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Examples of Simply Connected Compact Complex 3-folds

Masahide KATO

Sophia University

In this note, we shall construct a series of compact complex
manifolds {M,},-,.s... of dimension 83 which are non-algebraic and non-
kahler with the numerical characters =,(M,)=0, 7,(M,)=2Z, b,(M,)=4n,
dim H'(M,, ©#)=n, and dim H'(M,, 2*)=n, where £2? is the sheaf of
germs of holomorphic p-forms. These examples show, in particular,
that, it is impossible to estimate h?%(M)=dim HY(M, 2*) of a compact
complex manifold M in terms of its (p+gq)-th Betti number, contrary
to the case of dimension 2 or the case of kahler manifolds. To con-
struct these examples, we employ a method of connecting two manifolds
together to obtain a new one (see §§3 and 4).

The discussions with Mr. H. Tsuji was very stimulating, to whom
the author would like to express his hearty thanks.

§1. We shall construct, in this section, a complex manifold X of
dimension 8 with a projection

»X—C

such that

(i) X—p7(0) is biholomorphic to the product of a primary Hopf
surface S,=C*—{0}/{(a) and C*=C—{0} with a=exp 2ria;

(ii) p™(0) 28 simply commected, and is a union of two primary
Hopf surfaces biholomorphic to S;;=C*—{0}/<{B;> (§=0,1) with B;=
exp 2rib; which intersect each other mormally in an elliptic curve,
where a € C i8 a fixed constant satisfying Ima>0, b,=a™*, and b,=1—a)™".
Let acC be a fixed number such that Ima>0. Then a=exp27ia
satisfies 0<|a|<1l. The multiplication sr—ag for feC*={ceC:£+0}
defines a holomorphic automorphism of C* and the quotient space C=
C*/{a) is an elliptic curve. Denote by [¢] the point on C corresponding
to £eC*. Take three copies W;, j=1,2,8, of C% on which we fix
standard systems of coordinates (x;, ;). Let X;=W;xC, and let (x;, y;:
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[¢;]) be their coordinates. We form the complex 8-fold X by patching
X;’s as follows:

x=Ux,,
( T2 =T1Y1 L3 =LY,
{Y=ar" on X,\NX,, {ys=a;" on X,NX,,
[&]= [&.xt] [&:]=[&.2,7]
(1) T, =5"Ys"
1Y =% on X;NX,.
[&]=[&:%5ys]

It is easy to check that the patching is well-defined. Let p be the
holomorphic mapping of X onto C given by

Y, on X,
(2) P=1%Y, on X,

s on X,.
We shall show that the fibre space

p X—C

has the desired properties (i) and (ii), and see also some additional
facts. Consider the following two 2-folds S, and S, in X:

S,:4.=0in X, and #,=0 in X,

3
(3) S,:%4.=0in X, and 2,=0 in X,

which are biholomorphic, respectively, to the primary Hopf surfaces
Sp’-=Cz—{O)/<BJ-> ’ j=0; 1 ’

where {B;> is the infinite cyclic group generated by the holomorphic
automorphism

Bj: C*—{0} — C*—{0}
w w
(x, y) —— (B, BiY) -
In fact, let
Pos- S,N X, — Sﬂo
be given by
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{w=s:"1
y=u"
and let
Po: Sy N X, — Sﬁo

be given by

{w = y,&/*

y._.._...&éla .
Then

Py= {?’m on S,NX,
’ Pz on S,NX,

gives a biholomorphic mapping of S, onto S;,- Similarly, let

Vit Sl N Xz I Sﬂl

be given by

€r= Eé/(l—a)
and let

1&'13: Sl n X3 —_— Sﬂl

be given by

L= Ysly

{y =& .

Then

"Il"lz on S1 ﬂ Xz

"= {"/’13 on S, N X,

gives a biholomorphic mapping of S, onto S;,. By (2) and (8), we
see that p™(0)=S,US,. Since S,NS, is in X, and S,US, is given in X,
by x.9,=0, S, and S, intersect with each other normally in the elliptic
curve

{(,, ¥, [52]) x,=y,=0},

which is biholomorphic to C*/{a). Note that [¢]r—[&*/] gives a biholo-
morphic fmap of C*/{a) to C*/{B;>. Thus we see that X has the pro-
perty (ii) when we show the following.

