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Let $M_{2}(\Delta)$ be the full matrix algebra of degree 2 over a division
algebra $\Delta$ of characteristic $0$ . In [8] we determined the non-abelian
simple groups which are homomorphic images of multiplicative subgroups
of $M_{2}(\Delta)$ . In this paper we will study the non-solvable multiplicative
subgroups $G$ of $M_{2}(\Delta)$ such that $V_{q}(G)=M_{2}(\Delta)$ , where $ V_{q}(G)=\{\sum\alpha_{i}g_{i}|\alpha_{i}\in$

$Q,$ $g_{i}\in G$}. Let $N$ be the largest solvable normal subgroup of $G$ . In \S 1
we will prove that $G/N$ is isomorphic to a subgroup $W$ of $Aut(T)$ with
$W\supset T$, where $T\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ . Let $H$ be
the largest normal subgroup of $G$ such that $[H, H]=H$. We will prove
in \S 2 and \S 3 $H\cong SL(2,5),$ $SL(2,9),$ $SL(2,5)\times SL(2,5)$ or $E$, where $E$ is
an extension of $PSL(2,5)$ by $DQ$ , the central product of the dihedral
group $D$ of order 8 and the quaternion group $Q$ of order 8. In \S 4 first
we will characterize $G$ in the case where $G$ has a normal subgroup $M$ such
that $V_{q}(M)\cong\Delta_{1}\oplus\Delta_{2}$ for some division algebras $\Delta_{1}$ and $\Delta_{2}$ . In the other
case we will show the following;

(1) $0(G)$ is a Z-group (i.e. all Sylow subgroups of $0(G)$ are cyclic).
(2) $G$ has a normal subgroup $G_{1}$ such that $G_{1}\supset O(G),$ $G/G_{1}$ is a 2-group

of order $\leqq 8$ , and $G_{1}/O(G)\cong SL(2,5)P,$ $SL(2,9)$ or $E$, where $P$ is a cyclic
2-group or a dihedral group of order $2^{n}\geqq 4$ , and $SL(2,5)P$ is the central
product of $SL(2,5)$ and $P$.

\S 1. The largest solvable normal subgroup.

All division algebras considered in this paper are of characteristic $0$ .
As usual $Q$ and $C$ denote respectively the rational number field and the
complex number field. By a subgroup of $M_{2}(\Delta)$ we mean a finite multi-
plicative subgroup of $M_{2}(\Delta)$ . Let $\Delta$ be a division algebra and let $K$ be a
field contained in the center of $\Delta$ . Let $G$ be a subgroup of $M_{2}(\Delta)$ . We
define $V_{K}(G)=\{\sum\alpha_{i}g_{i}|\alpha_{i}\in K, g_{i}\in G\}$ as a K-subalgebra of $M_{2}(\Delta)$ .
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Let $C$ be the class of finite groups $G$ which satisfies the following
conditions (a) and (b):

(a) A Sylow 3-subgroup of $G$ is an abelian group generated by at
most 2-elements.

(b) A non-abelian simple group which occurs as a composition factor
of $G$ is isomorphic to $PSL(2,5)$ or $PSL(2,9)$ .
If $G$ is a subgroup of $M_{2}(\Delta)$ , then by [6] and [8] $G\in C$. Let $N$ be the
largest solvable normal subgroup of $G$ . As is easily seen, $G/N\in C$ and
the largest solvable normal subgroup of $G/N$ is trivial.

LEMMA 1.1. Let $G$ be an element of C. We assume that $G$ is non-
solvable and that the largest solvable normal subgroup of $G$ is trivial.
Then we have

(1) Let $H$ be a normal subgroup of $G$ which is the direct product
of non-abelian simple groups $S_{i},$ $H=S_{1}\times S_{2}\times\cdots\times S_{n}$ . Then $n\leqq 2$ and
$H\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .

(2) Let $M$ be a minimal normal subgroup of $G$ with $M\neq 1$ . Then
$M\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .

(3) If $C_{G}(H)\supset M$, then $H\cong M\cong PSL(2,5)$ .
(4) There exists a normal subgroup $T$ of $G$ such that $C_{a}(T)=1$ and

$T\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .
PROOF. (1) By the condition (b) $S_{i}$ is isomorphic to $PSL(2,5)$ or

$PSL(2,9),$ $i=1,2,$ $\cdots,$ $n$ . Since a Sylow 3-subgroup of $PSL(2,5)$ (resp.
$PSL(2,9))$ is a cyclic group (resp. an elementary abelian group of order
9), (1) follows directly from the condition (a).

(2) It is well known that $M\cong S\times S\times\cdots\times S$ for some simple group
$S$. Since the largest solvable normal subgroup of $G$ is trivial, $S$ is non-
abelian. Therefore by (1) $M\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .

(3) The condition $C_{G}(H)\supset M$ means $MH\cong M\times H$, because $ M\cap H\subset$

$C_{a}(H)\cap H=1$ . Since $MH\triangleleft G$ , it follows from (1) and (2) that $ M\cong H\cong$

$PSL(2,5)$ .
(4) Let $L$ be a non-trivial minimal normal subgroup of $G$ . By (2)

$L\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ . If $C_{a}(L)$ is solvable,
then by the assumption $C_{a}(L)=1$ . Thus we may assume that $C_{a}(L)$ is
non-solvable. Let $M$ be a minimal normal subgroup of $G$ such that $ 1\neq$

$M\subset C_{G}(L)$ . By (3) $M\cong L\cong PSL(2,5)$ . Suppose that $C_{a}(LM)$ is not solvable.
Let $K$ be a minimal normal subgroup of $G$ such that $1\neq K\subset C_{a}(LM)$ .
Then by (3) $LM\cong K\cong PSL(2,5)$ , which contradicts the fact $ LM\cong$

$PSL(2,5)\times PSL(2,5)$ . Hence $C_{a}(LM)$ is solvable, and $C.(LM)=1$ . In
this case, if we put $T=LM$, then we get the assertion (4).
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Using this lemma we have

PROPOSITION 1.2. Let $\Delta$ be a division algebra. Let $G$ be a non-solv-
able subgroup of $M_{2}(\Delta)$ . Then we have

(1) The largest solvable normal subgroup $N$ of $G$ is non-trivial.
(2) $G/N$ is isomorphic to a subgroup $W$ of $Aut(T)$ with $W\supset T$, where

$T\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .
PROOF. By (1.1) (4) there exists a normal subgroup $T$ of $G/N$ such

that $C_{a/N}(T)=1$ and $T\cong PSL(2,5)$ , $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .
Hence $G/N$ is isomorphic to a subgroup of $Aut(T)$ . If $N=1$ , then either
$PSL(2,5)$ or $PSL(2,9)$ is a subgroup of $M_{2}(\Delta)$ . But it contradicts the
main result in [8]. Therefore $N\neq 1$ .

As is well known, $Aut(PSL(2,5))/PSL(2,5)$ and $Aut(PSL(2,9))/PSL(2,9)$
are 2-groups.

