorphic to $N(\epsilon)$ for some $\epsilon>1$ .
Let

$F:\tilde{V}\rightarrow P^{8}-l_{\infty}$

be the biholomorphic mapping defined by

$F\{V_{1}:(\xi_{1}, \zeta_{1}, s_{1})-[\xi_{1}:\zeta_{1}:s_{1}:1]$

and
$F|V_{2}:(\xi_{2}, \zeta_{2}, s_{2})\mapsto[\xi_{2};\zeta_{2}:1:s_{2}]$ .

From this we have

LEMMA 3. Each section of $\tilde{V}$ is mapped by $F$ to a projective line
in $P^{8}$ outside $l_{\infty}$ .

For any $\epsilon>1,$ $N(\epsilon)$ contains (infinitely many) projective lines in $P^{8}$ .
Therefore, by Lemma 1, we have

LEMMA 4. Suppose that $M$ is of Class L. Then there is a non-
singular rational curve $C$ and its neighborhood in $M$ which is biholomor-
phic to $U_{\epsilon}$ for some $\epsilon>1$ .

Suppose that $M_{\iota}$ and $M_{2}$ are of Class $L$ . For some $\epsilon>1$ , there are
open embeddings
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$i_{\nu}:U_{l}\rightarrow M_{\nu}(\nu=1,2)$ .
Let

$M_{\nu}^{1}=M_{\nu}-[i_{\nu}(U_{1/\iota})]$

and form the union
$M_{1}^{l}\cup M_{2}^{1}$

by identifying a point $x_{1}ei_{1}(N(\epsilon))\subset M_{1}^{1}$ with the point $x_{2}=i_{2^{\circ}}\sigma\circ\dot{j}_{1}^{-1}(x_{1})eM_{2}^{1}$ .
LEMMA 5. $M_{1}^{1}\cup M_{2}^{\$}$ is a compact complex 3-fold.
Proof is easy.

REMARK 1. If $M_{1}=M_{2}=P^{\epsilon}$ and $i_{\nu}$ are the natural inclusions, then
$M_{1}^{1}\cup M_{2}^{l}=P^{8}$ .

We denote $M_{1}^{1}\cup M_{2}^{1}$ by $M(M_{1}, M_{2}, i_{1}, i_{2})$ . It is clear that $M(M_{1},$ $M_{2}$ ,
$i_{1},$ $i_{2}$) is defined independently of the choice of $\epsilon$ , but may depend on
the choice of $i_{\nu}’ s$ . The process to construct $M(M_{1}, M_{2}, i_{1}, i_{2})$ out of $M_{\nu}’ s$

and $i_{\nu}’ s$ is called a connecting operation. Note that $M(M_{1}, M_{2}, i_{1}, i_{2})$ is
also of Class $L$ .

\S 4. By means of connecting operations, we shall construct induc-
tively a series of compact complex 3-folds $\{M_{n}\}_{\iota=1.2.8},\ldots$ stated in the
beginning of this note. Let $M_{1}$ be the manifold constructed in \S 2,
which is of Class $L$ by Proposition 5. To construct $M_{2}$ , we take two
copies of $M_{1}$ , say $M_{1}$ and $M_{1}^{\prime}$ . In the following, $A^{\prime}$ indicates a subset
in $M_{1}^{\prime}$ corresponding to $A$ in $M_{1}$ . Let $l_{q_{1}}$ (resp. $l_{q_{1}}^{\prime}$) be one of the non-
singular rational curves in $M_{1}$ (resp. $M_{1}^{\prime}$) described in Proposition 5. Let
$L_{1}$ (resp. $L_{1}^{\prime}$) be a neighborhood of $l_{q_{1}}$ (resp. $l_{q_{1}}^{\prime}$) in $M_{1}-S_{0}$ (resp. $M_{1}^{\prime}-$

$S_{0}^{\prime})$ which is biholomorphic to $U_{1}$ for some $\epsilon_{1}>1$ . This is possible by
Lemma 1. Let $i_{1}:U_{l}\rightarrow L_{1}\subset M_{1}1$ (resp. $i_{1}^{\prime}:U_{l_{1}}\rightarrow L_{1}^{\prime}\subset M_{1}^{\prime}$) be an isomorphism.
By the connecting operation, we obtain a compact complex 3-fold