PROPOSITION 1. p7*(0) is simply conmnected.
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PROOF. Since 7, (p~'(0)) is generated by the elements of 7,(S,NS,)=
ZPZ, it is enough to show that each generator of =,(S,NS, is null-
homotopic in 7;(p~*(0)). Let s and ¢ be real numbers such that 0<s=<1,
and 0<t<1. Put

7.:[0,1] — X, , 6,€[0,1],
2z, =0
Y= 86—2::{01
[e] =[]

and '

0.:[0,1] — X, , g,¢[0,1],
&, = te—202
Y.=0
[52] — [e21r((1—-a) 02] .

Then we see easily the following:

7,([0, 1)) S, for all s, and ([0, 1) cS,NnS,,
0.([0, 1)) S, for all ¢, and 5,([0, 1])c=S,N S, .

Moreover 7, and d, generate «,(S,NS,). To prove the proposition, it is
enough to show that 7, is null-homotopic in S;,, and that 4, is null-homo-
topic in S,. By (1), 7, is given in X, by

X, = ezzwl
».=0
[51] = [1] .

Hence 7, is null-homotopic in S,N X,<S,. Similarly, §, is given in X, by

mg = O
ys — e2t102
[53] = [1] .
Hence 4, is null-homotopic in S,N X, S,. Q.E.D.

Let
W= g Wj

be the complex 2-fold defined by patching W,’s as follows:
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T, =% Ty=1

{2 Y on Won W, { Y on W W,
Y=, Ys=Xo

(2, = a7yt

{ 1= s on W,nW,.

Y=

Then the projections

(@, Y;: &) — (x5, ¥)
define a projection
T X— W.

Note that X becomes a complex analytic fibre bundle over W with the
fibre C*/{a) by means of this projection. Let ¢ be the holomorphic
mapping of W onto C given by

¥ on W,
t=]x2y2 on W,
2y on W,.

Then we have the commutative diagram of projections:
X = w
N, S
AWL
C.
Take the primary Hopf surface
S.=C*—{0}/<{e} ,

which is defined by identifying (x, y) e C*—{0} with (ax, ay) € C*—{0},
where a=exp2nia. Let [x, y]€ S denote the point corresponding to
(x, y) € C*—{0}. Put

Y=S,xC
and consider the set

E={(x, y],s) e Y: y=38=0},
which is biholomorphic to C*/{a). Let
q: Y—C

be the projection to the 2nd component. Take two copies Z; j=1, 2,
of C?, and we form a complex 2-fold ‘
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2
Z=\ Z;
i=1
as follows. Letting (u;, v;) be a standard system of coordinates on Z,,
we identify (u,, »,) with (u,, v,), if and only if

{uq =P
v=uU; .

There is a holomorphic projection

TCY: Y'_'__) Z
defined as follows. Let
Y,={(=, y], 8)e Y: = + 0}
Y,={(x, y],s)e Y:y = 0} .
Then 7, is given by '
wy| Y, u,=s, =2y,
Ty Yy u,=2y™, v,=8.
Note that Y becomes a complex analytic fibre bundle over Z with the

fibre C*/{a) by means of this projection. There is also a holomorphic
mapping

v wW—Z
given by
U, = U, =% Up=
{1 v on W,, 1= %Y on W,, 2= s on W,.
nh=8.U D=2, V=125

Then y is the blowing-down of W which contracts
l={(x, ¥y € Wi y,=0}U {(,, ¥.) € W,: x, =0}

to the point
P={(u,, v,) € Z;: u,=v,=0} .

Now we shall prove the following proposition, from which the property
(i) of p: X—C follows easily.

PROPOSITION 2. There 18 a biholomorphic mapping
W’: X - So —_— Y'—E

which makes the diagram
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X—8, > Y—E
[, b
X1 7_p
commutative.

Proor. Define ¥’ as follows:

(x—_—ely;‘“
LY=&y "
ls=y1 ’
{x=52x;a

7'|X,

V' X,: (y=E2,:°
8=X2Y: »
T =&Ys
VX, jy=6&
8S=u;3 .