LEMMA 1.3. $Aut(PSL(2,5)\times PSL(2,5))/(PSL(2,5)\times PSL(2,5))$ is a 2-
group.

PROOF. Let $\tau_{1}$ (resp. $\tau_{2}$ ) be the morphism from $PSL(2,5)$ to
$PSL(2,5)\times PSL(2,5)$ determined by $\tau_{1}(a)=(a, 1)$ (resp. $\tau_{2}(a)=(1,$ $a)$). Let
$\mu_{i}$ be the projection of $PSL(2,5)\times PSL(2,5)$ on the i-th component. Let
$\sigma$ be an automorphism of $PSL(2,5)\times PSL(2,5)$ . We denote by $\sigma_{ij}$ the
morphism $\mu_{t}\sigma\tau_{j}$ from $PSL(2,5)$ to $PSL(2,5)$ . Since $PSL(2,5)$ is simple,
Ker $\sigma_{lj}=1$ or $PSL(2,5)$ .

Now we will prove that one of the following holds:
(1) Ker $\sigma_{11}=Ker\sigma_{22}=1$ , Ker $\sigma_{12}=Ker\sigma_{21}=PSL(2,5)$ ; or
(2) Ker $\sigma_{11}=Ker\sigma_{22}=PSL(2,5)$ , Ker $\sigma_{12}=Ker\sigma_{21}=1$ .

Since $\mu_{i}\sigma$ is a surjection, Ker $\sigma_{l1}=1$ or Ker $\sigma_{i2}=1$ . We assume that
Ker $\sigma_{i1}=Ker\sigma_{i2}=1$ . Let $a,$

$b$ be a pair of elements of $PSL(2,5)$ satisfying
$[a, b]\neq 1$ . We put $a^{\prime}=\sigma_{i1}^{-1}(a),$ $b^{\prime}=\sigma_{i2}^{-1}(b)$ . Then $\tau_{1}(a^{\prime})=(a’, 1)$ and $\tau_{2}(b^{\prime})=$

$(1, b^{\prime})$ , which implies $[\tau_{1}(a’), \tau_{2}(b^{\prime})]=1$ and $[\mu_{i}\sigma\tau_{1}(a^{\prime}), \mu_{i}\sigma\tau_{2}(b’)]=1$ . It is
impossible because $a=\mu_{i}\sigma\tau_{1}(a’)$ and $b=\mu_{i}\sigma\tau_{2}(b’)$ . Next we assume that
Ker $\sigma_{1j}=Ker\sigma_{2j}=1$ . Then $\sigma\tau_{1}(PSL(2,5))=\sigma\tau_{2}(PSL(2,5))=PSL(2,5)\times 1$ if
$j=1,$ $=1\times PSL(2,5)$ if $j=2$ . It is a contradiction.

Let $\nu$ be an automorphism of $PSL(2,5)\times PSL(2,5)$ determined by
$\nu(a, b)=(b, a)$ . In the case (1) $\sigma=(\sigma_{11}, \sigma_{22})\in Aut(PSL(2,5))\times Aut(PSL(2,5))$ .
In the case (2) $\nu\sigma\in$ Aut $(PSL(2,5))\times Aut(PSL(2,5))$ . Thus
$Aut(PSL(2,5)\times PSL(2,5))/(PSL(2,5)\times PSL(2,5))$ is a 2-group.

In [7] we proved that a solvable subgroup of $M_{2}(\Delta)$ has a normal
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Hall {2, 3, 5, 7}-subgroup. This result can be generalized to any subgroup
of $M_{2}(\Delta)$ .

COROLLARY 1.4. Let $\Delta$ be a division algebra. Let $G$ be a subgroup
of $M_{2}(\Delta)$ . Then $G$ has a normal Hall $\{2, 3, 5, 7\}^{\prime}$-subgroup.

PROOF. We may assume that $G$ is non-solvable. Let $N$ be the largest
solvable normal subgroup of $G$ . Let $\pi=\{2,3,5,7\}$ . Let $H$ be a normal
Hall $\pi^{\prime}$-subgroup of $N$. Since $PSL(2,5)$ and $PSL(2,9)$ are $\pi$-groups,
$Aut(PSL(2,5)),$ $Aut(PSL(2,9))$ and $Aut(PSL(2,5)\times PSL(2,5))$ are $\pi$-groups.
By (1.2) $H$ is a normal Hall $\pi^{\prime}$-subgroup of $G$ .

\S 2. Perfect groups.

A group $G$ is perfect if $[G, G]=G$ . In this paper we denote by $D$ ,
$Q,$ $DQ$ and $DD$ respectively the dihedral group of order 8, the quaternion
group of order 8, the central product of $D$ and $Q$ and the central product
of $D$ and $D$ . In this section we will determine all perfect subgroups of
$M_{l}(\Delta)$ such that no normal subgroup of $G$ is isomorphic to $DQ$ . Let $m$ ,
$r$ be relatively prime integers, and put $s=(r-1, m),$ $t=m/s;n=the$ mini-
mal positive integer satisfying $r^{n}\equiv 1$ mod $m$ . Denote by $G_{n,r}$ the group
generated by two elements $a,$

$b$ with the relations: $a^{n}=1,$ $b^{n}=a^{t}$ and
$bab^{-1}=a^{f}$ . Let $\zeta_{m}$ be a fixed primitive m-th root of unity and let $a=a$.
be the automorphism of $Q(\zeta_{m})$ determined by the mapping $\zeta_{m}\rightarrow\zeta_{m}^{r}$ . We
denote by $\Lambda_{n.r}$ the cyclic algebra $(Q(\zeta_{*}), \sigma_{f}, \zeta.)$ .

First we recall the results in Amitsur [1].

(2.1) ([1]). Let $G$ be a finite group and let $\Delta$ be a divison algebra.
Assume that $ G\subset\Delta$ . Then we $\cdot have$

(1) The odd Sylow subgroups of $G$ are cyclic and the even Sylow
subgroups of $G$ are cyclic or generalized quaternion.

(2) If all Sylow subgroups of $G$ are cyclic, then $G\cong G_{m,\prime}$ for some
relatively prime integers $m,$ $r$ with $(n, t)=1$ .

(3) $A$ group $G_{*,r}$ can be embedded in a division algebra if and only
if $A_{n,\prime}$ is a division algebra; then we have $V_{0}(G_{\hslash,t})\cong\Lambda_{n,r}$ and the isomor-
phism is obtained by the correspondence $a\leftrightarrow\zeta_{n},$ $b\leftrightarrow\sigma,$ .

