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Introduction

Let $X$ be a state space of some system and $M(X)$ the space of
probability measures on $X$. The elements of $M(X)$ are viewed as
statistical states. The elements of $X$ are imbedded in $M(X)$ as the pure
states. Let $T$ be a transformation of $X$ and $\tilde{T}$ the corresponding
transformotion of $M(X)$ . As against (X, $T$ ) is a dynamical system in
classical mechanics, $(M(X),\tilde{T})$ can be viewed as one in classical statistical
mechanics (cf. [1]).

If $X$ is compact metric and $T$ is continuous, then $M(X)$ , provided
with the weak topology, is again compact metric and $\tilde{T}$ is continuous.
W. Bauer and K. Sigmund studied in [1] the problem of which of the
properties of (X, $T$ ) (like distality, topologically mixing, expansiveness,
etc...) carry over to $(M(X),\tilde{T})$ . However they did not treat the pseudo
orbit tracing property defined by R. Bowen [2]. The aim of this paper
is to study the property of $(M(X),\tilde{T})$ induced by (X, $T$) which has the
pseudo orbit tracing property.

\S 1. Definitions and results.

Let $X$ be a compact metric space with metric $d$ and $M(X)$ the space
of Borel probability measures on $X$. The Prohorov metric $\tilde{d}$ on $M(X)$ is
defined by $\tilde{d}(\mu, \nu)=\inf\{\epsilon:\mu(A)\leqq\nu(A)+\epsilon$ and $\nu(A)\leqq\mu(A)+\epsilon$ for all Borel
sets $A\subset X$ } for $\mu,$ $\nu\in M(X)$ . Here $A^{*}=\bigcup_{xeA}\{y\in X:d(x, y)\leqq\epsilon\}$ . As V.
Strassen showed in [7], one has $\tilde{d}(\mu, \nu)=\inf\{\epsilon:\mu(A)\leqq\nu(A)+\epsilon$ for all Borel
sets $A\subset X$ }. The induced topology is just the weak topology for measures.
It turns $M(X)$ into a compact space (cf. [5, P. 45]). For $xeX$, let $\pi(x)\in$

$M(X)$ be a point measure defined by $\pi(x)(A)=1$ if $x\in A,$ $=0$ otherwise.
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$\pi$ is a homeomorphism from $X$ onto a closed subset of $M(X)$ . It is
obvious that $M(X)$ is convex and the point measures are just the ex-
tremal points of $M(X)$ . Let $M_{n}(X)=\{\mu=(1/n)(\pi(x_{1})+\cdots+\pi(x_{n})),$ $xeX$

not necessarily distinct} for $n=1,2,$ $\cdots$ . Then $M_{n}(X)$ is a closed subset
of $M(X)$ and $\bigcup_{n\geq 1}M_{n}(X)$ , the mea8ures with finite support, is dense
in $M(X)$ .

Let $T$ be a homeomorphism of $X$ ($i.e$ . from $X$ onto itself). $T$ induces
a map $\tilde{T}:M(X)\rightarrow M(X)$ defined by $(\tilde{T}\mu)(A)=\mu(T^{-1}A)(\mu\in M(X),$ $A\subset X$;
Borel). It is easy to see that $\tilde{T}$ is a homeomorphism of $M(X)$ , sending
$\pi(x)$ into $\pi(Tx)$ . Clearly $M.(X)(n\geqq 1)$ is $\tilde{T}$-invariant. We denote the
restriction of $\tilde{T}$ to $M.(X)$ by same symbol $\tilde{T}$. It is well known that the
set of T-invariant measures $\{\mu\in M(X):\tilde{T}\mu=\mu\}$ , which is just the set of
fixed points of $\tilde{T}$, is a nonempty convex closed set ([3, P. 17]). Let
$X_{n}=X\times\cdots\times X$ (n-times) and a metric $d_{n}$ on $X_{n}$ define by $d_{n}\langle x,$ $y$) $=$

$\max_{1\leq i\leq n}d(x_{i}, y)$ for $x=(x_{1}, \cdots, x_{n}),$ $y=(y_{1}, \cdots, y_{n})$ in $X_{n}$ . $T$ induces
a homeomorphism $T_{n}$ of $X_{n}$ defined by $T_{n}(x)=(Tx_{1}, \cdots, Tx_{n})$ $(x=$

$(x_{1}, \cdots, x_{n})eX_{n})$ .
A sequence $\{x\}^{b}=a(-\infty\leqq a\leqq b\leqq\infty)$ in $X$ is $\delta$-pseudo orbit of $T$ if