It is easy to see that ¥’ is well-defined and gives the desired biholo-
morphic mapping. Q.E.D

§2. We shall construct a compact complex 3-fold M, with x,(M,)=0,
(M) =2Z, and by(M,)=4. Let V be the vector bundle of rank 2 defined
by the Whitney sum Zu(1)PZr(1) of two line bundles of degree 1 on
P!, Take two copies V,, V, of C®. Let (¢, ;, 8;) be a standard system
of coordinates on V,. Then V is obtained by taking the union V,u ¥,
identifying (¢, &, s,) with (&, &, s.), if and only if

§1=6:8"
C1 = Czsz_ !

8, =s8;'.

Put I,={s,=(=0}U{s,=0,=0} and V*=V—1,, Let a be a holomorphic
automorphism of V* defined by

(&5, Cjy 85) — (ag;, al;, 8;) on V*n V,- ,
j=1,2. Put
M=V*/{a) .

Then the canonical projection #: V— P! induces a projection
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. M— P?

and define a structure on M of a complex analytic fibre bundle over P!
with the fibre S,. Now we shall modify M to obtain M,. Put V,=
(V;n 7)/<a) (j=1,2). Obviously, V; 5=1, 2, are subdomains in M, and
M=V,UV,. We replace V, by X constructed in §1 as follows. Let

9.V, —8 Y=8S,xC
be the natural isomorphism induced by
(&1, Gy 8) > ([8,, 8], 8)) .
We have another isomorphism
D: X—p'(0)—> S, xC*CY,
which is given by
O=T"|(X—p7(0)) .
Therefore we can define a compact complex 3-fold
M=XUYV,

- by identifying ze V,—z}(0)=V.NV, with 0@ (x) e X—p*(0), where
0c P' indicates the point s,=0. Then M, is a complex analytic fibre
space over P' with the projection

_(» on X
= T on V,.
Note that, for s P', 8 # 0, p;'(s) is biholomorphic to S, and p;%(0) is
biholomorphic to S,US,.

PROPOSITION 3.
(1) m(M)=0,
(ii) =(M,)=2Z,
(iit) by(M)) =4, in particular, the Euler number e(M,)=0.

ProoF. (i) It is clear that
1yt (M —77Y(0)) — 7, (M,)

is surjective, where 7, is induced by the natural inclusion. Note that
T(M—7n"0)=Z is generated by a closed path contained in a fibre of
. Since p;*(0) is simply connected by Proposition 1, we infer that <,
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is a zero mapping. Hence x,(M,)=0. (ii) Since =,(M,)=0, it is enough
to show that H,(M,, Z)=2Z by the Hurewicz isomorphism theorem. Let
4 be a small disc around 0e P:. Then we have the Mayer-Vietoris
sequence with Z-coefficients:

e o —— H(M,— p7{0))DH, (@7 (4)) — H,(M,) — H,(p7"(34))

(4) o |
5% H.(M,— pr(0))DH (7 (4) — - .

First we claim that H,(p7(4))=0. Since »;*(0)=»"'(0) is a deformation
retract of p;(4), it is enough to show that H,(» '(0))=0. Recall that
p~(0)=S,US,. We consider the Mayer-Vietoris sequence with Z-coeffi-
cients

e 2(SO)@H2(SI) — H,(p7(0)) — HI(SO ns,)
E— H1(SO)EBH2(S1) _—
By the argument in the proof of Proposition 1, we see that

H,(S,NS,) — H,(S)PH,(S))

is bijective. Moreover, it is clear that H,(S; =0, j=0,1. Therefore
we have H,(p~'(0))=0. Next we claim that the kernel of

i, Hy(p7(04)) — H,(M,—p:(0))
is isomorphic to Z. Note that, by Proposition 2,
P (04)=S* x S,=S*xS*x S*
and
(5) M, —p7(0)=M—7"*(0)=CxS,=R**xXS*xS*.

Therefore the 1l-cycle v, in p;(84) defined by S'x{q}, g€ 8., is a free
basis of the kernel of 4, Hence H,M,)=Z follows from (5) and (4).
(iii) Since the Euler number e(M,) is equal to that of M, we have
by(M,)=A4. ' Q.E.D.

