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Introduction

Let X be a state space of some system and M(X) the space of
probability measures on X. The elements of M(X) are viewed as
statistical states. The elements of X are imbedded in M(X) as the pure
states. Let 7T be a transformation of X and T the corresponding
transformotion of M(X). As against (X, T) is a dynamical system in
classical mechanics, (M(X), T) can be viewed as one in classical statistical
mechanics (cf. [1]).

If X is compact metric and T is continuous, then M(X), provided
with the weak topology, is again compact metric and 7' is continuous.
W. Bauer and K. Sigmund studied in [1] the problem of which of the
properties of (X, T') (like distality, topologically mixing, expansiveness,
ete...) carry over to (M(X), T). However they did not treat the pseudo
orbit tracing property defined by R. Bowen [2]. The aim of this paper
is to study the property of (M(X), T) induced by (X, T') which has the
pseudo orbit tracing property.

§1. Definitions and results.

Let X be a compact metric space with metric d and M(X ) the space
of Borel probablllty measures on X. The Prohorov metric d on M(X) is
defined by d(y, v)=inf{e: p(A)=v(A*)+e and v(A)=pu(A®)+e for all Borel
sets AcX} for p,ve M(X). Here A'=U,..{yeX:d(x, y)<e}. As V.
Strassen showed in [7], one has d(y, v)=inf{e: p(A)<v(A%)+¢ for all Borel
sets AC X}. The induced topology is just the weak topology for measures.
It turns M(X) into a compact space (cf. [5, P. 45]). For ze X, let n(x) e
M(X) be a point measure defined by n'(a:)(A) 1 if x€ A, =0 otherwise.
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7 is a homeomorphism from X onto a closed subset of M(X). It is
obvious that M(X) is convex and the point measures are just the ex-
tremal points of M(X). Let M, (X)={g=QA/n)(w@)+ - +7(x,), x,€X
not necessarily distinet} for n=1,2, ---. Then M,(X) is a closed subset
of M(X) and U,., M,(X), the measures with finite support, is dense
in M(X).

Let T be a homeomorphism of X (i.e. from X onto itself). T induces
a map T: M(X)—M(X) defined by (Tu)(A)=m(TA) (#eM(X), ACX;
Borel). It is easy to see that T is a homeomorphism of M(X), sending
w(x) into w(Tx). Clearly M, (X) (n=1) is T-invariant. We denote the
restriction of T to M,(X) by same symbol 7. It is well known that the
set of T-invariant measures {¢ € M(X): Ty= L}, which is just the set of
fixed points of T, is a nonempty convex closed set ([3, P. 17]). Let
X,=XX+:++xXX (n-times) and a metric d, on X, define by d.(x,y)=
max, gz, 4®, ¥) for x= (@, <+, %), ¥= ¥ *++, ¥.) in X,. T induces
a homeomorphism 7T, of X, defined by T.(x)=Tz, -, Tx,) (x=
(@1 ** 2y mn) € Xn)- .

A sequence {z}-, (—o=<asb=o) in X is oJ-pseudo orbit of T if
d(Tx,, ©,.,) <8 for a<i<b—1. The d-pseudo orbit {z.}i-, is said to be e&-
traced if there is x € X with d(T*z, x)<¢ (a=t<b). (X, T) has the pseudo
orbit tracing property (abbrev. P.O.T.P.) if for every >0 there is 6>0
such that every d-pseudo orbit of T is e-traced. (X, T) is tracing if
for a sequence {2, with lim,..d(Tz, x,.,)=0 there is ze X with
lim,.. d(T*x, ,)=0. In general the tracing does not imply the P.O.T.P..
(X, T) is said to be T-connected if for every z,y€ X and every a>0
there are a-pseudo orbits {z.}i-, and {¥.};—, so that x,=x=y, and y,=y=x,.
(X, T) is topologically mixzing if for every nonempty open sets U and V
of X there is N>0 such that UNT"V-@ for every n=N. (X, T)
satisfies specification if for every €>0 there is M=M(e)>0 such that for
every k=1 and k points z, ---, 2, € X, for every set of integers a,<
b, <+ <a,<b, with a,.,—b,=M (1=<1<k—1) and for every p=b.,—a,+M
there is ze X with d(T*z, T*x)<¢ (a,=<n=<b, 1=1<k—1) and Trx=x.
(X, T) satisfies weak specification if (X, T) satisfies the definition of
specification except the periodic condition; T?x=x. Our results are
following.