$ d(Tx_{i}, x_{+1})<\delta$ for $a\leqq i\leqq b-1$ . The $\delta$-pseudo orbit $\{x\}^{b}=a$ is said to be $\epsilon-$

traced if there is $xeX$ with $d(Tx, x)\leqq\epsilon(a\leqq i\leqq b)$ . (X, $T$) has the pseudo
orbit tracing property (abbrev. P.0.T.P.) if for every $\epsilon>0$ there is $\delta>0$

such that every $\delta$-pseudo orbit of $T$ is $\epsilon$-traced. (X, $T$) is tracing if
for a sequence $\{x\}_{i=0}^{\infty}$ with $\lim_{i\rightarrow\infty}d(Tx, x_{+1})=0$ there is $xeX$ with
$\lim_{\rightarrow\infty}d(T^{i}x, x_{i})=0$ . In general the tracing does not imply the P.0.T.P..
(X, $T$ ) is said to be T-connected if for every $x,$ $y\in X$ and every $\alpha>0$

there are $\alpha$-pseudo orbits $\{x\}^{a}=0$ and $\{y\}_{i=0}^{b}$ so that $x_{0}=x=y_{b}$ and $y_{0}=y=x_{a}$ .
(X, $T$ ) is topologically mixing if for every nonempty open sets $U$ and $V$

of $X$ there is $N>0$ such that $ U\cap T^{-n}V\neq\emptyset$ for every $n\geqq N$. (X, $T$ )

satisfies specification if for every $\epsilon>0$ there is $M=M(\epsilon)>0$ such that for
every $k\geqq 1$ and $k$ points $x_{1},$ $\cdots,$ $x_{k}eX$, for every set of integers $ a_{1}\leqq$

$b_{1}<\cdots<a_{k}\leqq b_{k}$ with $a_{+1}-b\geqq M(1\leqq i\leqq k-1)$ and for every $p\geqq b_{k}-a_{1}+M$

there is $xeX$ with $d(T^{n}x, T^{n}x)\leqq\epsilon(a\leqq n\leqq b_{i}, 1\leqq i\leqq k-1)$ and $T^{p}x=x$ .
(X, $T$ ) satisfies weak specification if (X, $T$ ) satisfies the definition of
specification except the periodic condition; $T^{p}x=x$ . Our results are
following.

THEOREM 1. Let $T$ be a homeomorphism of a compact metric space
$X$ and $\tilde{T}$ an induced homeomorphism of $M(X)$ . Then the following
holds.

(1) If (X, $T$ ) has the P.0.T.P., then $(M_{n}(X),\tilde{T})$ has also the P.0.T.P.
for every $n\geqq 1$ .
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(2) If (X, $T$ ) is tracing, then $(M_{n}(X),\tilde{T})$ is also tracing for every
$n\geqq 1$ .

THEOREM 2. Let $\tilde{T}$ be as in Theorem 1. The following holds.
(1) If $(M(X),\tilde{T})$ is tracing, then $(M(X),\tilde{T})$ has the P.0.T.P..
(2) If $(M(X), F)$ has the P.0.T.P., then $(M(X), \Phi)$ satisfies specifi-

cation.

REMARK. By Theorem 2(2) it follows that if $(M(X),\tilde{T})$ has the
P.0.T.P. (resp. tracing), then (X, $T$ ) is topologically mixing (cf. Proposi-
tions 21.3 and 6.9 in [3]). There is (X, $T$ ) which has the P.0.T.P. (resp.
tracing) but is not topologically mixing (for example $X=\{0,1\}$ and $T=id.$ ),
so $(M(X),\tilde{T})$ need not have the P.0.T.P. (resp. tracing) even if (X, $T$ ) has
the P.0.T.P. (resp. tracing).

\S 2. Proof of Theorem 1.

For $n\geqq 1$ , let us define a map $\varphi_{n}:X_{n}\rightarrow M_{n}(X)$ by $\varphi_{n}(x)=(1/n)\sum_{=1}^{n}\pi(x_{i})$

$(x=(x_{1}, \cdots, x_{n})eX_{n})$ . Clearly $\varphi_{n}$ is a continuous surjection at most $n!$

to one. Moreover $\varphi_{n}$ satisfies following;

LEMMA 1. For every $x,$
$yeX_{n},\tilde{d}(\varphi_{n}(x), \varphi_{n}(y))\leqq d_{n}(x, y)$ .