(4) If $G$ is not solvable, then $G\cong SL(2,5)\times G_{n\cdot,r}$ and $ V_{0}(G)\cong\Lambda_{10,-1}\otimes_{0}\Lambda_{fn.r}\cong$

$(\Lambda_{\iota,-\iota}\otimes_{0}Q(\sqrt{5}))\otimes_{Q}\Lambda_{I,f}$ .
COROLLARY 2.2. Let $G$ be a non-trivial perfect subgroup of $M_{2}(\Delta)$ .
(1) If $V_{Q}(G)\cong\Delta_{1}$ for some division algebra $\Delta_{1}$ , then $G\cong SL(2,5)$ and

$V_{0}(G)\cong\Lambda_{10,-1}$ .
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(2) If $V_{q}(G)\cong\Delta_{1}\oplus\Delta_{2}$ for some division algebras $\Delta_{1},$ $\Delta_{2}$ , then one of
the following holds:

(i) $G\cong SL(2,5)$ and $V_{q}(G)\cong Q\oplus\Lambda_{10,-1}$ ; or
(ii) $G\cong SL(2,5)\times SL(2,5)$ and $V_{q}(G)\cong\Lambda_{10,-1}\oplus\Lambda_{10,-1}$ .
PROOF. Since $[G, G]=G$ , the assertion (1) follows directly from (2.1)(4).
We now assume that $V_{q}(G)\cong\Delta_{1}\oplus\Delta_{2}$ for some division algebras $\Delta_{1},$ $\Delta_{2}$ .

Let $\rho_{i}$ be the projection of $V_{q}(G)$ on the i-th component of $\Delta_{1}\oplus\Delta_{2}$ . Since
$G\subset V_{q}(G)$ , the morphism $\rho:G\rightarrow\rho_{1}(G)\times\rho_{2}(G)$ determined by the mapping
$g\rightarrow(\rho_{1}(g), \rho_{2}(g))$ is injective. Because $[G, G]=G,$ $[\rho_{i}(G), \rho_{t}(G)]=\rho_{i}(G)$ and
$V_{q}(\rho_{i}(G))=\Delta_{i}$ . By (1), $\rho_{i}(G)\cong 1$ and $\Delta_{i}\cong Q$ , or $\rho_{l}(G)\cong SL(2,5)$ and $\Delta_{i}\cong\Lambda_{10,-1}$ .
Therefore $V_{q}(G)\cong\Delta_{1}\oplus\Delta_{2}\cong Q\oplus\Lambda_{10,-1}$ or $\Lambda_{10,-1}\oplus\Lambda_{10,-1}$ , because $G\neq 1$ . In the
case where $V_{q}(G)\cong Q\oplus\Lambda_{10,-1}$ , we may assume that $\rho_{1}(G)=1$ and $\rho_{2}(G)\cong$

$SL(2,5)$ . Then since $|\rho_{2}(G)|\leqq|G|\leqq|\rho_{1}(G)\times\rho_{2}(G)|=|\rho_{2}(G)|$ , $ G\cong\rho_{2}(G)\cong$

$SL(2,5)$ .
Next we assume that $\Delta_{1}\cong\Delta_{2}\cong\Lambda_{10,-1}$ . Put $K_{i}=Ker\rho_{i},$ $i=1,2$ . Since

$\rho$ is injective, $K_{1}\cap K_{2}=1$ . Since $K_{1}K_{2}/K_{i}\triangleleft SL(2,5),$ $K_{\iota}K_{2}/K_{i}\cong 1,$ $Z(SL(2,5))$

or $SL(2,5)$ . The fact $|G:K_{i}|=|SL(2,5)|$ implies $|K_{1}|=|K_{2}|$ . If $|K_{1}K_{2}/K_{1}|=$

$|K_{1}K_{2}/K_{2}|=1$ , then $K_{1}=K_{2}=1$ and $G\cong SL(2,5)$ . By [10] $ Q[SL(2,5)]\cong$

$Q\oplus M_{b}(Q)\oplus M_{3}(\Lambda_{4,-1})\oplus M_{2}(\Delta_{8})\oplus M_{4}(Q)\oplus M_{3}(Q(\sqrt{5}))\oplus\Lambda_{10,-1}$ , where $\Delta_{3}\cong$

$(Q(\zeta_{3}), \tau, -1)$ . Hence $V_{q}(SL(2,5))\not\cong\Lambda_{10,-1}\oplus\Lambda_{10,-1}$ . Thus $|K_{1}K_{2}/K_{1}|=|K_{1}K_{2}/K_{2}|\neq 1$ .
Suppose that $K_{1}K_{2}/K_{1}\cong K_{1}K_{2}/K_{2}\cong Z(SL(2,5))$ . Since $\rho(K_{1}K_{2})\subset$

$\rho_{1}(K_{1}K_{2})\times\rho_{2}(K_{1}K_{2})\subset Z(SL(2,5))\times Z(SL(2,5))$ , we get $K_{1}K_{2}\subset Z(G)$ . Therefore
$G$ is a central extension of $PSL(2,5)$ with $[G, G]=G$ . Since the Schur
multiplier of $PSL(2,5)$ is 2, we have that $|K_{1}K_{2}|\leqq 2$ . But it is impossible.
In fact, by the assumption, $|K_{1}K_{2}|=|K_{1}\times K_{2}|=|K_{1}|^{2}=|Z(SL(2,5))|^{2}=4$ . Thus
$K_{1}K_{2}/K_{l}\cong SL(2,5)$ . Since $K_{1}\cong K_{1}K_{2}/K_{2}\cong SL(2,5)$ , $|SL(2,5)\times SL(2,5)|=$

$|K_{1}K_{2}|\leqq|G|\leqq|\rho_{1}(G)\times\rho_{2}(G)|=|SL(2,5)\times SL(2,5)|$ . Hence we conclude that
$G\cong SL(2,5)\times SL(2,5)$ if $V_{q}(G)\cong\Lambda_{10,-1}\oplus\Lambda_{10,-1}$ .

LEMMA 2.3. Let $\Delta$ be a division algebra. Let $G_{1}$ and $G_{2}$ be subgroups
of $M_{2}(\Delta)$ . Let 1 be the unit element of $M_{2}(\Delta)$ . Assume that $V_{q}(G_{i})$ con-
tains the simple algebra $A_{i}$ with $A_{i}\ni 1,$ $i=1,2$ . If $A_{1}$ and $A_{2}$ satisfy
one of the following conditions (1) $-(4)$ , then we have $[G_{1}, G_{2}]\neq 1$ .

(1) $A_{1}\cong A_{2}\cong M_{2}(Q)$ .
(2) $A_{1}\cong A_{2}\cong\Lambda_{4,-1}$ .
(3) $A_{1}\cong\Lambda_{4,-1}$ and $A_{2}\cong M_{2}(Q(\zeta_{3}))$ .
(4) $A_{1}\cong\Lambda_{4,-1}$ and $A_{2}\cong M_{2}(Q(i))$ .
PROOF. Suppose that $[G_{1}, G_{2}]=1$ . In any case the center of $A_{1}=Q$ .