Take two copies Z’, Z" of Z. Let (u}, vj) (resp. (uj, v;)) be the
local coordinates on Z’' (resp. Z'") corresponding to (u;, »;) on Z. We
form the union

R=Z'UW
by the identifications:
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(u{, vi) = (xu yl) iff X, = u;'vi ’ Y=

’—1
(u;; ’D;)=(Q?2, yﬁ) iff x,=v§ ’ yz':ui_l'v;—l ’
(w1, V) = (X, Y) iff 23=u,*, Ye=v"",

r—y ’—1

(u;, 7);)2(071, y,) iff =W V2, Y=y ,

r—1 r—1

(u;, ’l);)=(w2, y) iff z,=u"", Yo=uw; ",

/—1

(Uay V3) = (s, ¥s) Iff =07,  yy=us.

’ uy [—1] Y .
[-1]
Y2
f0]
-1/
“o [0] -

[ ] indicates the self-intersection
number of a curve.
FIGURE R,

Let
nV‘z: Vz e 4 Z'

be the holomorphic mapping given by

{“‘zs* if 2,40, and

v;':Cze;l
'vé =8, .
) if {,#0.
{uz-:Cz_lfz :
Define
Ty, M, — R,
by

T, =

Tx on X
Ty, on V,.

Then M, is a complex analytic fibre bundle over R, with the fibre
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C*/{e) and with the projection z,,. Similarly we form the union
R=Z"UZ
by the identifications:

!, v)=(u, v,) iff wju,=1, o'=v,,

144

!, vi)=(u, v,) iff w'u,=1, v'u,=1,

”

(w, vi)=(u,, v,) if w'v,=1, v'u,=1,

"

(uz ’ 'U;') = (um 102) iff u;’ = uz ] ?);"02= 1 .

uy Uy P
”n [O]
k220 1
(0] (0]
uy Uz
vy {o] s
FicurE R

Clearly, R is biholomorphic to P'xP' and R, is the blowing-up of R
at P={u,=v,=0}. Let y#: R,— R be the blowing-up. There is a projec-
tion
given by

w,=38, , v,=C&", if £+0,

T Vit . .
V=8 u, =878 if {,#0,
{u;’“——'sz ’ 'v;’:szz_l ’ if 52"‘&0 ’
'0;":82 ’ u;'=c;1$2 ’ if Czio .
The following proposition is clear from the above construction.
PROPOSITION 4. The biholomorphic mapping
v.X-S,— Y—E

of Proposition 2 extends naturally to a biholomorphic mapping
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¥ M-S, —M-FE,

which makes the diagram

M,—S,—— M—E
1,,,',1 lu
R—-1-YR-P
commutative.

PROPOSITION 5. There are mon-singular rational curves l, in M,
parametrized by q= <gl :‘)eGL(Z C) with q,#0, such that each l, i8 a
section of p;: M,— P*, and has a meighborhood isomorphic to that of a

section of V= ()P m(1).

ProOOF. For each ¢g= % 7 €GL(2,C) with ¢,#0, we define the
q. 7.
section l of V*=V—1, by

= 7.8 ~ =q,8 r ~
{& Q.+ 78, on ¥,, and {Ez q:8,+7, on 7, .
CGi=q.+ 1.8, 1£.=q.8, +7,

Then the image I, of 7, in M does not intersect with E, and has a
neighborhood in M—FE which is biholomorphic to a section of V. Put
77'(l;). Then the proposition follows from Proposition 4. Q.E.D.

§3. In this section we shall describe a method of connecting two
compact complex 3-folds to obtain a new compact complex 8-fold. Let
P*® be a complex projective space of dimension 3 and [20: 2.5 2,2 25] be a
system of homogeneous coordinates. We define a holomorphic involution

g: PP— P?
by
o([20: 2,2 2,2 2,)) =[2,: 2s: 22 2,] .

Let I and I, be skew lines in P*® given by
l: 2,=2,=0,
and
lo: 2,=2,=0.

It is easy to check that o(l)=I.. For any >0, and ¢>1, we define
the following subsets in P3:
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U,={[2:: 2:: 2,2 z] € P |2+ <7(|2.]"+]2[} »
Uu=U,,
N()=U,—[U.,l,
and
S\=0U
={[2,: 2.: 252 2] € P®: |2,[*+ |2, *= |2+ 2"} .

Then U, and N(¢) are connected and open, and 3, is a non-singular
real hypersurface in P?. It is easy to show the following two lemmas.