PROOF. Let $x=(x_{1}, \cdots, x_{n})$ , $y=(y_{1}, \cdots, y_{n})\in X_{n}$ be given. Put
$d_{n}(x, y)=c$ , then $d(x, y_{i})\leqq c(1\leqq i\leqq n)$ . For every Borel set $A\subset X$ if $yeA$

then $x_{i}\in A^{o}$ . Hence we have $\varphi_{n}(x)(A^{0})\geqq\varphi_{n}(y)(A)$ , and so by the definition
of $\tilde{d},\tilde{d}(\varphi_{n}(x), \varphi_{n}(y))\leqq c=d_{n}(x, y)$ .

LEMMA 2 (marriage lemma [4]). Let $B=\{b_{1}, \cdots, b_{n}\}$ and $G=\{g_{1}, \ldots, g_{n}\}$

be finite sets of cardinal $n$ and $P(G)$ the family of subsets of G. Let $\Psi$

be a map from $B$ into $P(G)$ . If $\Psi$ satisfies that $\#\bigcup_{b\in B}\{\Psi(b)\}\geqq\# E$ for
every subset $E$ of $B$, then there is a permutation $\sigma:\{1, \cdots, n\}\rightarrow\{1, \cdots, n\}$

such that $g_{\sigma(i)}e\Psi(b)(1\leqq i\leqq n)$ .
LEMMA 3. Let $n\geqq 1$ and $0<\delta<1/n$ be given. For $\mu\in M_{n}(X)$ , take

$x\in X_{n}$ with $\varphi_{n}(x)=\mu$ . Then for every $\nu\in M_{n}(X)$ with $\tilde{d}(\mu, \nu)<\delta$ there is
$y\in X_{n}$ such that $\varphi_{n}(y)=v$ and $ d_{n}(x, y)<\delta$ .

PROOF. Take $\delta_{0}>0$ with $\tilde{d}(\mu, \nu)<\delta_{0}<\delta(<1/n)$ . We express $x=$

$(x_{1}, \cdots, x_{n})eX_{n}$ and $\nu=(1/n)\sum_{i=1}^{n}\pi(z)$ . To distinguish between $x_{i}$ or $z_{i}$

$(1\leqq i\leqq n)$ we put $S=\{1, \cdots, n\}$ and $x;=(x_{i}, i),$ $z_{i}^{\prime}=(z_{i}, i)\in X\times S(1\leqq i\leqq n)$ .
For $B=\{x_{i}^{\prime}, \cdots, x_{n}\}$ and $G=\{z_{i}^{\prime}, \cdots, z_{n}^{\prime}\}$ we define a map $\Psi:B\rightarrow P(G)$ by
$\Psi(x_{i}^{\prime})=\{z_{j}^{\prime}eG:d(\tau(x’), \tau(z_{\dot{f}}^{\prime}))\leqq\delta_{0}\}(1\leqq i\leqq n)$ where $P(G)$ is the family of
subsets of $G$ and $\tau:X\times S\rightarrow X$ is a natural projection. In order to apply
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Lemma 2 we show that $\#\bigcup_{g_{i}^{\prime}GB}\Psi(x1)\geqq E$ for every subset $E$ of $B$. Indeed,
by $\tilde{d}(\mu, \nu)<\delta_{0}$ , it follows that $\nu((\tau E)^{\iota_{0}})\geqq\mu(\tau E)-\delta_{0}$ where $(\tau E)^{\delta_{0}}=\{x\in X$:
$d(x, \tau E)\leqq\delta_{0}\}$ . Since $\mu(\tau E)=\# E/n$ and $\delta_{0}<1/n$ , we have $\nu((\tau E)^{\delta_{0}})>(1/n)$

$(\# E-1)$ . For every Borel set $A\subset X,$ $\nu(A)=(1/n)(\sum_{=1}^{n}\pi(z))(A)=k/n$ for
some $0\leqq k\leqq n$ , so $(1/n)(\sum_{=1}^{n}\pi(z_{i})(\tau E)^{\delta_{0}})\geqq\# E/n$ . Since $\#\bigcup_{x_{i}^{\prime}8B}\{\Psi(x^{\prime})\}=$

