The Pseudo Orbit Tracing Properties on the Space of Probability Measures

Motomasa KOMURO

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

Let X be a state space of some system and M(X) the space of probability measures on X. The elements of M(X) are viewed as statistical states. The elements of X are imbedded in M(X) as the pure states. Let T be a transformation of X and \widetilde{T} the corresponding transformation of M(X). As against (X, T) is a dynamical system in classical mechanics, $(M(X), \widetilde{T})$ can be viewed as one in classical statistical mechanics (cf. [1]).

If X is compact metric and T is continuous, then M(X), provided with the weak topology, is again compact metric and \tilde{T} is continuous. W. Bauer and K. Sigmund studied in [1] the problem of which of the properties of (X, T) (like distality, topologically mixing, expansiveness, etc...) carry over to $(M(X), \tilde{T})$. However they did not treat the pseudo orbit tracing property defined by R. Bowen [2]. The aim of this paper is to study the property of $(M(X), \tilde{T})$ induced by (X, T) which has the pseudo orbit tracing property.

§1. Definitions and results.

Let X be a compact metric space with metric d and M(X) the space of Borel probability measures on X. The Prohorov metric \tilde{d} on M(X) is defined by $\tilde{d}(\mu,\nu)=\inf\{\varepsilon:\mu(A)\leq\nu(A^\epsilon)+\varepsilon \text{ and } \nu(A)\leq\mu(A^\epsilon)+\varepsilon \text{ for all Borel sets } A\subset X\}$ for $\mu,\nu\in M(X)$. Here $A^\epsilon=\bigcup_{x\in A}\{y\in X:d(x,y)\leq\varepsilon\}$. As V. Strassen showed in [7], one has $\tilde{d}(\mu,\nu)=\inf\{\varepsilon:\mu(A)\leq\nu(A^\epsilon)+\varepsilon \text{ for all Borel sets } A\subset X\}$. The induced topology is just the weak topology for measures. It turns M(X) into a compact space (cf. [5, P. 45]). For $x\in X$, let $\pi(x)\in M(X)$ be a point measure defined by $\pi(x)(A)=1$ if $x\in A$, =0 otherwise.

Received August 12, 1983.

Revised January 19, 1984.

 π is a homeomorphism from X onto a closed subset of M(X). It is obvious that M(X) is convex and the point measures are just the extremal points of M(X). Let $M_n(X) = \{\mu = (1/n)(\pi(x_1) + \cdots + \pi(x_n)), x_i \in X \text{ not necessarily distinct} \}$ for $n = 1, 2, \cdots$. Then $M_n(X)$ is a closed subset of M(X) and $\bigcup_{n\geq 1} M_n(X)$, the measures with finite support, is dense in M(X).

Let T be a homeomorphism of X (i.e. from X onto itself). T induces a map $\widetilde{T}: M(X) \to M(X)$ defined by $(\widetilde{T}\mu)(A) = \mu(T^{-1}A)$ ($\mu \in M(X)$, $A \subset X$; Borel). It is easy to see that \widetilde{T} is a homeomorphism of M(X), sending $\pi(x)$ into $\pi(Tx)$. Clearly $M_n(X)$ ($n \ge 1$) is \widetilde{T} -invariant. We denote the restriction of \widetilde{T} to $M_n(X)$ by same symbol \widetilde{T} . It is well known that the set of T-invariant measures $\{\mu \in M(X): \widetilde{T}\mu = \mu\}$, which is just the set of fixed points of \widetilde{T} , is a nonempty convex closed set ([3, P. 17]). Let $X_n = X \times \cdots \times X$ (n-times) and a metric d_n on X_n define by $d_n(x, y) = \max_{1 \le i \le n} d(x_i, y_i)$ for $x = (x_1, \cdots, x_n)$, $y = (y_1, \cdots, y_n)$ in X_n . T induces a homeomorphism T_n of X_n defined by $T_n(x) = (Tx_1, \cdots, Tx_n)$ ($x = (x_1, \cdots, x_n) \in X_n$).