THEOREM 1. Let T be a homeomorphism of a compact metric space
X and T an induced homeomorphism of M(X). Then the following
holds.

(1) If(X, T) has the P.O.T.P., then (M,(X), T) has also the P.O.T.P.
Jor every n=1.
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(2) If (X, T) is tracing, then (M, (X), T) is also tracing for every
n=1. '

THEOREM 2. Let T be as in Theorem 1. The following holds.

(1) If (M(X), T) is tracing, then (M(X), T) has the P.O.T.P..

(2) If (M(X), T) has the P.O.T.P., then (M(X), T) satisfies specifi-
cation.

REMARK. By Theorem 2(2) it follows that if (M(X), T) has the
P.O.T.P. (resp. tracing), then (X, T') is topologically mixing (cf. Proposi-
tions 21.8 and 6.9 in [3]). There is (X, T) which has the P.O.T.P. (resp.
tracing) but is not topologically mixing (for example X={0, 1} and T'=1d.),
so (M(X), T) need not have the P.O.T.P. (resp. tracing) even if (X, T') has
the P.O.T.P. (resp. tracing).

§2. Proof of Theorem 1.

For n>1, let us define a map @,: X, —> M, (X) by @.(x)=1/n) D, w(x,)
(x=(x, +++,2,)€X,). Clearly @, is a continuous surjection at most n!
to one. Moreover @, satisfies following;

LEMMA 1. For every x,ycX,, d(@.(x), P.()=d.(x, ).

PROOF. Let x=(x, *+*, %,), Y=y, +*+, ¥Y,)€X, be given. Put
d.(x, y)=c, then d(x;, ¥;)<c (1=i1=n). For every Borel set AcX if y,e A
ther~1 x, € A°., Hence we have @,(x)(A°)=.(y)(A), and so by the definition
of d, d(®.(x), P.(¥))=c=d.(x, y).

LEMMA 2 (marriage lemma [4]). Let B={b,, ---, b,} and G={g,, -+, 9.}
be finite sets of cardinal n and P(G) the family of subsets of G. Let¥
be @ map from B into P(G). If W satisfies that # U,z {TOB)}=%E for
every subset E of B, then there is a permutation o:{1, -+, n}—{1, +-+, n}
such that g,, €T(b,) A=i=n).

LEMMA 8. Let n=1 and 0<d6<1l/n be given. Fo'r:~ reM(X), take
x e X, with @,(x)=pg. Then for every v e M,(X) with d(g, v)<o there is
v e X, such that @,(y)=v and d.(x, y)<o.

PrOOF. Take 8,>0 with d(g, v)<§,<d (<1/n). We express x=
(%, +++,2,)€X, and vy=>1/n) X7, n(z;). To distinguish between z, or z;
(1<i=n) we put S={1, ---, n} and zi=(x, 1), 2i=(2, 1) € XXS (1=i=n).
For B={«}, ---, .} and G={zi, ---, 2.} we define a map ¥: B—P(G) by
T(x))={z;e G: d(z(x}), 7(z}))<d,} (1=i=<n) where P(G) is the family of
subsets of G and 7: XxS— X is a natural projection. In order to apply
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Lemma 2 we show that # User ¥(x;)= E for every subset E of B. Indeed,
by d(;z, v)<d,, it follows that V(zEY)=u(tE)—6d, where (tE)o={xec X:
d(z, TE)=0,}. Since y(tE)=%E/n and 6,<1/n, we have v((zE)%)>(1/n)
(#£—1). For every Borel set AcX, v(A)=1/n), n(z))(A)=Fk/n for
some 0=k=n, so (1/n)(Z‘ 1T(Z)TE)) = #E/n. Since $Upse {(T@)}=
#(; € G: d(rxl, T27) <0, i € E}=31, m(2)((TE)%), we get £U, ’eE{W(xt)}zﬁE