$\#\{z_{\dot{f}}^{\prime}eG:d(\tau x_{i}^{\prime}, \tau z_{\dot{f}})\leqq\delta_{0}, x!eE\}=\sum_{i=1}^{l}\pi(z_{i})((\tau E)^{\delta_{0}})$ , we get $\#\bigcup_{x_{i}^{\prime}eE}\{\Psi(x^{\prime})\}\geqq\# E$.
Hence by Lemma 2 there is a permutation $\sigma:S\rightarrow S$ with $\Psi(x’)=z_{\sigma()}^{\prime}$

$(1\leqq i\leqq n)$ . Put $y=z_{\sigma(i\}}$ and $y=(y_{1}, \cdots, y_{n})eX_{n}$ . Then we have $\varphi_{n}(y)=$

$(1/n)\sum_{i=1}^{n}\pi(y_{i})=(1/n)\sum_{i=1}^{n}\pi(z_{\sigma(i)})=\nu$ and $d_{n}(x, y)=\max_{1\leqq i\leq n}d(x_{i}, z_{\sigma(i)})=$

$\max_{1\leq i\leq n}d(\tau x_{i}^{\prime}, \tau z_{\sigma(i)}^{\prime})\leqq\delta_{0}<\delta$ .
LEMMA 4. (1) If (X, $T$) has the P.0.T.P., then $(X_{n}, T_{n})$ has the

P.0.T.P. for every $n\geqq 1$ . More precisely, given $\epsilon>0$ if there is $\delta>0$

such that every $\delta$-pseudo orbit of $T$ is $\epsilon$-traced, then every $\delta$-pseudo orbit
of $T_{n}$ is $\epsilon$-traced.

(2) If (X, $T$) is tracing, then so is $(X_{n}, T_{n})$ .
PROOF. (1): Let $\epsilon>0$ be given and $\delta>0$ be a number decided by

the P.0.T.P. of (X, $T$ ) corresponding with $\epsilon$ . Let $\{x^{k}\}_{k=-\infty}^{\infty}$ be a $\delta$-pseudo
orbit of $(X_{n}, T_{n})$ . If one denotes $x^{k}=(x_{1}^{k}, \cdots, x_{n}^{k})(keZ)$ then $\{x_{i}^{k}\}_{k=-\infty}^{\infty}$

\langle $1\leqq i\leqq n$) is a $\delta$-pseudo orbit of (X, $T$ ) because $ d(Tx^{k}, x_{i}^{k+1})\leqq d_{n}(T_{n}x^{k}, x^{k+1})<\delta$

\langle $1\leqq i\leqq n,$ $k\in Z$). By assumption, there is $y_{i}eX(1\leqq i\leqq n)$ with $ d(T^{k}y_{i}, x^{k})\leqq\epsilon$

\langle$k\in Z$). Put $y=(y_{1}, \cdots, y_{n})$ then $ d_{n}(T_{n}^{k}y, x^{k})=\max_{1\leq i\leq n}d(T^{k}y, x_{i}^{k})\leqq\epsilon$ ; i.e.
$ yeX_{n}\epsilon$-traces $\{x^{k}\}_{k=-\infty}^{\infty}$ .

(2): Let a sequence $\{x^{k}\}_{k=0}^{\infty}$ of $X_{n}$ satisfy that $\lim_{k\rightarrow\infty}d_{n}(T_{n}x^{k}, x^{k+1})=0$ .
If one denotes $x^{k}=(x_{1}^{k}, \cdots, x_{n}^{k})(keZ)$ then it follows that $\lim_{k\rightarrow\infty}d(Tx_{i}^{k}$ ,
$x_{i}^{k+1})\leqq\lim_{k\rightarrow\infty}d_{n}(T_{n}x^{k}, x^{k+1})=0$ $(1 \leqq i\leqq n)$ , so there is $yeX$ with
$\lim_{k\rightarrow\infty}d(T^{k}y, x^{k})=0$ . Putting $y=(y_{1}, \cdots, y_{n})$ we have $d_{n}(T_{n}^{k}y, x^{k})=$