LEMMA 1. For any r>0, U, is biholomorphic to U, and lim,_, U,=l.

LEMMA 2. For any €>1, we have

(i) >cNle),

(ii) o(3)=35

(iii) o(IN(e))=N(e), and

iv) o(U)=P3—[Ul].

A compact complex 3-fold M is said to be of type Class L 4if and only
if M contains a subdomain which is biholomorphic to N(g) for some e>1.

Let
F:V— P*—1.
be the biholomorphic mapping defined by
FiV.: (&, G, 8)— [6: 88t 1]
and

F\V,: (&, &y 8) — [ Cet 1:s,].
From this we have

LEMMA 8. FEach section of V is mapped by F to a projective line
wn P® outside ..

For any ¢>1, N(e) contains (infinitely many) projective lines in P°.
Therefore, by Lemma 1, we have

LEMMA 4. Suppose that M is of Class L. Then there is a mon-
singular rational curve C and its neighborhood in M which is biholomor-
phic to U, for some e>1.

Suppose that M, and M, are of Class L. For some ¢>1, there are
open embeddings
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1, U, — M, v=1,2).
Let
M!=M,—[i(U,)]
and form the union
MU M
by identifying a point x, € 4,(N(e)) c M} with the point Ty =1,00°%(2,) € M},
LEMMA 5. M}!UM} is a compact complex 3-fold.

Proof is easy.

REMARK 1. If M,=M,=P*® and 4, are the natural inclusions, then
MU M}=P:,

We denote M}UuM} by M(M,, M, i, 1,). It is clear that MM, M,,
iy, t,) is defined independently of the choice of ¢, but may depend on
the choice of 4,’s. The process to construct M(M,, M,, i, i,) out of Ms
and 4,’s is called a conmecting operation. Note that MM, M,, i, 1,) is
also of Class L.

§4. By means of connecting operations, we shall construct induc-
tively a series of compact complex 8-folds {M,},.,,... stated in the
beginning of this note. Let M, be the manifold constructed in §2,
which is of Class L by Proposition 5. To construct M, we take two
copies of M,, say M, and M,. In the following, A’ indicates a subset
in M, corresponding to 4 in M,. Let l,, (resp. l;) be one of the non-
singular rational curves in M, (resp. M) described in Proposition 5. Let
L, (resp. L;) be a neighborhood of I, (resp. l;,) in M,—8S, (resp. M;—
S;) which is biholomorphic to U, for some ¢,>1. This is possible by
Lemma 1. Let ¢;: U,— L,C M, (resp. 4;: U, — L;CM,) be an isomorphism.
By the connecting operation, we obtain a compact complex 3-fold

M2=M(M1, Ml" ?:1’ ’i:) .

Note that M, contains at least two Hopf surfaces H, and H,, corres-
ponding to S, and S, in M, and M;, respectively. Now we regard
7,(N(e,)) as a subdomain in M,  In 4,(N(s)), there are a non-singular
rational curve [, and its neighborhood L, which is biholomorphic to that
of a section of V. Let 1, U,— L, (Ci(N(,))cM,) be an isomorphism,
where we can assume ‘that 1<¢,<¢. By using 4,|/U,, and ¢,, we can
connect M, and M,, and obtain
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M3=M(M1, Mz; 'i1| Utg’ 1)

Since 1,(N(e))cM,—(H,UH,), M, contains at least 3 Hopf surfaces H,,
H,, and H, which correspond, respectively, to H, and H, in M,, and S,
in M,., Now again, regarding 1,(N(¢,)) as a subdomain in M, we can
repeat the above step, and we have inductively a series {M,}.—..,...

Mn:M(Ml’ Mn—l) 7:1] Uc,;_p ?:n—.l)

of compact complex 3-folds. M, contains at least n Hopf surfaces, one
of which is from M, and the others are from M, _,.

THEOREM. For all n=1,

(i) M, is non-algebraic and non-kahler,
(ii) w(M,)=0, n,(M,)=2Z, and by(M,)=4n,
(iii) dim H'(M,, &Z)=n,

(iv) dim H'(M,, 29)=n.