Hence by Lemma 2 there is a permutation ¢: S— S Wlth T(x) =200
(1=it=n). Put y,=2,, and y=(¥,, +++, ¥,) € X,. Then we have @,(y)=
(1/m) 2 () = (1/n) 33ei w(2,0) =v  and  d(x, y) = max,gz, d@, Z,m)=
max, g, AT, T244) <0,<0.

LeMMA 4. (1) If (X, T) has the P.O.T.P., then (X,, T,) has the
P.O.T.P. for every m=1. More precisely, given >0 if there is 6>0
such that every o-pseudo orbit of T is e-traced, then every 5-pseudo orbit
of T, 18 e-traced.

(2) If (X, T) 18 tracing, then so is (X,, T,).

PROOF. (1): Let é>0 be given and 6>0 be a number decided by
the P.O.T.P. of (X, T') corresponding with ¢. Let {x*}3_. be a é-pseudo
orbit of (X,, T,). If one denotes x*=(xf, ---,x%) (k€Z) then {x¥)y_.
(1=7=mn) is a d-pseudo orbit of (X, T') because d(Tx%, x**)<d, (T, x*, x**)<d
(1=t=n, k€ Z). By assumption, there is y, € X 1 <i<n) with d(T*y,, 2¥)<¢
(keZ). Put y=(y, -+, ¥,) then d,(Tiy, x*)=max,g.<, d(T*y,, x¥)<¢; i.e.
Y€ X, e-traces {x*}y__...

(2): Let a sequence {x*};, of X, satisfy that lim,_. d,(T,x*, x**)=0.
If one denotes x*=(a%, ---, 2%) (k€ Z) then it follows that lim,_. d(Tx*,
zt) =limo 4 (T, x* x**) =0 (1<i=<n), so there is y,€X with
lim,.. d(T*y,, #¥) =0. Putting y=(y, ---,¥.) we have d,(Tty, x*)=
max, s, d(T*y,, ¥)—0 (k— o). This proves the lemma.

PrROOF OF THEOREM 1. (1): Let »=1 and £>0 be given. By as-
sumption there is 0<d<1/n such that every d-pseudo orbit of (X, T) is
&/2-traced. Then, by Lemma 4(1), every d-pseueo ordit of (X,, T,) is
&/2-traced. At first we show that for every m>0, every finite d-pseudo
orbit {v,}i, of (M,(X), T) is ¢/2-traced. Since @, is surjective there is
x'=(x}, + -, a5) € X, with @,(x°)=v,. Then, since d(Tv,, v,)<5, by Lemma
3 we can find x'=(x}, ---, #3) € X, such that @,(x*)=y, and d(T,.x°, x')<4.
As d(Tv,, v,)<0, by Lemma 3 we have again x*=(a%, ---, #2) € X, such that
®,(x*)=v, and d,(T,x', x*)<d. Repeated this process we get a d-pseudo
orbit {x*}r, of (X,, T,,) with @,(x*)=vy, (0<k=<m). Hence there is y=
¥y +++, ¥) € X, which ¢/2-traces {x*}i,. Put p=(1/n) 3, n(y.) € M (X),
then we have
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a(Trp, v) =d(P.(Tty), P.(x*)=d.(Tty, x*)<¢/2 (by Lemma 1) ;

i.e. {v;}i-, is ¢/2-traced by p. .