A sequence $\{x_i\}_{i=a}^b$ $(-\infty \le a \le b \le \infty)$ in X is δ -pseudo orbit of T if $d(Tx_i, x_{i+1}) < \delta$ for $a \leq i \leq b-1$. The δ -pseudo orbit $\{x_i\}_{i=a}^b$ is said to be ε traced if there is $x \in X$ with $d(T^i x, x_i) \le \varepsilon$ $(a \le i \le b)$. (X, T) has the pseudo orbit tracing property (abbrev. P.O.T.P.) if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo orbit of T is ε -traced. (X, T) is tracing if for a sequence $\{x_i\}_{i=0}^{\infty}$ with $\lim_{i\to\infty} d(Tx_i, x_{i+1}) = 0$ there is $x \in X$ with $\lim_{t\to\infty} d(T^t x, x_t) = 0$. In general the tracing does not imply the P.O.T.P.. (X, T) is said to be T-connected if for every $x, y \in X$ and every $\alpha > 0$ there are α -pseudo orbits $\{x_i\}_{i=0}^a$ and $\{y_i\}_{i=0}^b$ so that $x_0 = x = y_b$ and $y_0 = y = x_a$. (X, T) is topologically mixing if for every nonempty open sets U and Vof X there is N>0 such that $U\cap T^{-n}V\neq\emptyset$ for every $n\geq N$. satisfies specification if for every $\varepsilon > 0$ there is $M = M(\varepsilon) > 0$ such that for every $k \ge 1$ and k points $x_1, \dots, x_k \in X$, for every set of integers $a_1 \le 1$ $b_1 < \cdots < a_k \le b_k$ with $a_{i+1} - b_i \ge M$ $(1 \le i \le k-1)$ and for every $p \ge b_k - a_1 + M$ there is $x \in X$ with $d(T^n x, T^n x_i) \le \varepsilon$ $(a_i \le n \le b_i, 1 \le i \le k-1)$ and $T^n x = x$. (X, T) satisfies weak specification if (X, T) satisfies the definition of specification except the periodic condition; $T^px=x$. Our results are following.

THEOREM 1. Let T be a homeomorphism of a compact metric space X and \tilde{T} an induced homeomorphism of M(X). Then the following holds.

(1) If (X, T) has the P.O.T.P., then $(M_n(X), \tilde{T})$ has also the P.O.T.P. for every $n \ge 1$.

(2) If (X, T) is tracing, then $(M_n(X), \tilde{T})$ is also tracing for every $n \ge 1$.

THEOREM 2. Let \tilde{T} be as in Theorem 1. The following holds.

- (1) If $(M(X), \tilde{T})$ is tracing, then $(M(X), \tilde{T})$ has the P.O.T.P..
- (2) If $(M(X), \tilde{T})$ has the P.O.T.P., then $(M(X), \tilde{T})$ satisfies specification.

REMARK. By Theorem 2(2) it follows that if $(M(X), \tilde{T})$ has the P.O.T.P. (resp. tracing), then (X, T) is topologically mixing (cf. Propositions 21.3 and 6.9 in [3]). There is (X, T) which has the P.O.T.P. (resp. tracing) but is not topologically mixing (for example $X=\{0, 1\}$ and T=id.), so $(M(X), \tilde{T})$ need not have the P.O.T.P. (resp. tracing) even if (X, T) has the P.O.T.P. (resp. tracing).

§2. Proof of Theorem 1.

For $n \ge 1$, let us define a map $\varphi_n: X_n \to M_n(X)$ by $\varphi_n(x) = (1/n) \sum_{i=1}^n \pi(x_i)$ $(x = (x_1, \dots, x_n) \in X_n)$. Clearly φ_n is a continuous surjection at most n! to one. Moreover φ_n satisfies following;

LEMMA 1. For every $x, y \in X_n$, $\widetilde{d}(\varphi_n(x), \varphi_n(y)) \leq d_n(x, y)$.