PROOF. (i) is clear, since M, contains Hopf surfaces. (ii) By the
Mayer-Vietoris sequence with Z-coefficients

s H(M?™ M) 2O% H(Mp-DH(M}) — H(M,)

(6)
— H, (M0 M) —---,
where
My =M,— [7/1( Ul/s,,_l)] ’
and
M = M,_,— [in—l( Ul/l”_l)] ’
we have
IL(-Z‘LW_1 N Mr?—-l) =0 ’
and

HMNM;_)=2Z,

since M\ M}, is homotopy equivalent to S*xS°® Note that [, gener-
ates both H,(M?*N M}, and H,(M"™"). Hence

1 Hz(M1"_1 N M:—l) — H, (M)
is bijective. Therefore, from (6), we have
( 7 ) H,(M,) =H2(M,f_1) .

By the exact sequence
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cor— H(M,_,, M})— H,(M;} ) — H,M,_,)
— Hz(Mn—n M)—:--,

and the duality

H(M,_,, Mi_)=H?,_)=0,

a-1

and

H,(M,_,, M$)=H"'{,,_)=0,

dn—1
we have

Hz(M:—1)=H2(Mn-—1) .
Hence, by (7) and the induction assumption, we obtain
H(M,)=H.M,_,)=Z .

Since 7,(M,)=0 is clear, n, (M, =Z follows from the Hurewicz isomor-
phism theorem. Since e(M,)=e(M,_))+e(M,)—4=e(M,_)—4=—4(n—1) by
the induction assumption and Proposition 3, we have b,(M,)=2-+2b,(M,)—
e(M,)=4n.

To prove (iii) of the theorem, we shall make some preparations.
Recall that

Mi=M,—[1.(Uy],
Mr=M — [7/1( Ul/:,.)] ’
and that
M, =M}M".
Let
JLM{— M,,,, and

2. n
M — M,

be the natural inclusions. Then we have

8,0 =(faot,)|N(e,) = (fa01,°0)|N(e,)
which defines an embedding

N(,)— M,,, .

Let
0.: N(&,) — M7,
o..M}!— M,, and
T.. N(,) — M,
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be the open embeddings defined, respectively, by
0,.=(1,°0)|N(e,) ,

o,=the natural inclusion, and
T,=0,°0, -
Let
tat N(eny) — N(e,)
be the open embedding defined by

tn = s;107'-11.+1 = 8;10(?:1:+1°0'|N(5n+1))

sn(N(&4))

A

insr 0 (N(&ns1))

sn( Ul/e,.,,)

1
1
]
]
]
*
1
]
1
1
]
[}
[l
1 3
1
[]
[}
b

ME
FIGURE M,+1

LEMMA 6. o¥: H\M,, &)— H' (M}, &) is injective for all n=1.
PrROOF. Since the homomorphism
r: H\(M,—1,,, @) — HXM}, &)

induced by the natural inclusion is injective by Andreotti-Siu [1, Pro-
position 1.2], it is enough to show that

(8) H (M,, 7)=0.

Since l,, has a neighborhood in M, which is bihelomorphic to that of a
projective line P' in P23, we have the exact sequence

oo HY(P*— P!, @) — H(P®, ) —.——>H,1q“(Mm )
— H'(P?, &) —--- .

From this sequence, (8) follows easily. Q.E.D.
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Let
L =R\%ty,) s, ,» and
L=R\(Ty) % .

Then we have
LEMMA 7. L,=C"%, and L=.

ProoF. First we consider L,. By a theorem of Grauert, L, is a
vector bundle of rank 1=dim H(C*/{a), ). Recall that R, is the
blowing-up of R, y#: R,— R, and that R=P'x P'. Let E, be the proper
inverse image of P'x{0}cR, and E, the proper inverse image of {0}x
P'cR. Then H*R, Z) is generated by E, E, and the exceptional
curve [=p"'(P). Note that H'(R, ©)=0. Hence, to prove the lemma,
it is enough to show that the restrictions of L, to E, E,, and | are
trivial. But these are consequences of the fact that znzi(E), 7xi(E),
and 7y)(l) are all elliptic bundles with vanishing Chern numbers, by
virtue of a result of Kodaira [3, Theorem 12]. By a similar argument,
L=, can be proved easily. Q.E.D.

LemMA 8. dim H'(M, &)=dim H'(M,, 2)=1.