$\max_{1\leqq i\leq n}d(T^{k}y_{i}, x_{i}^{k})\rightarrow 0(k\rightarrow\infty)$ . This proves the lemma.
PROOF OF THEOREM 1. (1): Let $n\geqq 1$ and $\epsilon>0$ be given. By as-

sumption there is $0<\delta<1/n$ such that every $\delta$-pseudo orbit of (X, $T$ ) is
$\epsilon/2$-traced. Then, by Lemma 4(1), every $\delta$-pseueo ordit of $(X_{n}, T_{n})$ is
$\epsilon/2$-traced. At first we show that for every $m>0$ , every finite $\delta$-pseudo
orbit $\{\nu_{k}\}_{k^{*}=0}$ of $(M_{n}(X),\tilde{T})$ is $\epsilon/2$-traced. Since $\varphi_{n}$ is surjective there is
$x^{0}=(x_{1}^{0}, \cdots, x_{n}^{0})\in X_{n}$ with $\varphi_{n}(x^{0})=\nu_{0}$ . Then, since $\tilde{d}(\tilde{T}\nu_{0}, \nu_{1})<\delta$ , by Lemma
3 we can find $x^{1}=(x_{1}^{1}, \cdots, x_{n}^{1})\in X_{n}$ such that $\varphi_{n}(x^{1})=\nu_{1}andd_{n}(T_{n}x^{0}, x^{1})<\delta$ .
As $\tilde{d}(\tilde{T}\nu_{1}, \nu_{2})<\delta$ , by Lemma 3 we have again $x^{2}=(x_{1}^{2}, \cdots, x_{n}^{2})eX_{n}$ such that
$\varphi_{n}(x^{2})=\nu_{2}$ and $ d_{n}(T_{n}x^{1}, x^{2})<\delta$ . Repeated this process we get a $\delta$-pseudo
orbit $\{x^{k}\}_{k^{*}=0}$ of $(X_{n}, T_{n})$ with $\varphi_{n}(x^{k})=\nu_{k}(0\leqq k\leqq m)$ . Hence there is $y=$
$(y_{1}, \cdots, y_{n})eX_{n}$ which $\epsilon/2$-traces $\{x^{k}\}_{k=0}^{n}$ . Put $\mu=(1/n)\sum_{i=1}^{n}\pi(y_{i})\in M_{n}(X)$ ,
then we have
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$\tilde{d}(\tilde{T}^{k}\mu, \nu_{k})=\tilde{d}(\varphi_{n}(T_{n}^{k}y), \varphi_{n}(x^{k}))\leqq d_{n}(T_{n}^{k}y, x^{k})\leqq\epsilon/2$ (by Lemma 1) ;

i.e. $\{\nu_{k}\}_{k=0}^{m}$ is $\epsilon/2$-traced by $\mu$ .
Now let $\{\nu_{k}\}_{k=-\infty}^{\infty}$ be a $\delta$-pseudo orbit of $(M_{n}(X),\tilde{T})$ . For every $m>0$

let us put $\nu_{j}^{\prime}=\nu_{j-n}(0\leqq j\leqq 2m)$ . Then by the above argument there is
$\mu_{m}^{\prime}\in M_{n}(X)$ which $\epsilon/2$-traces $\{\nu_{j}^{\prime}\}_{\dot{g}\ni 0}^{2m}$ . Put $\mu_{m}=\tilde{T}^{n*}\mu_{m}^{\prime}$ and take a limit point
$\mu$ of sequence $\mu_{n*}$ . Then, since for every $keZ$ there is $m>|k|$ so that
$\tilde{d}(\tilde{T}^{k}\mu_{m},\tilde{T}^{k}\mu)\leqq\epsilon/2$ , we get $\tilde{d}(\tilde{T}^{k}\mu, \nu_{k})\leqq\tilde{d}(\tilde{T}^{k}\mu,\tilde{T}^{k}\mu_{n})+\tilde{d}(\tilde{T}^{k+\prime}\mu_{m}, \nu_{k+n})\leqq\epsilon/2+$

$\epsilon/2=\epsilon$ . This shows that $(M_{n}(X),\tilde{T})$ has the P.0.T.P..
(2): Let $n\geqq 1$ be given and $\{\nu_{k}\}_{k=0}^{\infty}$ be a sequence of $M_{n}(X)$ with

$\lim_{k\rightarrow\infty}\tilde{d}(\tilde{T}\nu_{k}, \nu_{k+1})=0$ . Without loss of generality we may as8ume
$\tilde{d}(\tilde{T}\nu_{k}, \nu_{k+1})<1/n(k\geqq 0)$ . By same argument as in the proof of (1) we get
a sequence $\{x^{k}\}_{k=0}^{\infty}$ of $X_{n}$ such that $\varphi_{n}(x^{k})=\nu_{k}(k\geqq 0)$ and $\lim_{k\rightarrow\infty}d_{n}(T_{n}x^{k}$ ,
$x^{k+1})=0$ . Since $(X_{n}, T_{n})$ is tracing (by Lemma $4(2)$), there is $x\in X_{n}$ with
$\lim_{k\rightarrow\infty}d_{n}(T_{n}^{k}x, x^{k})=0$ . Then for $\mu=\varphi_{n}(x)$ it follows that $\tilde{d}(p_{k}\mu, \nu_{k})=$

$\tilde{d}(\varphi_{n}(T_{n}^{k}x), \varphi_{n}(x^{k}))\leqq d_{n}(T_{n}^{k}x, x^{k})\rightarrow 0(k\rightarrow\infty)$ . The proof is completed.