$M_{2}=M(M_{1}, M_{1}, i_{1}, i_{1}^{\prime})$ .
Note that $M_{2}$ contains at least two Hopf surfaces $H_{1}$ and $H_{2}$ , corres.
ponding to $S_{0}$ and $S_{0}$ in $M_{1}$ and $M_{1}^{\prime}$ , respectively. Now we regard
$i_{1}(N(\epsilon_{1}))$ as a subdomain in $M_{2}$ . In $i_{1}(N(\epsilon_{1}))$ , there are a non-singular
rational curve $l_{qg}$ and its neighborhood $L_{2}$ which is biholomorphic to that
of a section of $\tilde{V}$. Let $i_{2}:U_{\epsilon}\rightarrow L_{l}(\subset i_{1}(N(\epsilon_{1}))\subset M_{2})$ be an isomorphism,
where we can assume ‘that $1<\epsilon_{2}\leqq\epsilon_{1}$ . By using $i_{1}|U_{2}$ and $i_{2}$ , we can
connect $M_{1}$ and $M_{2}$ , and obtain
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$M_{3}=M(M_{1}, M_{2}, i_{1}|U_{2}, i_{2})$ .
Since $i_{1}(N(\epsilon_{1}))\subset M_{2}-(H_{1}\cup H_{2}),$ $M_{3}$ contains at least 3 Hopf surfaces $H_{1}$ ,
$H_{2}$ , and $H_{\theta}$ which correspond, respectively, to $H_{1}$ and $H_{2}$ in $M_{2}$ , and $S_{0}$

in $M_{1}$ . Now again, regarding $i_{1}(N(\epsilon_{2}))$ as a subdomain in $M_{8}$ , we can
repeat the above step, and we have inductively a series $\{M_{n}\}_{n=1,2},\ldots$

$M_{n}=M(M_{1}, M_{n-1}, i_{1}|U_{-1},, i_{n-1})$

of compact complex 3-folds. $M_{n}$ contains at least $n$ Hopf surfaces, one
of which is from $M_{1}$ and the others are from $M_{n-1}$ .

THEOREM. For all $n\geqq 1$ ,
(i) $M_{n}$ is non-algebraic and non-kahler,
(ii) $\pi_{1}(M.)=0,$ $\pi_{2}(M_{n})=Z$, and $b_{3}(M_{n})=4n$ ,
(iii) dim $H^{1}(M_{n}, \beta)\geqq n$ ,
(iv) dim $H^{1}(M_{n}, \Omega^{1})\geqq n$ .
PROOF. (i) is clear, since $M_{n}$ contains Hopf surfaces. (ii) By the

Mayer-Vietoris sequence with Z-coefficients

. . $.\rightarrow H_{2}(M_{1}^{n-1}\cap M_{n-1}^{\#^{i_{2}\oplus j_{2}}})\rightarrow H_{2}(M_{1}^{n-1})\oplus H_{2}(M_{n-1}^{l})\rightarrow H_{2}(M_{n})$

(6)
$\rightarrow H_{1}(M_{1}^{n-1}\cap M_{n-1}^{t})\rightarrow\cdots$ ,

where
$M_{1}^{n-1}=M_{1}-[i_{1}(U_{1/n-1})]$ ,

and
$M_{n-1}^{*}=M_{n-1}-[i_{n-1}(U_{1/}.)]n-1$ ’

we have
$H_{1}(M_{1}^{n-1}\cap M_{n-1}^{\#})=0$ ,

and
$H_{2}(M_{1}^{n-1}\cap M_{n-1}^{t})=Z$ ,

since $M_{1}^{n-1}\cap M_{n-1}^{l}$ is homotopy equivalent to $S^{2}\times S^{3}$ . Note that $l_{q}$, gener-
ates both $H_{2}(M_{1}^{n-1}\cap M_{n-1}^{1})$ and $H_{2}(M_{1}^{n-1})$ . Hence

$i_{2}:H_{2}(M_{1}^{n-1}\cap M_{n-1}^{1})\rightarrow H_{2}(M_{1}^{n-1})$

is bijective. Therefore, from (6), we have

(7) $H_{2}(M_{n})=H_{2}(M_{n-1}^{l})$ .
By the exact sequence
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$\rightarrow H_{\epsilon}(M_{n-1}, M_{n-1}^{l})\rightarrow H_{2}(M_{n-1}^{l})\rightarrow H_{2}(M_{n-1})$