Now let {v,}._.. be a d-pseudo orbit of (M,(X), T). For every m>0
let us put v;=y, ., (0=j SZm) Then by the above argument there is
Um € M, (X) which ¢/2-traces {vj}i%. Put g,=7T"p., and take a limit point
¢ of sequence y,. Then, since for every ke Z there is m>[k| so that
ad(Trpt,, Tru)<e/2, we get d(Try, u,,)sfz(Tm, Tepe,) +d(Teml, vi ) <€/2+
¢/2=e. This shows that (M,(X), T) has the P.O.T.P..

(2) Let n=1 be given and {v.}i=, be a sequence of M, (X) with
hm,,_.w d(Tv,,, Yi+) =0. Without loss of generality we may assume
d(Ty,, Vi) <1l/m (£k=0). By same argument as in the proof of (1) we get
a sequence {x*}i., of X, such that o,(x*)=y, (k=0) and lim,_. d,.(T.x*,
xt*)=0. Since (X,, T,) is tracing (by Lemma 4(2)), there is x € X, with
lim,.., d,(Ttx, x*)=0. Then for p=o¢,(x) it follows that d(T*y, v,)=
d(@.(T:x), P.(x*) <d,(T:x, x*)—0 (k— ). The proof is completed.

§3. Proof of Theorem 2.
We shall prove Theorem 2 by a series of lemmas.

LEMMA 5. Let p, v and p, (1=1, 2) belong to M(X).
(1) d(a,a+(1 ay, fu+1—B)SB—a for 0Sas<pB<l1.
(2) dlap+1—a)ty, v)Smax{d(p, v), d(t, )} for 0Sa<l.

Proor. (1): Let a Borel set Ac X be given. Then we calculate

(Br+Q1—BW)(A )+ (B—a)—(ap+(1—a))(4)
=a(p(A"") — p(A)) + (1 —a)((AP*) —v(4))
+(B—a)(1+ p(AP~*) —v(AP~%)) =20

where A**= U, {y € ){: d(xz, ¥ =B—a}. From this we have conclusion.
(2): Put c=max{d(y, v), J(,uz, v)} and take e>e¢. For every Borel
set AcCX, since p(A*)+e—v(4)=0 (=1, 2), we have

(ap+ (1 —a))(AY) +e—v(4)
=a(p(A")+e—v(A)+ 1 —a)(¢(4A") +e—v(A))=0 .

Therefore J(aﬂ1+(1—a)p2, y)<inf{e: c<e}=e¢, proving the lemma.

LEMMA 6. Let T be a homeomorphjsm of X and T an induced
homeomorphism of M(X). Then (M(X), T) is T-connected.

PrROOF. Let g, ve M(X) and @>0 be given. Take n=1 with 1/n<a.
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For 0<i¢=<n let us define g, and v, by pg,=1—(/n))Ts+@/n)T v and
v, = (1 —(@/n)) Ty + (i/n)T*p. Obviously p,=p=yv, and y,=vy =y, By
Lemma 5(1) we have

d(Tp., t) =J((1 —-i—) T4 ;”;—T‘“‘"v, (1 —%1) Terip %ET‘““W)

<l 4 0giga—1)
n n

and similarly d(Ty,, v..,)<a (0Si<n—1). This proves the lemma.

LEMMA 7. If (X, T) is tracing and T-comnected, then (X, T) has the
P.O.T.P..

PROOF. Suppose the lemma is false. Then there is ¢>0 such that
for every k=1 there is a (1/k)-pseudo orbit {x*, ---, z%,} of (X, T') such
that there is no z€ X with d(T7z, #%)<e¢ (1<j7=<N,). By T-connectedness,
there is a (1/k)-pseudo orbit {25, ---, 2},} with 2t=x%, and 2y, =t (k=1).
Renewing the indices of a sequence

k k k k+1
{---, r, Yy TNy %1y o :zN,,—nwl y oo},

we have a sequence {z,}7., which satisfies lim,...d(T%,, 2..,,)=0. Since
(X, T) is tracing, there is ze€ X with lim,...d(7T"z, z,)=0. Therefore for
some k>0, {xf}* is e-traced. This is a contradiction.