Since $a_{1}a_{2}=a_{2}a_{1}$ for any element $a_{i}\in A_{l},$ $i=1,2,$ $A_{1}\otimes_{Q}A_{2}$ is isomorphic to
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a Q-subalgebra $A_{1}A_{2}$ of $M_{2}(\Delta)$ . On the other hand $M_{2}(Q)\otimes_{0}M_{2}(Q)\cong M_{4}(Q)$ ,
$\Lambda_{4.-1}\otimes_{Q}\Lambda_{4,-1}\cong M_{4}(Q)$ , $\Lambda_{4,-1}\otimes_{Q}M_{2}(Q(\zeta_{\epsilon}))\cong M_{4}(Q(\zeta_{S}))$ and $\Lambda_{4,-1}\otimes_{0}M_{2}(Q(i))\cong$

$M_{4}(Q(i))$ . Hence in any case $M_{2}(\Delta)$ contains a Q-subalgebra which is iso-
morphic to $M_{4}(Q)$ . It is a contradiction. Thus we obtain $[G_{1}, G_{2}]\neq 1$ .

LEMMA 2.4. Let $G$ be a perfect subgroup of $M_{2}(\Delta)$ such that $V_{Q}(G)=$

$M_{2}(\Delta)$ . Then $0(G)$ (the largest normal 2’-subgroup of $G$) is trivial.
PROOF. We assume that $0(G)\neq 1$ . If $V_{0}(O(G))$ is not a division al-

gebra, by [7] (2.3) $G$ has a normal subgroup of index 2, contradicting
the assumption $[G, G]=G$ . Therefore $V_{q}(O(G))$ is a division algebra. By
(2.1) all Sylow subgroups of $0(G)$ are cyclic. Let $p$ be the maximal prime
number which divides the order of $0(G)$ . Let $P$ be a Sylow p-subgroup
of $0(G)$ . Then it is well known that $P$ is a normal subgroup of $0(G)$

(see [5]). Thus $P$ is a normal subgroup of $G$ . Since $G/C_{a}(P)$ is abelian,
we have $G=C_{a}(P)$ . Let $S_{p}$ be a Sylow p-subgroup of $G$ . Set $R=$
$S_{p}\cap Z(N_{a}(S_{p}))$ . Then $R\supset P$. Since $S_{p}$ is abelian (See [6] Proposition 2.),
by [5] (20.12) there exists a normal subgroup $G_{0}$ of $G$ such that $G/G_{0}\cong R$ .
Since $[G, G]=G$ , we have $G=G_{0}$ , and $R=1$ . Hence $P=1$ . It is a contra-
diction. Therefore $0(G)=1$ .

LEMMA 2.5. Let $G$ be a perfect subgroup of $M_{2}(\Delta)$ such that $V_{q}(G)=$

$M_{2}(\Delta)$ . We assume that no normal subgroup of $G$ is isomorphic to $DQ$ .
Let $N$ be a normal subgroup of G. If $N$ is a 2-group, then $N\subset Z(G)$

and $N$ is cyclic.

PROOF. The proof is by induction on $|N|$ . Let $\Phi(N)$ be the Frattini
subgroup of $N$. By induction $\Phi(N)\subset Z(G)$ and $\Phi(N)$ is cyclic.

First we will prove that $N$ is generated by at most 3 elements.
By [7] $V_{q}(N)\cong\Delta_{1},$ $\Delta_{1}\oplus\Delta_{2}$ or $M_{2}(\Delta_{1})$ for some division algebras $\Delta_{1}$ and

$\Delta_{2}$ . If $V_{q}(N)\cong\Delta_{1}\oplus\Delta_{2}$ , then it follows from [7] (2.3) that $G$ has a normal
subgroup of index 2. It contradicts the assumption $[G, G]=G$ . Therefore
$V_{q}(N)\cong\Delta_{1}$ or $M_{2}(\Delta_{1})$ . In the case where $V_{Q}(N)\cong\Delta_{1}N$ is cyclic or gener-
alized quaternion. It follows that $N$ is generated by at most 2 elements.
Hence we may assume that $V_{0}(N)\cong M_{2}(\Delta_{1})$ . Suppose that $\Delta_{1}$ is a com.
mutative field. Then $V_{c}(N)\cong M_{2}(\Delta_{1})\otimes_{\Delta_{1}}C\cong M_{2}(C)$ . By [6] Lemma 3 $N$ has
a normal subgroup $N_{0}$ of index 2 such that $V_{c}(N_{0})\cong C\oplus C$. It is easy to
see that $N_{0}$ is an abelian group generated by at most 2 elements. There-
fore $N$ is generated by at most 3 elements. So it may be assumed that
$\Delta_{1}$ is not commutative. If $|\Phi(N)|=1$ , then $N$ is abelian, which contradicts
the assumption $V_{0}(N)\cong M_{2}(\Delta_{1})$ . Therefore $|\Phi(N)|\geqq 2$ . Suppose $|Z(N)|>2$ .
Since $Z(N)\subset the$ center of $M_{2}(\Delta_{1}),$ $Z(N)$ is cyclic. Put $K=the$ center of
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$M_{2}(\Delta_{1})$ . By $|Z(N)|>2K$ has an element of order 4, which implies $K\ni i$ .
Slnce $K$ is a splitting field for $N$, it follows that $\Delta_{1}=K$. However $\Delta_{1}$ is
not commutative. Thus $|Z(N)|\leqq 2$ . Because $\Phi(N)\subset Z(G)$ , $ 2\leqq|\Phi(N)|\leqq$

$|Z(N)|\leqq 2$ . Therefore $\Phi(N)=Z(N)$ and $|\Phi(N)|=2$ . On the other hand
$N/\Phi(N)$ is an elementary abelian group of order $\leqq 2^{4}$ by [7]. Suppose
that $|N/\Phi(N)|=2^{4}$ . Since $N$ is not abelian, $[N, N]=\Phi(N)$ . Thus $N$ is an
extra-special 2-group of order 32. It is well known that $N\cong DD$ or $DQ$

(see [3]). And by the assumption $N\cong DD$ . Since $Q$ is a splitting field
for $DD$ (See [3].), it follows that $\Delta_{1}$ is commutative. It is a contradic-
tion. Thus $|N/\Phi(N)|\leqq 2^{3}$ and $N$ is generated by at most 3 elements.

Assume that $G/C_{a}(N)$ is non-solvable. By (1.2) $G/C_{G}(N)$ has an ele-
ment of order 5. Let $g$ be an element of $G$ such that the order of $gC_{a}(N)$

is 5. Since $N/\Phi(N)$ is an elementary abelian group of order $\leqq 2^{8}$ ,
$|Aut(N/\Phi(N))|||GL(3,2)|=2^{s}\cdot 3\cdot 7$ . Therefore for any $n\in Ng^{-1}ng\Phi(N)=$

$n\Phi(N)$ . We put $z=n^{-1}g^{-1}ng$ and $a=the$ order of $\Phi(N)=2^{t}$ . Then
$(g^{a})^{-1}ng^{a}=nz^{a}=n$ . And the order of $gC_{G}(N)$ divides $a=2^{t}$ , which is a
contradiction. Thus we obtain that $G/C_{G}(N)$ is a solvable group. By
the assumption $[G, G]=G$ we get $G=C_{G}(N)$ . This means $N\subset Z(G)$ . Since
$N\subset Z(G)\subset the$ center of $M_{2}(\Delta)$ , it follows that $N$ is cyclic. The proof of
the lemma is completed.