PROOF. Let $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n) \in X_n$ be given. Put $d_n(\mathbf{x}, \mathbf{y}) = c$, then $d(x_i, y_i) \leq c$ $(1 \leq i \leq n)$. For every Borel set $A \subset X$ if $y_i \in A$ then $x_i \in A^c$. Hence we have $\varphi_n(\mathbf{x})(A^c) \geq \varphi_n(\mathbf{y})(A)$, and so by the definition of \tilde{d} , $\tilde{d}(\varphi_n(\mathbf{x}), \varphi_n(\mathbf{y})) \leq c = d_n(\mathbf{x}, \mathbf{y})$.

LEMMA 2 (marriage lemma [4]). Let $B = \{b_1, \dots, b_n\}$ and $G = \{g_1, \dots, g_n\}$ be finite sets of cardinal n and P(G) the family of subsets of G. Let Ψ be a map from B into P(G). If Ψ satisfies that $\sharp \cup_{b \in E} \{\Psi(b)\} \geq \sharp E$ for every subset E of B, then there is a permutation $\sigma: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ such that $g_{\sigma(i)} \in \Psi(b_i)$ $(1 \leq i \leq n)$.

LEMMA 3. Let $n \ge 1$ and $0 < \delta < 1/n$ be given. For $\mu \in M_n(X)$, take $\mathbf{x} \in X_n$ with $\varphi_n(\mathbf{x}) = \mu$. Then for every $\mathbf{v} \in M_n(X)$ with $\tilde{d}(\mu, \mathbf{v}) < \delta$ there is $\mathbf{y} \in X_n$ such that $\varphi_n(\mathbf{y}) = \mathbf{v}$ and $d_n(\mathbf{x}, \mathbf{y}) < \delta$.

PROOF. Take $\delta_0 > 0$ with $\tilde{d}(\mu, \nu) < \delta_0 < \delta$ (<1/n). We express $x = (x_1, \dots, x_n) \in X_n$ and $\nu = (1/n) \sum_{i=1}^n \pi(z_i)$. To distinguish between x_i or z_i $(1 \le i \le n)$ we put $S = \{1, \dots, n\}$ and $x_i' = (x_i, i), z_i' = (z_i, i) \in X \times S$ $(1 \le i \le n)$. For $B = \{x_i', \dots, x_n'\}$ and $G = \{z_i', \dots, z_n'\}$ we define a map $\Psi: B \to P(G)$ by $\Psi(x_i') = \{z_i' \in G: d(\tau(x_i'), \tau(z_j')) \le \delta_0\}$ $(1 \le i \le n)$ where P(G) is the family of subsets of G and $\tau: X \times S \to X$ is a natural projection. In order to apply

Lemma 2 we show that $\sharp \cup_{x_i' \in E} \Psi(x_i') \geq E$ for every subset E of B. Indeed, by $\widetilde{d}(\mu, \nu) < \delta_0$, it follows that $\nu((\tau E)^{\delta_0}) \geq \mu(\tau E) - \delta_0$ where $(\tau E)^{\delta_0} = \{x \in X: d(x, \tau E) \leq \delta_0\}$. Since $\mu(\tau E) = \sharp E/n$ and $\delta_0 < 1/n$, we have $\nu((\tau E)^{\delta_0}) > (1/n)$ ($\sharp E - 1$). For every Borel set $A \subset X$, $\nu(A) = (1/n)(\sum_{i=1}^n \pi(z_i))(A) = k/n$ for some $0 \leq k \leq n$, so $(1/n)(\sum_{i=1}^n \pi(z_i)(\tau E)^{\delta_0}) \geq \sharp E/n$. Since $\sharp \cup_{x_i' \in E} \{\Psi(x_i')\} \geq \sharp E$. $\sharp \{z_i' \in G: d(\tau x_i', \tau z_i') \leq \delta_0, x_i' \in E\} = \sum_{i=1}^n \pi(z_i)((\tau E)^{\delta_0})$, we get $\sharp \cup_{x_i' \in E} \{\Psi(x_i')\} \geq \sharp E$.