\S 3. Proof of Theorem 2.

We shall prove Theorem 2 by a series of lemmas.

LEMMA 5. Let $\mu,$ $\nu$ and $\mu_{i}(i=1,2)$ belong to $M(X)$ .
(1) $\tilde{d}(\alpha\mu+(1-\alpha)\nu, \beta\mu+(1-\beta)\nu)\leqq\beta-\alpha$ for $0\leqq\alpha\leqq\beta\leqq 1$ .
(2) $\tilde{d}(\alpha\mu_{1}+(1-\alpha)\mu_{2}, \nu)\leqq\max\{ff(\mu_{1}, \nu\rangle,\tilde{d}(\mu_{2}, \nu)\}$ for $0\leqq\alpha\leqq 1$ .
PROOF. (1): Let a Borel set $A\subset X$ be given. Then we calculate

$(\beta\mu+(1-\beta)\nu)(A^{\beta-\alpha})+(\beta-\alpha)-(\alpha\mu+(1-\alpha)\nu)(A)$

$=\alpha(\mu(A^{\theta-\alpha})-\mu(A))+(1-\alpha)(\nu(A^{\ell-\alpha})-\nu(A))$

$+(\beta-\alpha)(1+\mu(A^{\beta-\alpha})-\nu(A^{\beta-\alpha}))\geqq 0$

where $A^{\beta-\alpha}=\bigcup_{x6A}\{yeX:d(x, y)\leqq\beta-\alpha\}$ . From this we have conclusion.
(2): Put $c=\max\{\tilde{d}(\mu_{1}, \nu), l(\mu_{2}, \nu)\}$ and take $\epsilon>c$ . For every Borel

set $A\subset X$, since $\mu_{i}(A)+\epsilon-\nu(A)\geqq 0(i=1,2)$ , we have

$(\alpha\mu_{1}+(1-\alpha)\mu_{2})(A\rangle+\epsilon-\nu(A\rangle$

$=\alpha(\mu_{1}(A)+\epsilon-\nu(A))+(1-\alpha)(\mu_{2}(A)+\epsilon-\nu(A))\geqq 0$ .
Therefore $\tilde{d}(\alpha\mu_{1}+(1-\alpha)\mu_{2}, \nu)\leqq\inf\{\epsilon:c<\epsilon\}=c$ , proving the lemma.

LEMMA 6. Let $T$ be a homeomorphism of $X$ and $\tilde{T}$ an induced
homeomorphism of $M(X)$ . Then $(M(X),\tilde{T})$ is $F$-connected.

PROOF. Let $\mu,$ $\nu eM(X)$ and $\alpha>0$ be given. Take $n\geqq 1$ with $ 1/n<\alpha$.
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For $0\leqq i\leqq n$ let us define $\mu_{i}$ and $\nu$ by $\mu=(1-(i/n))^{ff}\mu+(i/n)\tilde{T}^{-n}\nu$ and
$\nu=(1-(i/n))\tilde{T}\nu+(i/n)\Phi^{i-n}\mu$ . Obviously $\mu_{0}=\mu=\nu_{n}$ and $\nu_{0}=\nu=\mu_{n}$ . By
Lemma 5(1) we have

$\tilde{d}(\tilde{T}\mu_{i}, \mu_{i+1})=\tilde{d}((1-\frac{i}{n})F^{i+1}\mu+\frac{i}{n}\tilde{T}^{i+1-n}\nu,$ $(1-\frac{i+1}{n})^{p+1}\mu+\frac{i+1}{n}T^{i+1-n}\nu)$

$\leqq\frac{i+1}{n}-\frac{i}{n}<\alpha$ $(0\leqq i\leqq n-1)$

and similarly $\tilde{d}(\tilde{T}\nu_{i}, \nu_{+1})<\alpha(0\leqq i\leqq n-1)$ . This proves the lemma.