$\rightarrow H_{2}(M_{n-1}, M_{n-1}^{l})\rightarrow\cdots$ ,

and the duality

$H_{3}(M_{n-1}, M_{n-1}^{1})=H^{\epsilon}(l_{q,-1})=0$ ,
and

$H_{2}(M_{n-1}, M_{n-1}^{l})=H^{4}(l_{q_{n-1}})=0$ ,
we have

$H_{2}(M_{n-1}^{1})=H_{2}(M_{n-1})$ .
Hence, by (7) and the induction assumption, we obtain

$H_{2}(M_{n})=H_{2}(M_{n-1})=Z$ .
Since $\pi_{1}(M_{n})=0$ is clear, $\pi_{2}(M.)=Z$ follows from the Hurewicz isomor.
phism theorem. Since $e(M_{n})=e(M_{n-1})+e(M_{1})-4=e(M_{n-1})-4=-4(n-1)$ b3
the induction assumption and Proposition 3, we have $b_{3}(M_{n})=2+2b_{2}(M_{n})-$

$e(M_{n})=4n$ .
To prove (iii) of the theorem, we shall make some preparations

Recall that

$M_{n}^{1}=M_{n}-[i_{n}(U_{1/l_{\hslash}})]$ ,
$M_{\iota^{n}}=M_{1}-[i_{1}(U_{1/\iota})]$ ,

and that
$M_{n+1}=M_{n}^{1}UM_{1}^{n}$ .

Let
$f_{n}^{1}:M_{n}^{l}\rightarrow M_{n+1}$ , and
$f_{n}^{2};ta-M_{n+1}$

be the natural inclusions. Then we have

$s_{n}:=(f_{n}^{2}\circ i_{1})|N(\epsilon_{n})=(f_{n^{\circ}}^{1}i_{n}\circ\sigma)|N(\epsilon_{n})$

which defines an embedding

$N(\epsilon_{n})\rightarrow M_{n+1}$ .
Let

$\rho_{n}:N(\epsilon_{n})\rightarrow M_{n}^{l}$ ,
$\sigma_{n}:M_{n}^{1}\rightarrow M_{n}$ , and
$\tau_{n}:N(\epsilon_{n})\rightarrow M_{n}$
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be the open embeddings defined, respectively, by

$\rho_{n}=(i_{n^{\circ}}\sigma)|N(\epsilon_{n})$ ,
$\sigma_{n}=the$ natural inclusion, and
$\tau_{n}=\sigma_{n}\circ\rho_{n}$ .

Let

$t_{n}:N(\epsilon_{n+1})\rightarrow N(\epsilon_{n})$

be the open embedding defined by

$t_{n}=s_{n}^{-1}\circ\tau_{u+1}=s_{n}^{-1}\circ(i_{n+\iota^{\circ}}\sigma|N(\epsilon_{n+r}))$

FIGURE $M_{n+1}$

LEMMA 6. $\sigma_{n}^{x}$ : $H^{1}(M_{n}, P)\rightarrow H^{1}(M_{n}^{\$}, p)$ is injective for all $n\geqq 1$ .
PROOF. Since the homomorphism

$\gamma_{1};H^{1}(M_{n}-l_{q_{n}}, p)\rightarrow H^{\iota}(M_{n}^{l}, p)$

induced by the natural inclusion is injective by Andreotti-Siu [1, Pro-
position 1.2], it is enough to show that

(8) $H_{\iota_{q_{*}}}^{1}(M_{n}, P)=0$ .
Since $l_{q_{n}}$ has a neighborhood in $M_{n}$ which is bihoIomorphic to that of a
projective line $P^{1}$ in $P^{3}$ , we have the exact sequence

. . $.\rightarrow H^{0}(P^{3}-P^{1}, P)\rightarrow H^{0}(P^{6}, P)\rightarrow H_{\iota_{q}^{1}}(M_{n}, d1)$

$\rightarrow H^{1}(P^{3}, \rho)\rightarrow\cdots$

From this sequence, (8) follows easily. Q.E.D.
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Let
$L_{1}=R^{1}(\pi_{r_{1}})_{*}p_{Jf_{1}}$ , and
$L=R^{1}(\pi_{M})_{*}d_{H}$ .