Hence by Lemma 2 there is a permutation $\sigma: S \to S$ with $\Psi(x_i') = z'_{\sigma(i)}$ $(1 \le i \le n)$. Put $y_i = z_{\sigma(i)}$ and $y = (y_1, \dots, y_n) \in X_n$. Then we have $\varphi_n(y) = (1/n) \sum_{i=1}^n \pi(y_i) = (1/n) \sum_{i=1}^n \pi(z_{\sigma(i)}) = \nu$ and $d_n(x, y) = \max_{1 \le i \le n} d(x_i, z_{\sigma(i)}) = \max_{1 \le i \le n} d(\tau x_i', \tau z'_{\sigma(i)}) \le \delta_0 < \delta$.

LEMMA 4. (1) If (X, T) has the P.O.T.P., then (X_n, T_n) has the P.O.T.P. for every $n \ge 1$. More precisely, given $\varepsilon > 0$ if there is $\delta > 0$ such that every δ -pseudo orbit of T is ε -traced, then every δ -pseudo orbit of T_n is ε -traced.

(2) If (X, T) is tracing, then so is (X_n, T_n) .

PROOF. (1): Let $\varepsilon > 0$ be given and $\delta > 0$ be a number decided by the P.O.T.P. of (X, T) corresponding with ε . Let $\{x^k\}_{k=-\infty}^{\infty}$ be a δ -pseudo orbit of (X_n, T_n) . If one denotes $x^k = (x_1^k, \dots, x_n^k)$ $(k \in \mathbb{Z})$ then $\{x_i^k\}_{k=-\infty}^{\infty}$ $(1 \le i \le n)$ is a δ -pseudo orbit of (X, T) because $d(Tx_i^k, x_i^{k+1}) \le d_n(T_n x^k, x^{k+1}) < \delta$ $(1 \le i \le n, k \in \mathbb{Z})$. By assumption, there is $y_i \in X$ $(1 \le i \le n)$ with $d(T^k y_i, x_i^k) \le \varepsilon$ $(k \in \mathbb{Z})$. Put $y = (y_1, \dots, y_n)$ then $d_n(T_n^k y, x^k) = \max_{1 \le i \le n} d(T^k y_i, x_i^k) \le \varepsilon$; i.e. $y \in X_n$ ε -traces $\{x^k\}_{k=-\infty}^{\infty}$.

(2): Let a sequence $\{x^k\}_{k=0}^{\infty}$ of X_n satisfy that $\lim_{k\to\infty} d_n(T_nx^k, x^{k+1}) = 0$. If one denotes $x^k = (x_1^k, \dots, x_n^k)$ $(k \in \mathbb{Z})$ then it follows that $\lim_{k\to\infty} d(Tx_i^k, x_i^{k+1}) \le \lim_{k\to\infty} d_n(T_nx^k, x^{k+1}) = 0$ $(1 \le i \le n)$, so there is $y_i \in X$ with $\lim_{k\to\infty} d(T^ky_i, x_i^k) = 0$. Putting $y = (y_1, \dots, y_n)$ we have $d_n(T^ky_i, x^k) = \max_{1 \le i \le n} d(T^ky_i, x_i^k) \to 0$ $(k \to \infty)$. This proves the lemma.

PROOF OF THEOREM 1. (1): Let $n \ge 1$ and $\varepsilon > 0$ be given. By assumption there is $0 < \delta < 1/n$ such that every δ -pseudo orbit of (X, T) is $\varepsilon / 2$ -traced. Then, by Lemma 4(1), every δ -pseudo ordit of (X_n, T_n) is $\varepsilon / 2$ -traced. At first we show that for every m > 0, every finite δ -pseudo orbit $\{\nu_k\}_{k=0}^m$ of $(M_n(X), \tilde{T})$ is $\varepsilon / 2$ -traced. Since φ_n is surjective there is $x^0 = (x_1^0, \cdots, x_n^0) \in X_n$ with $\varphi_n(x^0) = \nu_0$. Then, since $\tilde{d}(\tilde{T}\nu_0, \nu_1) < \delta$, by Lemma 3 we can find $x^1 = (x_1^1, \cdots, x_n^1) \in X_n$ such that $\varphi_n(x^1) = \nu_1$ and $d_n(T_n x^0, x^1) < \delta$. As $\tilde{d}(\tilde{T}\nu_1, \nu_2) < \delta$, by Lemma 3 we have again $x^2 = (x_1^2, \cdots, x_n^2) \in X_n$ such that $\varphi_n(x^2) = \nu_2$ and $d_n(T_n x^1, x^2) < \delta$. Repeated this process we get a δ -pseudo orbit $\{x^k\}_{k=0}^m$ of (X_n, T_n) with $\varphi_n(x^k) = \nu_k$ $(0 \le k \le m)$. Hence there is $y = (y_1, \cdots, y_n) \in X_n$ which $\varepsilon / 2$ -traces $\{x^k\}_{k=0}^m$. Put $\mu = (1/n) \sum_{i=1}^n \pi(y_i) \in M_n(X)$, then we have