LEMMA 2.6. Let $G$ be a perfect subgroup of $M_{2}(\Delta)$ such that $V_{q}(G)=$

$M_{2}(\Delta)$ . We assume that no normal subgroup of $G$ is isomorphic to $DQ$ .
Let $N$ be the largest solvable normal subgroup of G. Then we have

(1) $G/N\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .
(2) $N$ is a cyclic 2-group and $N=Z(G)\neq 1$ .
PROOF. By (1.2) $G/N$ is isomorphic to a subgroup $W$ of $Aut(T)$ with

$W\supset T$, where $T\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ . It follows
from (1.3) that $Aut(T)/T$ is a 2-group. Therefore $[G, G]=G$ means that
$G/N\cong T$.

Next we will show the assertion (2). Suppose that $N$ is not a 2-group.
Since $0(G)=1$ by (2.4), there exist normal subgroups $N_{0},$ $N_{1}$ of $G$ such
that $N\supset N_{1}\supset N_{0}\neq 1,$ $N_{0}$ is a 2-group and $N_{1}/N_{0}$ is an elementary abelian
p-group for some odd prime $p$ . By (2.5) $N_{0}$ is a cyclic group and $N_{0}\subset Z(G)$ ,
which implies $N_{1}\cong N_{0}\times(N_{1}/N_{0})$ . Thus $O(G)\supset N_{1}/N_{0}\neq 1$ . But it is impos-
sible. Hence we obtain that $N$ is a 2-group. By (2.5) $N\subset Z(G)$ , and
$N=Z(G)$ because $G/N\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ .

Now we determine all perfect subgroups $G$ of $M_{2}(\Delta)$ such that no
normal subgroup of $G$ is isomorphic to $DQ$ .
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PROPOSITION 2.7. Let $\Delta$ be a division algebra. Let $G$ be a perfect
subgroup of $M_{2}(\Delta)$ such that $V_{q}(G)=M_{2}(\Delta)$ . If no normal subgroup of $G$

is isomorphic to $DQ$ , then $G\cong SL(2,5)_{-}or$ $SL(2,9)$ , and $\Delta\cong(Q(\zeta_{8}), \tau, -1)$ ,
where $\langle\tau\rangle=Ga1(Q(\zeta_{8})/Q)$ .

PROOF. Let $N$ be the largest solvable normal subgroup of $G$ . By
(2.6) $G/N\cong PSL(2,5),$ $PSL(2,9)$ or $PSL(2,5)\times PSL(2,5)$ , and $Z(G)=N$.
This means that $G$ is a central extension of $G/N$ with $[G, G]=G$ . The
central extensions of $PSL(2,5),$ $PSL(2,9)$ and $PSL(2,5)\times PSL(2,5)$ are
well known (see [9] V \S 25).

First we assume that $G/N\cong PSL(2,5)$ . Since $|H^{2}(PSL(2,5),$ $C^{x}$ ) $|=2$ ,
$|N|=2$ and $G\cong SL(2,5)$ .

In the case where $G/N\cong PSL(2,9)$ , since $|H^{2}(PSL(2,9),$ $C^{x}$ ) $|=6$ and $N$

is a 2-group, we have that $|N|=2$ and $G\cong SL(2,9)$ .
Suppose that $G/N\cong PSL(2,5)\times PSL(2,5)$ . Since $H^{2}(PSL(2,5)\times PSL(2,5)$ ,

$C^{x})\cong H^{2}(PSL(2,5),$ $C^{x}$ ) $\times H^{2}(PSL(2,5),$ $C^{x}$ ), there exists an epimorphism
$\rho$ from $SL(2,5)\times SL(2,5)$ to $G$ . Put $G_{1}=\rho(SL(2,5)\times 1)$ and $G_{2}=$

$\rho(1\times SL(2,5))$ . Since $N$ is cyclic and $PSL(2,5)$ is not a subgroup of
$M_{2}(\Delta),$ $G_{i}\cong SL(2,5),$ $|G_{1}\cap G_{2}|=2$ and $[G_{1}, G_{2}]=1$ . If $V_{0}(G_{i})\cong\Delta_{1}\oplus\Delta_{2}$ for some
division algebras $\Delta_{1},$ $\Delta_{2}$ , then $G$ has a normal subgroup of index 2 by [7]
(2.3), contradicting the assumption $[G, G]=G$ . Thus $V_{q}(G)\cong\Delta^{(i)}$ or $M_{2}(\Delta^{()})$

for some division algebra $\Delta^{(\ell)},$ $i=1,2$ . By (2.2) $\Delta^{(i)}\cong\Lambda_{10,-1-1}\cong\Lambda,\otimes_{0}Q(\sqrt{5)}$

if $V_{q}(G_{l})\cong\Delta^{(i)}$ . By [10] $\Delta^{(i)}\cong(Q(\zeta_{8}), \tau, -1)$ if $V_{0}(G_{i})\cong M_{2}(\Delta^{(i)})$ . In any
case it follows from (2.3) that $[G_{1}, G_{2}]\neq 1$ . But it is impossible. Thus
$G/N\not\cong PSL(2,5)\times PSL(2,5)$ .

In the case where $G\cong SL(2,5)$ or $SL(2,9)$ , if $QG\oplus>M_{2}(\Delta)$ , then $\Delta\cong$

$(Q(\zeta_{3}), \tau, -1)$ (see [10]). The proof of proposition is completed.

\S 3. The extra-special $2\cdot groupDQ$ .
In this section we will determine all perfect subgroups of $M_{2}(\Delta)$ . In

\S 2 we determined these groups $G$ if no normal subgroup of $G$ is isomor-
phic to $DQ$ . Thus we may assume that $G$ has a normal subgroup which
is isomorphic to $DQ$ .

We put $ D=\langle a, b|a^{4}=1, b^{2}=1, bab^{-1}=a^{-1}\rangle$ and $Q=\langle c,$ $d|c^{4}=1,$ $c^{2}=d^{2}$ ,
$ dcd^{-1}=c^{-1}\rangle$ . Let set $S=\{x|x\in DQ, x^{2}=1\}-\{1\}$ . Then $S$ is decomposed into
the disjoint conjugate classes of $DQ,$ $S=C_{0}\cup C_{1}\cup C_{2}\cup C_{8}\cup C_{4}\cup C_{f}$ , where
$C_{0}=\{a^{2}\},$ $C_{1}=\{b, a^{2}b\},$ $C_{2}=\{ab, a^{s}b\},$ $C_{8}=\{ac, a^{8}c\},$ $C_{4}=\{ad, a^{s}d\}$ and $C_{f}=\{acd$ ,
$a^{s}cd\}$ . We set $\Omega=\{C_{1}, C_{2}, C_{8}, C_{4}, C_{f}\}$ . Let $\tau$ be an automorphism of $DQ$ .
Since $C_{0}^{f}=C_{0},$ $\tau$ induces a permutation $\tilde{\tau}$ on $\Omega$ . Let $\phi$ be the homomor-
phism from $Aut(DQ)$ to $S_{5}$ determined by $\phi(\tau)=\tilde{\tau}$ . Let $\tau\in$ Ker $\phi$ . Then
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$\tau$ induces the identity map on $DQ/[DQ, DQ]$ , and, as is well known, $\tau$ is
an inner automorphism of $DQ$ . Thus Ker $\phi=InnAut(DQ)$ . Let $\alpha,$ $\beta,$ $\gamma,$