Then we have

LEMMA 7. $L_{1}=p_{R_{1}}$ , and $L=d_{R}$ .
PROOF. First we consider $L_{1}$ . By a theorem of Grauert, $L_{1}$ is a

vector bundle of rank $1=\dim H^{1}(C^{*}/\langle\alpha\rangle, p)$ . Recall that $R_{1}$ is the
blowing-up of $R,$ $\mu:R_{1}\rightarrow R$ , and that $R\cong P^{1}\times P^{1}$ . Let $E_{1}$ be the proper
inverse image of $P^{1}\times\{0\}\subset R$, and $E_{2}$ the proper inverse image of $\{0\}\times$

$P^{1}\subset R$ . Then $H^{2}(R_{1}, Z)$ is generated by $E_{1},$ $E_{2}$ , and the exceptional
curve $l=\mu^{-1}(P)$ . Note that $H^{1}(R_{1}, P)=0$ . Hence, to prove the lemma,
it is enough to show that the restrictions of $L_{1}$ to $E_{1},$ $E_{2}$ , and $l$ are
trivial. But these are consequences of the fact that $\pi_{r_{1}}^{-1}(E_{1}),$ $\pi_{H_{1}}^{-1}(E_{2})$ ,
and $\pi_{H_{1}}^{-1}(l)$ are all elliptic bundles with vanishing Chern numbers, by
virtue of a result of Kodaira [3, Theorem 12]. By a similar argument,
$L=\rho_{R}$ can be proved easily. Q.E.D.

LEMMA 8. dim $H^{1}(M, P)=\dim H^{1}(M_{1}, P)=1$ .
PROOF. This follows easily from Lemma 7 by using Leray’s spect-

ral sequences applied to the fibre bundles $\pi_{H}:M\rightarrow R$ , and $\pi_{r_{1}}:M_{1}\rightarrow R_{1}$ .
LEMMA 9. The homomorphism

$r_{2}:H^{1}(M_{1}, \rho)\rightarrow H^{1}(M_{0}-S_{0}, \rho)$

induced by the natural inclusion is injective.

PROOF. Since $L=\rho_{R}$ by Lemma 7, there is a non-zero section $se$

$H^{0}(R-P, L)$ . By Proposition 4, we see that $\mu^{*}seH^{0}(R_{1}-l, L_{1})$ . Since
$l$ is an exceptional curve in $R_{1}$ , and since $L_{1}$ is trivial on $R_{1}$ by Lemma
7, $\mu^{*}s$ extends to a section $\overline{\mu^{*}s}$ of $H^{0}(R_{1}, L_{1})$ . Consider the commutative
diagram

$H^{1}(M_{1}, \rho)\rightarrow^{r_{2}}H^{1}(M_{1}-S_{0}, \beta)$

(9) $\uparrow j_{1}$ $\uparrow j_{2}$

$H^{0}(R_{1}, L_{1})\rightarrow^{r_{l}}H^{0}(R_{1}-l, L_{1})$ ,

where $r_{\epsilon}$ is induced by the restrictions, and $j_{1}$ and $j_{2}$ are the canonical
injections of Leray’s spectral sequences. Then
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$ r_{2}\circ j_{1}(\mu^{*}s)=j_{2}(\mu^{*}s)\sim$ .
Since $j_{2}$ is injective, and since $\mu^{*}s\neq 0$ , we see that

(10) $r_{2}\circ j_{1}(\overline{\mu^{*}s})\neq 0$ .
By Lemmas 7 and 8, $j_{1}$ is an isomorphism. Therefore (10) implies that
$r_{2}$ is injective. Q.E.D.

LEMMA 10. dim Ker $\rho_{1}^{\prime}\geqq 1$ .
PROOF. Consider the commutative diagram

$H^{1}(M_{1}, df)\rightarrow^{\sigma_{1}^{*}}H^{1}(M_{1}^{l}, \rho)$

(11) $\backslash _{\lambda}\tau_{1}^{*}$ $\gamma_{\rho_{1}^{*}}^{/}$

$H^{1}(N(\epsilon_{1}), \rho)$ .
Take the element $ j_{1}(\mu^{*}s)eH^{1}(M_{1}, \rho)\sim$ of the proof of Lemma 9. By
Lemma 6, $\sigma_{1}^{s}\circ j_{1}(\overline{\mu^{*}s})eH^{1}(M_{1}^{\#}, \rho)$ is not zero. Therefore, to prove the
lemma, it suffices to show that