LEMMA 7. If (X, $T$ ) is tracing and T-connected, then (X, $T$ ) has the
$P.O.T.P.$ .

PROOF. Suppose the lemma is false. Then there is $\epsilon>0$ such that
for every $k\geqq 1$ there is a $(1/k)$-pseudo orbit $\{x_{1}^{k}, \cdots, x_{N_{k}}^{k}\}$ of (X, $T$ ) such
that there is no $zeX$ with $d(T^{j}z, x_{j}^{k})\leqq\epsilon(1\leqq j\leqq N_{k})$ . By T-connectedness,
there is a $(1/k)$-pseudo orbit $\{z_{0}^{k}, \cdots, z_{L_{k}}^{k}\}$ with $z_{0}^{k}=x_{N_{k}}^{k}$ and $z_{L_{k}}^{k}=x_{1}^{k+1}(k\geqq 1)$ .
Renewing the indices of a sequence

{ $\cdots,$
$x_{1}^{k},$

$\cdots,$ $x_{N_{k}}^{k},$ $z_{1}^{k},$ $\cdots$ , z1V$k-1’ x^{k+1}1$ },

we have a sequence $\{x_{n}\}_{n=0}^{\infty}$ which satisfies $\lim_{n\rightarrow\infty}d(Tx_{n}, x_{n+1})=0$ . Since
(X, $T$ ) is tracing, there is $zeX$ with $\lim_{n\rightarrow\infty}d(T^{n}z, x_{n})=0$ . Therefore for
some $k>0,$ $\{x^{k}\}_{=}^{N_{k_{1}}}$ is $\epsilon$-traced. This is a contradiction.

If $(M(X),\tilde{T})$ is tracing, by Lemmas 6 and 7, $(M(X),\tilde{T})$ has the
P.0.T.P.. This prove Theorem 2(1). Next we show Theorem 2(2).

LEMMA 8. Assume (X, $T$) is T-connected and has the P.0.T.P.. If
the set of fixed points under $T$ is nonempty, the$n(X, T)$ is topologically
mixing.

.
PROOF. Let $U,$ $V\subset X$ be nonempty open sets. There are $x\in U,$ $yeV$

and $\epsilon>0$ such that $B(x;\epsilon)\subset U$ and $B(y;\epsilon)\subset V$, where $B(z;\epsilon)=\{zeX$:
$d(z, z)\leqq\epsilon\}$ . Since (X, $T$ ) has the P.0.T.P., there is $\delta>0$ so that every
$\delta$-pseudo orbit of (X, $T$) is $\epsilon$-traced. Take a fixed point $peX$ under $T$. By
T-connectedness, there are $\delta$-pseudo orbits $\{x_{i}\}_{=0}^{a}$ and $\{y_{l}\}_{=0}^{b}$ such that $x_{0}=x$ ,
$x_{a}=p=y_{0}$ and $y_{b}=y$ . Put $N=a+b+1\geqq 0$ . Given $n\geqq N$, since a sequence

{$x_{0},$ $x_{1},$ $\cdots,$ $x_{\iota},$ $p,$ $\cdots,$ $p$ ($n-N$ times), $y_{0},$ $\cdots,$ $y_{b}$ }

is a $\delta$-pseudo orbit, there is $zeX$ which $\epsilon$-traces this sequence. As
$ d(x, z)=d(x_{0}, z)\leqq\epsilon$ and $ d(y, T^{n}z)=d(y_{b}, T^{n}z)\leqq\epsilon$ , we have $ z\in B(x;\epsilon)\cap$

$T^{-n}B(y;\epsilon)\subset U\cap T^{-n}V$; i.e. (X, $T$ ) is topologically mixing.
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LEMMA 9. If (X, $T$ ) is topologically mixing and has the P.0.T.P.,
then (X, $T$) satisfies weak specification.