 $\widetilde{d}(\widetilde{T}^k\mu, \nu_k) = \widetilde{d}(\varphi_n(T^k_n y), \varphi_n(x^k)) \le d_n(T^k_n y, x^k) \le \varepsilon/2$ (by Lemma 1);

i.e. $\{\nu_k\}_{k=0}^m$ is $\varepsilon/2$ -traced by μ .

Now let $\{\nu_k\}_{k=-\infty}^{\infty}$ be a δ -pseudo orbit of $(M_n(X), \tilde{T})$. For every m>0 let us put $\nu_j'=\nu_{j-m}$ $(0\leq j\leq 2m)$. Then by the above argument there is $\mu_m'\in M_n(X)$ which $\varepsilon/2$ -traces $\{\nu_j'\}_{j=0}^{2m}$. Put $\mu_m=\tilde{T}^m\mu_m'$ and take a limit point μ of sequence μ_m . Then, since for every $k\in \mathbb{Z}$ there is m>|k| so that $\tilde{d}(\tilde{T}^k\mu_m, \tilde{T}^k\mu)\leq \varepsilon/2$, we get $\tilde{d}(\tilde{T}^k\mu, \nu_k)\leq \tilde{d}(\tilde{T}^k\mu, \tilde{T}^k\mu_m)+\tilde{d}(\tilde{T}^{k+m}\mu_m', \nu_{k+m}')\leq \varepsilon/2+\varepsilon/2=\varepsilon$. This shows that $(M_n(X), \tilde{T})$ has the P.O.T.P..

(2): Let $n \ge 1$ be given and $\{\nu_k\}_{k=0}^{\infty}$ be a sequence of $M_n(X)$ with $\lim_{k\to\infty} \widetilde{d}(\widetilde{T}\nu_k, \nu_{k+1}) = 0$. Without loss of generality we may assume $\widetilde{d}(\widetilde{T}\nu_k, \nu_{k+1}) < 1/n \ (k \ge 0)$. By same argument as in the proof of (1) we get a sequence $\{x^k\}_{k=0}^{\infty}$ of X_n such that $\varphi_n(x^k) = \nu_k \ (k \ge 0)$ and $\lim_{k\to\infty} d_n(T_nx^k, x^{k+1}) = 0$. Since (X_n, T_n) is tracing (by Lemma 4(2)), there is $x \in X_n$ with $\lim_{k\to\infty} d_n(T_n^kx, x^k) = 0$. Then for $\mu = \varphi_n(x)$ it follows that $\widetilde{d}(\widetilde{T}^k\mu, \nu_k) = \widetilde{d}(\varphi_n(T_n^kx), \varphi_n(x^k)) \le d_n(T_n^kx, x^k) \to 0 \ (k\to\infty)$. The proof is completed.

§3. Proof of Theorem 2.

We shall prove Theorem 2 by a series of lemmas.

LEMMA 5. Let μ , ν and μ_i (i=1, 2) belong to M(X).