$\delta$

be the automorphisms of $DQ$ determined by the following;
$a^{\alpha}=a,$ $b^{\alpha}=ab,$ $c^{\alpha}=c,$ $d^{\alpha}=d$ ,
$a^{\beta}=bc^{-1},$ $b^{\beta}=ab,$ $c^{\beta}=c,$ $d^{\beta}=a^{-1}bcd$ ,
$a^{\gamma}=bd^{-1},$ $b^{\gamma}=ab,$ $c^{\gamma}=abcd,$ $d^{\gamma}=d$ , and
$a^{\delta}=a^{2}bcd,$ $b^{\delta}=ab,$ $c^{\delta}=a^{-1}bd,$ $d^{\delta}=abc$ .

Then $\phi(\alpha)=(C_{1}, C_{2}),$ $\phi(\beta)=(C_{1}, C_{2}, C_{8}),$ $\phi(\gamma)=(C_{1}, C_{2}, C_{4})$ and $\phi(\delta)=(C_{1}, C_{2}, C_{b})$ .
Since $\phi(\alpha),$ $\phi(\beta),$ $\phi(\gamma)$ and $\phi(\delta)$ generate $S_{b},$ $Aut(DQ)/InnAut(DQ)\cong S_{f}$ and
$\phi(\langle\beta, \gamma, \delta\rangle)\cong A_{b}\cong PSL(2,5)$ . It is easy to see that $\beta,$ $\gamma,$

$\delta$ can be regarded
as permutations on { $b$ , ab, $ac,$ $ad,$ $acd$}. For any $\sigma\in Aut(DQ),$ $\sigma=1$ if $\sigma$

is the identity permutation on {$b$ , ab, $ac,$ $ad,$ $acd$}. Therefore we obtain
that $\langle\beta, \gamma, \delta\rangle\cong A_{b}\cong PSL(2,5)$ . Let $H$ be a central extension of $\langle\beta, \gamma, \delta\rangle$

by $\langle a^{2}\rangle$ with $[H, H]=H$. Then $H\cong SL(2,5)$ (see [9] V \S 25). Let $\{u_{\sigma}|\sigma\in$

$\langle\beta, \gamma, \delta\rangle\}$ be a set of representatives of $\langle\beta, \gamma, \delta\rangle$ in $H$. The set HDQ
forms a group if we define $u_{\sigma}^{-1}xu_{\sigma}=x^{\sigma},$ $\sigma\in\langle\beta, \gamma, \delta\rangle,$ $x\in DQ$ . We denote
this group by $E$. Since $H\cap DQ=\langle a^{2}\rangle,$ $E$ is an extension of $PSL(2,5)$
by $DQ$ .

LEMMA 3.1. $E$ is a subgroup of $M_{2}(\Lambda_{4,-1})$ and $V_{q}(DQ)=V_{q}(E)=$

$M_{2}(\Lambda_{4,-1})$ .
PROOF. $\Lambda_{4,-1}$ is the ordinary quaternion algebra over $Q$ , i.e. $\Lambda_{4,-1}=$

$Q+Qi+Qj+Qk$ with the relations; $i^{2}=j^{2}=k^{2}=-1,$ $ij=-ji=k$ . Let $\rho$

be the homomorphism from $E$ to $M_{2}(\Lambda_{4,-1})$ determined by

$\rho(a)=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , $\rho(b)=\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)$ , $\rho(c)=\left(\begin{array}{ll}\dot{j} & 0\\0 & i\end{array}\right)$ , $\rho(d)=\left(\begin{array}{ll}j & 0\\0 & j\end{array}\right)$ ,

$\rho(u_{\beta})=(_{\overline{x}}^{x}\backslash $ $-x\overline{x})$ , $\rho(u_{\gamma})=(\frac{y}{y}$ $-\frac{y}{y})$ and $\rho(u_{\delta})=(_{\overline{z}}^{z}$ $-\frac{z}{z}I$ ,

where $x=(1-i)/2,$ $y=(1-j)/2$ and $z=(1-k)/2$ . It is easy to see that
$V_{q}(\rho(DQ))=M_{2}(\Lambda_{4,-1})$ .

We will show that $\rho$ is injective. Suppose that Ker $\rho\cap DQ\neq 1$ . Then
Ker $\rho\cap Z(DQ)\neq 1$ . Since $|Z(DQ)|=2$ , Ker $\rho\supset Z(DQ)$ . Therefore $\rho(DQ)\cong$

$ DQ/Ker\rho$ is an abelian group, because $DQ/Z(DQ)$ is an elementary abelian
group. However $[\rho(c), \rho(d)]\neq 1$ . Thus Ker $\rho\cap DQ=1$ . We set $\Omega’=\{\rho(C_{1})$ ,
$\underline{p(C}_{2}),$

$\rho(C_{\theta}),$ $\rho(C_{4}),$ $\rho(C_{b})$}. Let $a\in E$. Then $\rho(a)$ induces a permutation
$\rho(\sigma)$ on $\Omega$‘. We denote by $\phi$ the mapping $\rho(a)\rightarrow\overline{\rho(\sigma})$ . We can easily
check that $\phi(\langle\rho(u_{\beta}), \rho(u_{\gamma}), \rho(u_{\delta})\rangle)\cong PSL(2,5)$ and Ker $\phi\supset\rho(DQ)$ . Therefore
$|\rho(E)|=|\rho(E)$ : Ker $\phi|$ Ker $\phi|\geqq|PSL(2,5)||\rho(DQ)|=|PSL(2,5)||DQ|=|E|$ . Thus
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$\rho$ is injective. Hence we can regard $E$ as a subgroup of $M_{2}(\Lambda_{4,-1})$ .
The fact $V_{0}(DQ)=M_{2}(\Lambda,-1)$ and the fact $V_{p}(DQ)\subset V_{q}(E)\subset M_{2}(A_{4.-1})$

imply $V_{0}(E)=M_{2}(\Lambda_{4,-1})$ , as desired.

Let $G$ be a perfect subgroup of $M_{2}(\Delta)$ . We assume that $G$ has a
normal subgroup $N$ which is isomorphic to $DQ$ .