(12) $\tau_{1}^{\star}\circ j_{1}(\mu^{*}s)=0\sim$ .
The element $s\in H^{0}(R-P, L)$ extends to an element $s\sim eH^{0}(R, L)$ . Let
$j_{3}:H^{0}(R, L)\rightarrow H^{1}(M, \rho)$ be the inclusion defined by Leray’s spectral
sequence. Consider the element $j_{3}(s\sim)\in H^{1}(M, 9)$ . Let

$\psi:H^{1}(M, C)-H^{1}(M_{1}-S_{0}, C)$ , and
$\psi’$ : $H^{1}(M, \rho)\rightarrow H^{1}(M_{1}-S_{0}, \rho)$

be the homomorphisms defined by the inclusion $M-E\rightarrow M$ followed by
$\Psi^{-1}:M-E\rightarrow M_{1}-S_{0}$ of Proposition 4. Since $ S_{0}\cap\tau_{1}(N(\epsilon_{1}))=\emptyset$ , we have
also the homomorphisms

$\tau_{1}^{\prime}:H^{1}(M_{1}-S_{0}, C)\rightarrow H^{1}(N(\epsilon_{1}), C)$ , and
$\tau_{1}^{\prime}:H^{1}(M_{1}-S_{0}, ef)\rightarrow H^{1}(N(\epsilon_{1}), \rho)$

induced by $\tau_{1}$ . Then we have the following commutative diagram:

$H^{1}(M, C)\rightarrow^{\psi^{\prime}}H^{1}(M_{1}-S_{0}, C)\rightarrow^{\tau^{\prime}}H^{1}(N(\epsilon_{1}), C)$

(13) $\downarrow j_{4}$ $\downarrow j_{f}$

,,
$\downarrow j_{6}$

$\psi^{\prime\prime}$

$H^{1}(M, \rho)\rightarrow H^{1}(M_{1}-S_{0},p)\rightarrow^{\tau_{1}}H^{1}(N(\epsilon_{1}), \rho)$ ,
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where $j_{4},$ $j_{f}$ , and $j_{0}$ are homomorphisms defined by the natural inclusion
$C\rightarrow PP$. It is easy to see that dim $H^{0}(M, dP)\leqq\dim H^{0}(M, \Omega^{1})=0$ , where
$\Omega^{1}$ is the sheaf of germs of holomorphic l-forms and $dP$ is the subsheaf
of $\Omega^{1}$ whose elements are d-closed. Moreover $H^{1}(M, C)=C$. Hence, by
Lemma 8 and the exact sequence

$0\rightarrow C\rightarrow P\rightarrow dP\rightarrow 0$ ,

we see that $j_{4}$ is an isomorphism. Hence, from the diagram (13) and
the fact that $H^{1}(N(\epsilon_{1}), C)=0$ ,

(14) $\tau_{1}^{\prime\prime}\circ\psi^{\prime\prime}\circ j_{3}(s\sim)=0$

follows. Consider the commutative diagram

$\psi$

$H^{1}(M_{1}-S_{0}, P)\leftarrow H^{1}(M, \beta)$

(15) $\uparrow j_{2}$ $\uparrow j_{8}$

$H^{0}(R_{1}-l, L_{1})\leftarrow^{\mu_{1}^{*}}H^{0}(R, L)$ ,

where $\mu_{1}^{\sim}$ is induced by the inclusion $R-P\rightarrow R$ followed by the $iso\rightarrow$

morphism $\mu:R_{1}-l\rightarrow R-P$. Note that

$\mu^{*}s=\mu_{1}s$ .
Then, by the diagrams (9), (11), (13), and (15), we have

$\tau_{1}^{\sim}\circ j_{1}(\mu^{*}s)=\tau_{1}’\circ r_{2}\circ j_{1}(\mu^{*}s)\sim\sim$

$=\tau_{1}^{\prime\prime}\circ j_{2^{\circ}}r_{3}(\overline{\mu^{*}\epsilon})$

$=\tau_{1}^{\prime}’\circ j_{2}(\mu^{*}s)$

$=\tau_{1}^{\prime\prime}\circ j_{2}(\mu_{\iota^{S}}^{\iota\sim})$

$=\tau_{1}^{\prime\prime}\circ\psi\circ j_{3}(s\sim)$ ,

which is equal to zero by (14). Thus (12) is obtained. Q.E.D.