- (1) $\tilde{d}(\alpha\mu+(1-\alpha)\nu, \beta\mu+(1-\beta)\nu) \leq \beta-\alpha \text{ for } 0 \leq \alpha \leq \beta \leq 1.$
- $(2) \quad \tilde{d}(\alpha\mu_1+(1-\alpha)\mu_2,\nu) \leq \max\{\tilde{d}(\mu_1,\nu),\,\tilde{d}(\mu_2,\nu)\} \text{ for } 0 \leq \alpha \leq 1.$

PROOF. (1): Let a Borel set $A \subset X$ be given. Then we calculate

$$\begin{split} (\beta\mu + (1-\beta)\nu)(A^{\beta-\alpha}) + (\beta-\alpha) - (\alpha\mu + (1-\alpha)\nu)(A) \\ = &\alpha(\mu(A^{\beta-\alpha}) - \mu(A)) + (1-\alpha)(\nu(A^{\beta-\alpha}) - \nu(A)) \\ &+ (\beta-\alpha)(1 + \mu(A^{\beta-\alpha}) - \nu(A^{\beta-\alpha})) \geqq 0 \end{split}$$

where $A^{\beta-\alpha} = \bigcup_{x \in A} \{ y \in X : d(x, y) \leq \beta - \alpha \}$. From this we have conclusion. (2): Put $c = \max\{\tilde{d}(\mu_1, \nu), \tilde{d}(\mu_2, \nu) \}$ and take $\varepsilon > c$. For every Borel set $A \subset X$, since $\mu_i(A^s) + \varepsilon - \nu(A) \geq 0$ (i = 1, 2), we have

$$(\alpha\mu_1 + (1-\alpha)\mu_2)(A^{\epsilon}) + \varepsilon - \nu(A)$$

$$= \alpha(\mu_1(A^{\epsilon}) + \varepsilon - \nu(A)) + (1-\alpha)(\mu_2(A^{\epsilon}) + \varepsilon - \nu(A)) \ge 0.$$

Therefore $\tilde{d}(\alpha\mu_1+(1-\alpha)\mu_2, \nu) \leq \inf\{\varepsilon: c < \varepsilon\} = c$, proving the lemma.

LEMMA 6. Let T be a homeomorphism of X and \tilde{T} an induced homeomorphism of M(X). Then $(M(X), \tilde{T})$ is \tilde{T} -connected.

PROOF. Let $\mu, \nu \in M(X)$ and $\alpha > 0$ be given. Take $n \ge 1$ with $1/n < \alpha$.

For $0 \le i \le n$ let us define μ_i and ν_i by $\mu_i = (1 - (i/n)) \tilde{T}^i \mu + (i/n) \tilde{T}^{i-n} \nu$ and $\nu_i = (1 - (i/n)) \tilde{T}^i \nu + (i/n) \tilde{T}^{i-n} \mu$. Obviously $\mu_0 = \mu = \nu_n$ and $\nu_0 = \nu = \mu_n$. By Lemma 5(1) we have

$$\begin{split} \widetilde{d}(\widetilde{T}\mu_{i}, \, \mu_{i+1}) = & \widetilde{d}\Big(\Big(1 - \frac{i}{n}\Big)\widetilde{T}^{i+1}\mu + \frac{i}{n}\widetilde{T}^{i+1-n}\nu, \, \Big(1 - \frac{i+1}{n}\Big)\widetilde{T}^{i+1}\mu + \frac{i+1}{n}\widetilde{T}^{i+1-n}\nu\Big) \\ \leq & \frac{i+1}{n} - \frac{i}{n} < \alpha \quad (0 \leq i \leq n-1) \end{split}$$

and similarly $\tilde{d}(\tilde{T}\nu_i, \nu_{i+1}) < \alpha \ (0 \le i \le n-1)$. This proves the lemma.

LEMMA 7. If (X, T) is tracing and T-connected, then (X, T) has the P.O.T.P..