Proor. This follows easily from Lemma 7 by using Leray’s spect-
ral sequences applied to the fibre bundles 7,: M— R, and 7, : M,—R,.

LEMMA 9. The homomorphism
r: H(M,, &) — H'M,—-S,, )
induced by the matural inclusion 18 injective.

PrOOF. Since L=¢7, by Lemma 7, there is a non-zero section se¢
H(R—P, L). By Proposition 4, we see that p*se H(R,—1, L,). Since
l is an exceptional curve in R,, and since L, is trivial on R, by Lemma

7, p*s extends to a section p*s of H°(R,, L,). Consider the commutative
diagram

HYM,, ) > H(M,—8,, &)
(9) ]jl Ia‘,
HR,, L) —> H(R,—1, L)) ,

where r; is induced by the restrictions, and j, and j, are the canonical
injections of Leray’s spectral sequences. Then
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"'2°.7.1(#*3)=j2()u*8) .
Since j, is injective, and since p*s+#0, we see that
(10) 705, (1% 8)#0 .

By Lemmas 7 and 8, j, is an isomorphism. Therefore (10) implies that
r, is injective. Q.E.D.

LemMMaA 10. dim Ker o} =1.
ProOF. Consider the commutative diagram
*
HY(M,, &) — H\M}, ©)
N
11\ / o1
H*(N(ey), &) .

Take the element jl(;?;)eHl(Ml, @) of the proof of Lemma 9. By

Lemma 6, o¥oj,(#*s) € H' (M}, <#) is not zero. Therefore, to prove the
lemma, it suffices to show that

(1)

(12) RGO

The element se€ H'(R— P, L) extends to an element 8¢ H'(R, L). Let
Js: HY(R, L)— H'(M, 27) be the inclusion defined by Leray’s spectral
sequence. Consider the element j,(3) e H*(M, ). Let

v': H(M, C) — H'(M,—S,, C) , and

v': H(M, &) — H'(M,—S,, &)
be the homomorphisms defined by the inclusion M—E— M followed by

r-': M—E—M,—8S, of Proposition 4. Since S,N7,(N())=0, we have
also the homomorphisms

7 H(M,—S,, C) — H'(N(e,), C) , and
o't H(M,—8,, &) — H'(N(e), 2)

induced by 7,. Then we have the following commutative diagram:

HYM, C) . HY(M,—-S,, C) AN H'(N(e,), C)

(13) lj‘ 13'5 lje
HM, 2) X5 H\(M,—8,,0) = H(NE, &),
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where j,, 75, and j, are homomorphisms defined by the natural inclusion
C— . It is easy to see that dim H°(M, d)<dim H(M, 2')=0, where
' is the sheaf of germs of holomorphie 1-forms and d#” is the subsheaf
of 2' whose elements are d-closed. Moreover H'(M, C)=C. Hence, by
Lemma 8 and the exact sequence

0 > C > 7 >»do? — 0,

we see that j, is an isomorphism. Hence, from the diagram (13) and
the fact that H'(N(e,), C)=0,

(14) Ty o 0§ (8) =0

follows. Consider the commutative diagram
H'(M,—S8,, &) X~ H'(M, o)

(15) Ifz Ps

HR,—1, L) < HYR, L),

where pf is induced by the inclusion R—P— R followed by the iso-
morphism y: R, —1l— R—P. Note that

nr3=prs .
Then, by the diagrams (9), (11), (18), and (15), we have

Y et
Ti*°.71(# 8)=r1} 07’2031(#*8)
=17, 0 J,ors(4*8)
=17, 0 Jo(t*s)
=177 0 Jo(44'3)
=17, o9’ 0 5y(3) ,
which is equal to zero by (14). Thus (12) is obtained. Q.E.D.
PrROOF oOF (iii) oF THE THEOREM. Consider the following inequalities:

(*)a dim H'(M,, Z)z=n ,
**). dim Ker p=n .
We shall prove, by induction on =, that (*), and (**), hold for all n=1.