PROOF OF (iii) OF THE THEOREM. Consider the following inequalities:

$(*)_{n}$ dim $H^{1}(M_{n}, ff)\geqq n$ ,
$(^{**})_{n}$ dim Ker $\rho_{n}^{\sim}\geqq n$ .
We shall prove, by induction on $n$ , that $(^{*})_{n}$ and $(^{**})_{n}$ hold for all $n\geqq 1$ .
By Lemmas 8 and 10, $(^{*})_{1}$ and $(^{**})_{1}$ hold. Suppose that $(^{*})_{n}$ and $(^{**})_{n}$

hold for some $n\geqq 1$ . Consider the Mayer-Vietoris sequence
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(16) $\rightarrow H^{1}(M_{n+1}, \rho)\rightarrow^{f_{n}^{*}}H^{1}(M_{n}^{l}, P)\oplus H^{1}(M_{1}^{n}, \rho)$

$\rightarrow^{g_{n}^{*}}H^{1}(N(\epsilon_{n}), \rho)\rightarrow\cdots$ ,

where
$f_{n}^{t}=f_{n}^{1\#}\oplus f_{n}^{2*}$ , and
$g_{n}^{l}=\rho_{n}^{*}-(i_{1}|N(\epsilon_{n}))^{*}$

There is the following commutative diagram:

$\rho f$

$H^{1}(M_{1}^{*}, \beta)-\rightarrow H^{1}(N(\epsilon_{1}), \rho)$

$ j_{7}\downarrow$ $\downarrow j_{8}^{\prime}$

$H^{1}(M_{1}^{n}, \rho)\rightarrow H^{1}(N(\epsilon_{n}), \rho)\underline{(\prime i_{1}|N}(\epsilon_{n}))^{*}$ ,

where $j_{7}$ is induced by the inclusion, and $j_{8}$ is induced by the inclusion
followed by $\sigma$ . Note that $j_{7}$ is injective by Andreotti-Siu [1, Proposi-
tion 1.2]. Hence by Lemma 10,

(17) $ 1\leqq\dim$ Ker $\rho_{1}^{*}\leqq\dim$ Ker $(i_{1}|N(\epsilon_{n}))^{*}$ .
Since the subspace

$K:=Ker\rho_{n}^{*}\oplus Ker(i_{1}|N(\epsilon_{n}))^{*}$

in $H^{1}(M_{n}^{g}, \rho)\oplus H^{1}(M_{1}^{n}, O)$ is contained in $Kerg_{n}^{l}$ , we have

dim Ker $g_{n}^{*}\geqq n+1$ ,

by using (17) and the induction assumptions $(^{**})_{1}$ and $(^{**})_{n}$ . Hence we
obtain $(^{*})_{n+1}$ by the exact sequence (16). Moreover, since

$f_{n}^{*-1}(K)\subset Kers_{n}^{s}$ ,

we have
dim Ker $s_{n}^{r}\geqq\dim f_{n}^{*-1}(K)\geqq n+1$ .

Then by the commutative diagram

$H^{1}(M_{n+t}, \rho)\rightarrow H^{1}(N(\epsilon_{n+1}), \rho)\tau_{n+1}^{*}$

$\backslash _{\lambda}s_{n}^{*}$ $/t_{n}^{*}\nearrow$

$H^{1}$ ( $N(\epsilon_{n})$ , ce),

we obtain
dim Ker $\tau_{n+1}^{*}\geqq\dim$ Ker $s_{n}^{*}\geqq n+1$ .
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Therefore, by the commutative diagram

$H^{1}(M_{n+1}, p)\rightarrow H^{1}(M_{n+1}^{\iota}, p)\sigma_{n+1}^{*}$

$\tau_{n+1\backslash }^{*}\backslash $ $\nearrow\rho_{n+1}^{*}/$

$H^{1}(N(\epsilon_{n+1}), ff)$

and Lemma 6, we have

dim Ker $\rho_{n+1}^{l}\geqq\dim$ Ker $\tau_{n+1}^{l}\geqq n+1$ ,
which proves $(^{**})_{\mathfrak{n}+1}$ .