PROOF. Suppose the lemma is false. Then there is $\varepsilon > 0$ such that for every $k \ge 1$ there is a (1/k)-pseudo orbit $\{x_1^k, \dots, x_{N_k}^k\}$ of (X, T) such that there is no $z \in X$ with $d(T^j z, x_j^k) \le \varepsilon$ $(1 \le j \le N_k)$. By T-connectedness, there is a (1/k)-pseudo orbit $\{z_0^k, \dots, z_{L_k}^k\}$ with $z_0^k = x_{N_k}^k$ and $z_{L_k}^k = x_1^{k+1}$ $(k \ge 1)$. Renewing the indices of a sequence

$$\{\cdots, x_1^k, \cdots, x_{N_k}^k, z_1^k, \cdots, z_{N_{k-1}}^k, x_1^{k+1}, \cdots\}$$

we have a sequence $\{x_n\}_{n=0}^{\infty}$ which satisfies $\lim_{n\to\infty} d(Tx_n, x_{n+1}) = 0$. Since (X, T) is tracing, there is $z \in X$ with $\lim_{n\to\infty} d(T^nz, x_n) = 0$. Therefore for some k>0, $\{x_i^k\}_{i=1}^{N_k}$ is ε -traced. This is a contradiction.

If $(M(X), \tilde{T})$ is tracing, by Lemmas 6 and 7, $(M(X), \tilde{T})$ has the P.O.T.P.. This prove Theorem 2(1). Next we show Theorem 2(2).

LEMMA 8. Assume (X, T) is T-connected and has the P.O.T.P.. If the set of fixed points under T is nonempty, then (X, T) is topologically mixing.

PROOF. Let $U, V \subset X$ be nonempty open sets. There are $x \in U$, $y \in V$ and $\varepsilon > 0$ such that $B(x; \varepsilon) \subset U$ and $B(y; \varepsilon) \subset V$, where $B(z; \varepsilon) = \{z' \in X: d(z, z') \le \varepsilon\}$. Since (X, T) has the P.O.T.P., there is $\delta > 0$ so that every δ -pseudo orbit of (X, T) is ε -traced. Take a fixed point $p \in X$ under T. By T-connectedness, there are δ -pseudo orbits $\{x_i\}_{i=0}^a$ and $\{y_i\}_{i=0}^b$ such that $x_0 = x$, $x_\alpha = p = y_0$ and $y_b = y$. Put $N = a + b + 1 \ge 0$. Given $n \ge N$, since a sequence

$$\{x_0, x_1, \dots, x_a, p, \dots, p (n-N \text{ times}), y_0, \dots, y_b\}$$

is a δ -pseudo orbit, there is $z \in X$ which ε -traces this sequence. As $d(x, z) = d(x_0, z) \le \varepsilon$ and $d(y, T^n z) = d(y_0, T^n z) \le \varepsilon$, we have $z \in B(x; \varepsilon) \cap T^{-n}B(y; \varepsilon) \subset U \cap T^{-n}V$; i.e. (X, T) is topologically mixing.

LEMMA 9. If (X, T) is topologically mixing and has the P.O.T.P., then (X, T) satisfies weak specification.

PROOF. Let $\varepsilon>0$ be given. There is $\delta>0$ such that every δ -pseudo orbit is ε -traced. By topological mixing and the compactness of X, there is M>0 such that for every $x, y \in X$, $T^nB(x;\delta) \cap B(y;\delta) \neq \emptyset$ for every $n \geq M$, where $B(z;\delta) = \{z' \in X: d(z,z') \leq \delta\}$. For every $k \geq 1$, let k points $x_1, \dots, x_k \in X$ and a set of integers $a_1 \leq b_1 < \dots < a_k \leq b_k$ with $a_{i+1} - b_i \geq M$ $(1 \leq i \leq k-1)$ be given. By choice of M, there are $y_i \in B(T^{b_i}x_i;\delta)$ $(1 \leq i \leq k-1)$ with $T^{a_{i+1}-b_i}y_i \in B(T^{a_{i+1}}x_{i+1};\delta)$. Then a sequence $\{T^{a_1}x_1, \dots, T^{b_{1}-1}x_1, y_1, \dots, T^{a_2-b_1}y_1, T^{a_2}x_2, \dots, T^{b_k}x_k\}$ is δ -pseudo orbit, so there is $z \in X$ with $d(T^nz, T^nx_i) \leq \varepsilon$ $(a_i \leq n \leq b_i, 1 \leq i \leq k)$. This proves the Lemma.