By Lemmas 8 and 10, (*), and (**), hold. Suppose that (*), and (**),
hold for some n=1. Consider the Mayer-Vietoris sequence
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(16) oo HY(M, ., &) L5 HNME, )YDH M, )

2, HY(NG,), &) —+++
where
Fr=f*@f:*, and
g =07 — (6 N(e)* -

There is the following commutative diagram:
H\(M?, ) —E— H(NG), )

a}l ljé
1 (@I NE)* .
H'(M?, &) — H'(NC(e,), &) ,

where j, is induced by the inclusion, and j; is induced by the inclusion
followed by o. Note that j, is injective by Andreotti-Siu [1, Proposi-
tion 1.2]. Hence by Lemma 10,

amn 1=dim Ker p} <dim Ker (4,|N(e,))* .
Since the subspace
K: =Ker p*@Ker (i,|N(e,)*
in H\(M}, )PH(M?, <) is contained in Ker g, we have
dim Ker gr=n+1,

by using (17) and the induction assumptions (**), and (**),. Hence we
obtain (*),,, by the exact sequence (16). Moreover, since

[ (K)cKer sy,
we have
dim Ker s*=dim f*(K)=n-+1.

Then by the commutative diagram
H'(M,,,, @)% H{(N,.), &)

N /
L AN Stk
H'(N(,), &) »

we obtain
dim Ker z¥,,=dim Ker s =n+1 .
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Therefore, by the commutative diagram
H\M,,,, 2) 25 H\(M},,, 2)

N /
T#ﬂ\l / [3)
H'(N(e,41), &)
and Lemma 6, we have

dim Ker p},,=dim Ker 7*,,=n+1,
which proves (**),.,.
PROOF OF (iv) OF THE THEOREM. By the exact sequence
0 »C— 7 »do” >0
and 7,(M,)=0, we have
(18) dim H'(M,, £ )<dim H\(M,, dZ) .

Letting d2* be the subsheaf of 2° whose elements are d-closed, we
form the exact sequence

19) 0 »d » ! > ' >0 .
We claim that
(20) dim H(M,, d2")=0 .

To prove (20), it suffices to show that
(21) dim H(M,, 2*)=0.

Take any we H(M,, 2°). Then i.we€ H(U, 6 2%). By Andreotti-Siu [1,
Proposition 1.2], we have

HYU,,, @) =H"(P*, 2)=0.

Hence iyw=0. This implies w=0 and proves (21). Therefore, from
(19) and (20),

dim H'(M,, d)<dim H'(M,, 2*) .
Thus combining this with (iii) and the inequality (18), we obtain
dim H'(M,, 2)=n . Q.E.D.
REMARK 2. I don’t know whether dim H'(M,, &)=n.

*) See the end of the paper.
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REMARK 3. For a compact complex manifold X, we put
h?(X)=dim HY(X, 27) .

It is known that, if X is a compact kidhler manifold, or, more generally,
a compact Fujiki manifold (i.e., of Class & in Fujiki [2, Definition 1.1]),
then the equality

h# (X ) =h"?(X)
holds and the k-th Betti number is given by
b(X)= Zkh”’“(X)-

pHe=

Hence, in particular, we have
h""(X)————;—bl(X) and AM(X)=Zb(X) .

By Kodaira [3, Theorem 3], we also see that, if dim X=2, then the
following equality and inequality hold including the cases where X are

non-kahler:

%bl(X) , if 5(X)=0 (mod 2)
RN X) =

ZOO+D) , i B =1 (mod2),
R(X)<by(X) .

Our example shows, however, that, for general compact complex mani-
folds of dimension more than 2, it is impossible to estimate h"(X) and
N X) in terms of b(X) and by(X), respectively.

REMARK 4. In his recent study of compact complex 3-folds with
Hopf surfaces as divisors, H. Tsuji has also found a method of modify-
ing a compact complex manifold as we have used in section §2. Namely,
he found that, if a compact complex manifold X, dim X=3, contains a
primary Hopf manifold S of codimension 1 with a certain condition on
the normal bundle of S in X, then one can replace S by an elliptic
curve E to obtain a new compact complex manifold Y=(X—-S)UE [4].

Notes added on Dec.10, 1981. It can be shown that dim HY(M,, &)=
n, and dim H*M,, <)=0. The differentiable structure of M, can be
described completely by using connected sum operations by virtue of
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the results of C. T. C. Wall [Invent. Math., 1, 855-374 (1966)]. See the
forthcoming paper for these facts.
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