PROOF OF (iv) OF THE THEOREM. By the exact sequence

$0\rightarrow C\rightarrow P\rightarrow dP\rightarrow 0$

and $\pi_{1}(M_{n})=0$ , we have

(18) dim $H^{1}(M_{n}, P)\leqq\dim H^{1}$($M_{n}$, def“).

Letting $d\Omega^{1}$ be the subsheaf of $\Omega^{2}$ whose elements are d-closed, we
form the exact sequence

(19) $0\rightarrow d\rho\rightarrow\Omega^{1}\rightarrow d\Omega^{1}\rightarrow 0$ .
We claim that
(20) dim $H^{0}(M_{n}, d\Omega^{1})=0$ .
To prove (20), it suffices to show that

(21) dim $H^{0}(M_{n}, \Omega^{2})=0$ .
Take any $\omega\in H^{0}(M_{n}, \Omega^{2})$ . Then $i_{n}^{*}\omega\in H^{0}(U_{n}, \Omega^{2})$ . By Andreotti-Siu [1,
Proposition 1.2], we have

$H^{0}(U_{*n}, \Omega^{2})\cong H^{0}(P^{s}, \Omega^{2})=0$ .
Hence $i_{n}^{*}\omega=0$ . This implies $\omega=0$ and proves (21). Therefore, from
(19) and (20),

dim $H^{1}(M_{n}, dP)\leqq\dim H^{1}(M_{n}, \Omega^{1})$ .
Thus combining this with (iii) and the inequality (18), we obtain

dim $H^{1}(M_{n}, \Omega^{1})\geqq n$ . Q.E.D.

REMARK $2.*$ ) I don’t know whether dim $H^{1}(M_{n}, P)=n$ .
$*)$ See the end of the paper.
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REMARK 3. For a compact complex manifold $X$, we put

$h^{p,q}(X)=\dim H^{q}(X, \Omega^{p})$ .
It is known that, if $X$ is a compact k\"ahler manifold, or, more generally,
a compact Fujiki manifold (i.e., of Class $C$ in Fujiki [2, Definition 1.1]),
then the equality

$h^{p,q}(X)=h^{q,p}(X)$

holds and the k-th Betti number is given by

$b_{k}(X)=\sum_{p+q=k}h^{p,q}(X)$ .

Hence, in particular, we have

$h^{0,1}(X)=\frac{1}{2}b_{1}(X)$ and $h^{1,1}(X)\leqq b_{2}(X)$ .

By Kodaira [3, Theorem 3], we also see that, if dim $X=2$ , then the
following equality and inequality hold including the cases where $X$ are
$non- k\ddot{a}hler$ :

$h^{0,1}(X)=\left\{\begin{array}{l}\frac{1}{2}b_{1}(X)\\\frac{1}{2}(b_{1}(X)+1)\end{array}\right.$

$h^{1,1}(X)\leqq b_{2}(X)$ .

if $b_{1}(X)\equiv 0(mod 2)$

if $b_{1}(X)\equiv 1(mod 2)$ ,

Our example shows, however, that, for general compact complex mani-
folds of dimension more than 2, it is impossible to estimate $h^{0.1}(X)$ and
$h^{1,1}(X)$ in terms of $b_{1}(X)$ and $b_{2}(X)$ , respectively.

REMARK 4. In his recent study of compact complex 3-folds with
Hopf surfaces as divisors, H. Tsuji has also found a method of modify-
ing a compact complex manifold as we have used in section \S 2. Namely,

he found that, if a compact complex manifold $X$, dim $X\geqq 3$ , contains a
primary Hopf manifold $S$ of codimension 1 with a certain condition on
the normal bundle of $S$ in $X$, then one can replace $S$ by an elliptic
curve $E$ to obtain a new compact complex manifold $Y=(X-S)\cup E[4]$ .

Notes added on Dec. 10, 1981. It can be shown that dim $H^{1}(M_{n}, p)=$

$n$ , and dim $H^{2}(M_{n}, \beta)=0$ . The differentiable structure of $M_{n}$ can be
described completely by using connected sum operations by virtue of
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the results of C. T. C. Wall [Invent. Math., 1, 355-374 (1966)]. See the
forthcoming paper for these facts.
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