If (M(X), T) is tracing, by Lemmas 6 and 7, (M(X), T) has the
P.O.T.P.. This prove Theorem 2(1). Next we show Theorem 2(2).

LEMMA 8. Assuh&e (X, T)‘ 18 T-connected and hae the P.O.T.P.. If
the set of fixed points under T zs nonempty, then (X, T) s topologically
mixing.

PROOF. Let U, VC X be nonempty open sets. Theré are xe U, ye V
and ¢>0 such that B(x;e)cU and B(y;e)cV, where B(z;e)={z'€ X:
d(z, 2’)<¢}. Since (X, T) has the P.O.T.P., there is §>0 so that every
d-pseudo orbit of (X, T') is e-traced. Take a fixed point p € X under 7. By
T-connectedness, there are d-pseudo orbits {x,};_, and {y,}-, such that z,=z,
Z,=p=1Y, and y,=y. Put N-—a+b+120 Given n=N, since a sequence

{25, 24y + -+, xu p, e, D (n N tlmes), Yo "A y Ys}

is a B-pseﬁdo orbit, there is ze X whlch e-traces this sequence. = As
d(z, z)=d(x,, 2)<e and d(y, T"2) =d(y,, T"2) <e, we have zeB(a: en
T"B(y; e)cUNT"V; i.e. (X, T) is topologically mixing.
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LEmMMA 9. If (X, T) s topologic;tlly mixing and has the P.O.T.P.,
then (X, T') satisfies weak specification.

PROOF. Let ¢>0 be given. There is 6>0 such that every d-pseudo
orbit is e-traced. By topological mixing and the compactness of X,
there is M>0 such that for every «,ye X, T"B(x;d)NB(y;d)*Q for
every n=M, where B(z;0)={z'€ X:d(z, 2')<é}. For every k=1, let k
points z,, -++, 2, € X and a set of integers a,<b,<:-:<@a,<b, with a,,,—
b.=M (1<i1<k—1) be given. By choice of M, there are y,c B(T*uzx,; 6)
1=1=<k—1) with T*+1~by e B(T*+,,,;0). Then a sequence {T*ux, «--,
T %, y, +++, T2 Yy, T, .., T%g,} is 6-pseudo orbit, so there is ze X
with d(T"z, T*x)<e (a,=n=<b;,, 1=<i1=<k). This proves the Lemma.

We remarked in §1 that the set of fixed points of (M(X), T) is non-
empty. Hence if (M(X), T) has the P.O.T.P., by Lemmas 6, 8 and 9,
(M(X), T') satisfies weak specification. Therefore the proof of Theorem
2(2) is completed by the following lemma.

LEMMA 10. If (M(X), T') satisfies weak specification, then (M(X), T)
satisfies specification.

PrOOF. Let ¢>0 be given and M=M(¢)>0 an integer determined
from the definition of weak specification. For every k=1, let k points
Uy c ooy M € M(X) and a set of integers a,<b, <.+ <a,=b, with a,,,—b;=M
(1=1=<k—1) and p=b,—a,+M be given. Using weak specification, we
can find a sequence v, e M(X) (j=1,2, --+) such that J(T”“‘”»_,,-, T“#i)és
(a,=n=b, 151k, 0=m=j). Take a limit point v of the sequence y;.
Then it follows that d(7T"+mry, Trp)<e (a,;=n=b, 1=i=<k, m=0). Put
p=lim,.. (1/s) 322, T™*v for some {s}. By Lemma 5(2), we have for
a,=n=sb, 1=isk),

d( T, Trp) =lim d(Wfs) 3, T+mw, Tp,)
' <lim max{d(T*+t"*y, Trp,); 0=sm=<s—1}=<e.

800

Also, by Lemma 5(1), we have d(T7p, p)<lim, ..{d(s™ -, T, (s—1)7 X
ot Tmep) L d((s — 1)t St Tmey, st 302, T™P)} < lim,...2/s =0, hence
Tru=p. This completes the proof.
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