We remarked in §1 that the set of fixed points of $(M(X), \tilde{T})$ is non-empty. Hence if $(M(X), \tilde{T})$ has the P.O.T.P., by Lemmas 6, 8 and 9, $(M(X), \tilde{T})$ satisfies weak specification. Therefore the proof of Theorem 2(2) is completed by the following lemma.

LEMMA 10. If $(M(X), \tilde{T})$ satisfies weak specification, then $(M(X), \tilde{T})$ satisfies specification.

PROOF. Let $\varepsilon>0$ be given and $M=M(\varepsilon)>0$ an integer determined from the definition of weak specification. For every $k\geq 1$, let k points $\mu_1, \dots, \mu_k \in M(X)$ and a set of integers $a_1 \leq b_1 < \dots < a_k \leq b_k$ with $a_{i+1} - b_i \geq M$ $(1\leq i\leq k-1)$ and $p\geq b_k-a_1+M$ be given. Using weak specification, we can find a sequence $\nu_j \in M(X)$ $(j=1,2,\dots)$ such that $\tilde{d}(\tilde{T}^{n+mp}\nu_j,\tilde{T}^n\mu_i)\leq \varepsilon$ $(a_i\leq n\leq b_i,1\leq i\leq k,0\leq m\leq j)$. Take a limit point ν of the sequence ν_j . Then it follows that $\tilde{d}(\tilde{T}^{n+mp}\nu,\tilde{T}^n\mu_j)\leq \varepsilon$ $(a_i\leq n\leq b_i,1\leq i\leq k,m\geq 0)$. Put $\mu=\lim_{s\to\infty}(1/s)\sum_{m=0}^{s-1}\tilde{T}^{mp}\nu$ for some $\{s\}$. By Lemma 5(2), we have for $a_i\leq n\leq b_i$ $(1\leq i\leq k)$,

$$\begin{split} \widetilde{d}(\widetilde{T}^n\mu,\ \widetilde{T}^n\mu_i) &= \lim_{s \to \infty} \widetilde{d}\Big((1/s) \sum_{m=0}^{s-1} \ \widetilde{T}^{n+mp}\nu,\ \widetilde{T}^n\mu_i \Big) \\ &\leq \lim_{s \to \infty} \max\{\widetilde{d}(\widetilde{T}^{n+mp}\nu,\ \widetilde{T}^n\mu_i);\ 0 \leq m \leq s-1\} \leq \varepsilon \ . \end{split}$$

Also, by Lemma 5(1), we have $\widetilde{d}(\widetilde{T}^p\mu,\mu) \leq \lim_{s\to\infty} \{\widetilde{d}(s^{-1}\sum_{m=1}^s \widetilde{T}^{mp}\nu,(s-1)^{-1}\times\sum_{m=1}^{s-1}\widetilde{T}^{mp}\nu) + \widetilde{d}((s-1)^{-1}\sum_{m=1}^{s-1}\widetilde{T}^{mp}\nu,s^{-1}\sum_{m=0}^{s-1}\widetilde{T}^{mp}\nu)\} \leq \lim_{s\to\infty} 2/s = 0$, hence $\widetilde{T}^p\mu = \mu$. This completes the proof.

References

[1] W. BAUER and K. SIGMUND, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math., 79 (1975), 81-92.

- [2] R. BOWEN, ω-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
- [3] M. DENKER, C. GRILLENBERGER and K. SIGMUND, Ergodic Theory on Compact Spaces, Lecture Notes Math., 527, Springer, Berlin-Heidelberg-New York, 1964.
- [4] P. HALMOS and H. VAUGHN, The marriage problem, Amer. J. Math., 72 (1950), 214-215.
- [5] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York and London, 1967.
- [6] K. Sigmund, On minimal centers of attraction and generic points, J. Reine Angew. Math., 295 (1977), 72-79.
- [7] V. Sterassen, The existence of probability measures with given marginals, Ann. Math. Statistics, 36 (1965), 423-439.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
TOKYO METROPOLITAN UNIVERSITY
FUKAZAWA, SETAGAYA-KU, TOKYO 158