LEMMA 3.2. If $V_{q}(G)=M_{2}(\Delta)$ , then $|C_{a}(N)|=2$ .
PROOF. In the proof of (3.1) we showed that $DQ\subset M_{2}(A_{4,-1})$ and

$V_{q}(DQ)=M_{2}(\Lambda_{4,-1})$ . Since $DQ/[DQ, DQ]$ is an elementary abelian group
of order 16, $QfDQ/[DQ, DQ]]\cong Q\oplus Q\oplus\cdots\oplus Q$ . Because $\dim_{q}M_{2}(\Lambda_{4,-1})=16$ ,
$Q[DQ]\cong Q\oplus Q\oplus\cdots\oplus Q\oplus M_{2}(\Lambda_{4,-1})$ . Therefore $V_{q}(N)\cong M_{2}(\Lambda_{4,-1})$ . Let $P$ be
a Sylow 2-subgroup of $C_{G}(N)$ . Suppose that $P$ has an element $x$ of order
4. Then $V_{q}(N)V_{q}(\langle x\rangle)\cong V_{q}(N)\otimes_{q}V_{q}(\langle x\rangle)\supset M_{2}(\Lambda_{4:-1})\otimes_{q}Q(i)\cong M_{4}(Q(i))$ . It
contradicts the fact $V_{q}(N)V_{q}(\langle x\rangle)\subset M_{2}(\Delta)$ . This implies that any element
of $P$ is of order $\leqq 2$ . Thus by [6] $P$ is an elementary abelian group
generated by at most 2 elements. It follows from [7] (3.1) that $C_{a}(N)$

has a normal 2-complement $M$. Since $0(G)=1$ by (2.4), $M=1$ and $C_{a}(N)=P$.
If $|C_{a}(N)|=|P|=4$ , then $V_{q}(P)\cong Q\oplus Q$ , and by [7] (2.3) $G$ has a normal
subgroup of index 2. But it is impossible. Therefore $|C_{a}(N)|=|P|=2$ .

The factor group $G/C_{a}(N)$ is isomorphic to a subgroup of $Aut(N)$ .
Since Aut $(N)\cong\langle\alpha, \beta, \gamma, \delta\rangle DQ/[DQ, DQ]$ and $[G, G]=G$ , $ G/C_{a}(N)\cong$

$\langle\beta, \gamma, \delta\rangle DQ/[DQ, DQ]$ . We denote this isomorphism by $\phi$ . Let $\rho$ be the
morphism from $G$ to $Aut(DQ)$ determined by the mapping $x\rightarrow\phi(xC_{a}(N))$ .
We put $H=\rho^{-1}(\langle\beta, \gamma, \delta\rangle)$ . On the other hand $G/C_{a}(C_{a}(N))$ is isomorphic to
a subgroup of $Aut(C_{a}(N))$ . Since $|C_{a}(N)|=2$ and $[G, G]=G$ , we have $G=$

$C_{a}(C_{a}(N))$ , and so $C_{a}(N)\subset Z(G)$ . Because $H/C_{a}(N)\cong PSL(2,5),$ $H$ is a cen-
tral extension of $PSL(2,5)$ by $C_{G}(N)$ . It follows that $[H, H]C_{a}(N)/C_{a}(N)\cong$

$[PSL(2,5), PSL(2,5)]\cong PSL(2,5)$ . If $[H, H]\cap C_{a}(N)=1$ , then $[H, H]\cong$

$PSL(2,5)$ and $[H, H]\subset M_{2}(\Delta)$ . It is a contradiction (see [8]). Therefore
$[H, H]\supset C_{a}(N)$ and $[H, H]=H$. Thus $H\cong SL(2,5)$ . By the definition of
$E$ we have $G=HN\cong E$. Let $V$ be an irreducible $M_{2}(\Delta)$-module. Put $K=$

the center of $M_{2}(\Delta)$ . Since $[G, G]=G$ , by [7] (2.3) the number of all iso-
morphism classes of irreducible KN-submodules of $V$ is 1. Therefore
$V\cong U\oplus U\oplus\cdots\oplus U$ as KN-module, where $U$ is an irreducible KN-module.
Let $\chi$ be an irreducible complex character corresponding to $U$. Since
$Q[DQ]\cong Q\oplus Q\oplus\cdots\oplus Q\oplus M_{2}(\Lambda_{4,-1})$ , we have $ CN\cong C[DQ]\cong C\oplus C\oplus\cdots\oplus C\oplus$

$M_{4}(C)$ . This shows $\chi(1)=16$ , because $\chi$ is faithful character. For any
$g\in E$ the irreducible character $\chi_{g}$ has degree 16, and $x^{g}=x$ , because $N$

has only one irreducible character $\chi$ of degree 16. This implies $x^{a}|_{N}=$
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$|G:N|\chi$ . Since $(\chi^{g}, \chi^{q})_{\theta}=(x^{a}|_{N}, \chi)_{N}=|G:N|$ , $x^{a}$ is decomposed into the
irreducible complex characters $\mu_{i}$ of $G,$ $x^{a}=\mu_{1}+\mu_{2}+\cdots+\mu_{t}$ , where $t=$

$|G:N|$ . Since $1\neq(\mu_{i}, x^{q})_{\theta}=(\mu_{i}|_{N}, \chi)_{N},$ $\mu_{l}(1)\geqq\chi(1)$ . Thus $|G:N|\chi(1)=x^{a}(1)=$
$\sum_{i=1}^{t}\mu_{i}(1)\geqq|G:N|\chi(1)$ , which implies $\mu_{i}(1)=x(1)=16$ . Let $\mu$ be an irre-
ducible complex character corresponding to $V$. Since $(\mu|_{N}, \chi)_{N}\neq 1$ , we have
$\mu(1)=16$ , which shows $\dim_{K}M_{2}(\Delta)=16=\dim_{q}M_{2}(\Lambda_{4,-1})=\dim_{K}M_{2}(\Lambda_{4,-1}\otimes_{q}K)$ .
Since $M_{2}(\Delta)\supset M_{2}(\Lambda_{4,-1}\otimes_{Q}K)$ , we have $M_{2}(\Delta)=M_{2}(\Lambda_{4,-1}\otimes_{Q}K)$ .

Hence by (2.2) and (2.7) we have

THEOREM 3.3. Let $\Delta$ be a division algebra. Let $G$ be a perfect sub-
group of $M_{2}(\Delta)$ . Then one of the following holds:

(1) $G\cong SL(2,5)$ and $V_{q}(G)\cong\Lambda_{10,-1}$ ;
(2) $G\cong SL(2,5)$ and $V_{q}(G)\cong Q\oplus\Lambda_{10,-1}$ ;
(3) $G\cong SL(2,5)\times SL(2,5)$ and $V_{q}(G)\cong\Lambda_{10,-1}\oplus\Lambda_{10,-1}$ ;
(4) $G\cong SL(2,5)$ and $V_{q}(G)\cong M_{2}((Q(\zeta_{3}), \tau, -1))$

(5) $G\cong SL(2,9)$ and $V_{q}(G)\cong M_{2}((Q(\zeta_{8}), \tau, -1))$ ; or
(6) $G\cong E$ and $V_{q}(G)\cong M_{2}(\Lambda_{4,-1}\otimes_{Q}K)$ for some commutative .field $K$.
\S 4. Non-solvable groups.