PROOF. Let $\epsilon>0$ be given. There is $\delta>0$ such that every $\delta$-pseudo
orbit is $\epsilon$-traced. By topological mixing and the compactness of $X$,
there is $M>0$ such that for every $x,$ $y\in X$, $ T^{n}B(x;\delta)\cap B(y;\delta)\neq\emptyset$ for
every $n\geqq M$, where $B(z;\delta)=\{z^{\prime}\in X:d(z, z^{\prime})\leqq\delta\}$ . For every $k\geqq 1$ , let $k$

points $x_{1},$ $\cdots,$ $x_{k}eX$ and a set of integers $a_{1}\leqq b_{1}<\cdots<a_{k}\leqq b_{k}$ with $a_{i+1}-$

$b_{i}\geqq M(1\leqq i\leqq k-1)$ be given. By choice of $M$, there are $y_{i}\in B(T^{b_{i}}x_{i};\delta)$

$(1\leqq i\leqq k-1)$ with $T^{a_{i}+1^{-b}}y_{i}\in B(T^{a_{i+1}}x_{i+1};\delta)$ . Then a sequence $\{T^{a_{1}}x_{1},$ $\cdots$ ,
$T^{b_{1}-1}x_{1},$ $y_{1},$ $\cdots,$

$T^{a_{2}-b_{1}}y_{1},$ $T^{a_{2}}x_{2},$
$\cdots,$

$T^{b_{k}}x_{k}$ } is $\delta$-pseudo orbit, so there is zeX
with $d(T^{n}z, T^{n}x_{i})\leqq\epsilon(a_{i}\leqq n\leqq b_{i}, 1\leqq i\leqq k)$ . This proves the Lemma.

We remarked in \S 1 that the set of fixed points of $(M(X),\tilde{T})$ is non-
empty. Hence if $(M(X),\tilde{T})$ has the P.0.T.P., by Lemmas 6, 8 and 9,
$(M(X),\tilde{T})$ satisfies weak specification. Therefore the proof of Theorem
2(2) is completed by the following lemma.

LEMMA 10. If $(M(X),\tilde{T})$ satisfies weak specification, then $(M(X),\tilde{T})$

satisfies specification.

PROOF. Let $\epsilon>0$ be given and $M=M(\epsilon)>0$ an integer determined
from the definition of weak specification. For every $k\geqq 1$ , let $k$ points
$\mu_{1},$ $\cdots,$ $\mu_{k}\in M(X)$ and a set of integers $a_{1}\leqq b_{1}<\cdots<a_{k}\leqq b_{k}$ with $a_{c+1}-b_{i}\geqq M$

$(1\leqq i\leqq k-1)$ and $p\geqq b_{k}-a_{1}+M$ be given. Using weak specification, we
can find a sequence $\nu_{j}\in M(X)(j=1,2, \cdots)$ such that $\tilde{d}(\tilde{T}^{n+mp}\nu_{j},\tilde{T}^{n}\mu_{i})\leqq\epsilon$

$(a_{i}\leqq n\leqq b_{i}, 1\leqq i\leqq k, 0\leqq m\leqq j)$ . Take a limit point $\nu$ of the sequence $\nu_{j}$ .
Then it follows that $\tilde{d}(\tilde{T}^{n+mp}\nu,\tilde{T}^{n}\mu_{j})\leqq\epsilon(a_{i}\leqq n\leqq b_{i}, 1\leqq i\leqq k, m\geqq 0)$ . Put
$\mu=\lim_{\rightarrow\infty}(1/s)\sum_{m=0}^{\iota-1}\tilde{T}^{np}\nu$ for some $\{s\}$ . By Lemma 5(2), we have for
$a_{i}\leqq n\leqq b_{i}(1\leqq i\leqq k)$ ,

$\tilde{d}(\tilde{T}^{n}\mu,\tilde{T}^{n}\mu_{i})=\lim_{l\rightarrow\infty}\tilde{d}((1/s)\sum_{n\cdot=0}^{l-1}\tilde{T}^{n+np}\nu,\tilde{T}^{n}\mu)$

$\leqq\lim_{\rightarrow\infty}\max\{\tilde{d}(\tilde{T}^{n+mp}\nu,\tilde{T}^{n}\mu_{l});0\leqq m\leqq s-1\}\leqq\epsilon$ .
Also, by Lemma 5(1), we have $\tilde{d}(\tilde{T}^{p}\mu, \mu)\leqq\lim_{\rightarrow\infty}\{\tilde{d}(s^{-1}\sum_{n=1}\tilde{T}^{np}\nu, (s-1)^{-1}\times$

$\sum_{m=1}^{-1}\tilde{T}^{mp}\nu)+\tilde{d}((s-1)^{-1}\sum_{m=1}^{-1}\tilde{T}^{\prime np}\nu, s^{-1}\sum_{m=0}^{-1}\tilde{T}^{n\cdot p}\nu)\}\leqq 1{\rm Im}_{\rightarrow\infty}2/s=0$ , hence
$\tilde{T}^{p}\mu=\mu$ . This completes the proof.
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