In this section we consider non-solvable subgroups of $M_{2}(\Delta)$ .
Let $G$ be a non-solvable subgroup of $M_{2}(\Delta)$ such that $V_{q}(G)=M_{2}(\Delta)$ .

Then $G$ has a perfect normal subgroup $H$ such that $G/H$ is solvable. By
[7] (2.1) $V_{q}(H)\cong\Delta_{1},$ $\Delta_{1}\oplus\Delta_{2}$ or $M_{2}(\Delta_{1})$ for some division algebras $\Delta_{1},$ $\Delta_{2}$ .

LEMMA 4.1. Let $N$ be a normal subgroup of G. Assume that $ V_{q}(N)\cong$

$\Delta_{1}\oplus\Delta_{2}$ . Then
(1) $G$ has a normal subgroup $G_{0}$ of index 2.
(2) Put $G/G_{0}=\{G_{0}, gG_{0}\}$ . Then there exist normal subgroups $T_{1},$ $T_{2}$

of $G_{0}$ and relatively prime integers $m,$ $r$ such that $T_{1}\cap T_{2}=1,$ $T_{1}^{g}=T_{2}$ ,
$G_{0}/T_{1}\cong SL(2,5)\times G_{\hslash,t}$ and $\Delta\cong\Lambda_{10,-1}\otimes_{Q}\Lambda_{m,t}$ .

PROOF. By [7] (2.3) $G$ has a normal subgroup $G_{0}$ of index 2 such
that $ V_{q}(G_{0})\cong\Delta\oplus\Delta$ . Moreover $G_{0}$ has normal subgroups $T_{1},$ $T_{2}$ satisfying
$T_{1}\cap T_{2}=1,$ $T_{1}^{a}=T_{2}$ and $G_{0}/T_{1}\cong\rho(G_{0})$ , where $\{1, g\}$ is a set of representatives
of $G/G_{0}$ in $G$ and $\rho$ is the projection of $V_{q}(G_{0})$ on the first component.of
$\Delta\oplus\Delta$ . Therefore $G_{0}/T_{1}\cong G_{0}/T_{2}$ . If $G_{0}/T_{1}$ is solvable, then $G_{0}/T_{1}$ and
$T_{1}T_{2}/\tau_{2}\cong\tau_{1}$ are solvable. This means that $G_{0}$ is solvable. But it is im-
possible. Therefore $G_{0}/T_{1}$ is non-solvable. Since $ V_{q}(\rho(G_{0}))=\Delta$ , it follows
from (2.1) that $\rho(G_{0})\cong SL(2,5)x$ G.,. and $\Delta\cong\Lambda_{10,-1}\otimes_{q}\Lambda_{m,r}$ for some rela-
tively prime integers $m,$ $r$ .
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LEMMA 4.2. Assume that $V_{q}(H)\cong\Delta_{1}$ or $M_{2}(\Delta_{1})$ . Let $P$ be a non-cyclic
2-subgroup of $M_{2}(\Delta)$ of order $>4$ .

(1) $I\Gamma V_{q}(P)\cong\Gamma_{1}$ or $\Gamma_{1}\oplus\Gamma_{2}$ for some division algebras $\Gamma_{1},$ $\Gamma_{2}$ , then
$[H, P]\neq 1$ .

(2) Especially, if $P$ is the quaternion group of order 8 or an abelian
group, then $[H, P]\neq 1$ .

PROOF. (1) By (3.3) $V_{O}(H)\supset\Lambda_{4,-1}\ni 1$ or $V_{0}(H)\supset M_{2}(Q(\zeta_{8}))\supset M_{2}(Q)\ni 1$ .
First we assume that $V_{0}(P)\cong\Gamma_{1}$ . Since $P$ is not cyclic, it follows from
(2.1) that $P$ is generalized quaternion and $V_{q}(P)\supset\Lambda,-1\ni 1$ . By (2.3) we
have that $[H, P]\neq 1$ . Next we assume that $V_{q}(P)\cong\Gamma_{1}\oplus\Gamma_{2}$ . In the case
where $V_{q}(H)\supset M_{2}(Q)\ni 1$ , if $[H, P]=1$ then $ M_{2}(\Delta)\supset M_{2}(Q)\otimes_{0}(\Gamma_{1}\oplus\Gamma_{2})\cong$

$M_{2}(\Gamma_{1})\oplus M_{2}(\Gamma_{2})$ . It is a contradiction. So we may assume that $ V_{q}(H)\supset$

$\Lambda_{4,-1}\ni 1$ . In the case where $P$ is abelian, since $P$ is generated by at most
2 elements, $|P|>4$ implies that $P$ has an element of order 4. Thus
$V_{q}(P)\supset Q\oplus Q(i)\ni 1$ . If $[P, H]=1$ , then $ M_{2}(\Delta)\supset\Lambda_{4,-1}\otimes_{0}(Q\oplus Q(i))\cong\Lambda_{4.-1}\oplus$

$M_{2}(Q(i))$ , which is a contradiction. Therefore $[P, H]\neq 1$ . In the case
where $P$ is non-abelian, $\Gamma_{1}\supset\Lambda_{4,-1}$ or $\Gamma_{2}\supset\Lambda_{4,-I}$ . Thus $V_{q}(P)\supset Q\oplus\Lambda_{4,-1}\ni 1$ .
If $[H, P]=1$ , then $M_{2}(Q)\otimes_{q}(Q\oplus\Lambda_{4,-1})\cong M_{2}(Q)\oplus M_{2}(\Lambda_{4,-1})$ . Thus $[H, P]\neq 1$ .

(2) If $P$ is the quaternion group of order 8 or an abelian group,
then $QP$ does not contain a simple algebla which is isomorphic to $M_{2}(\Gamma)$

for some division algebra $\Gamma$ . Thus $V_{q}(P)\cong\Gamma_{1}$ or $\Gamma_{1}\oplus\Gamma_{2}$ for some division
algebra $\Gamma_{1},$ $F_{2}$ . Therefore by (1) $[H, P]\neq 1$ .

We now have

THEOREA 4.3. Let $\Delta$ be a division algebra. Let $G$ be a non-solvable
subgroup of $M_{2}(\Delta)$ such that $V_{q}(G)=M_{2}(\Delta)$ . Then $G$ satisfies one of the
following conditions (1) and (2).

(1) $G$ has a normal subgroup $G_{0}$ of index 2. Put $G/G_{0}=\{G_{0}, gG_{0}\}$ .
Then there exist normal subgroups $T_{1},$ $T_{2}$ of $G_{0}$ and relatively prime
integers $m,$ $r$ such that $T_{1}\cap T_{2}=1,$ $T_{1}^{\sigma}=T_{2},$ $G_{0}/T_{1}\cong SL(2,5)\times G_{n,r}$ and $\Delta\cong$

$A_{10,-1}\otimes_{q}\Lambda_{n,r}$ .
(2) Let $H$ be the perfect normal subgroup of $G$ such that $G/H$ is

solvable. Then $H$ and $C_{a}(H)$ satisfy the one of the following conditions,

(i) $H\cong SL(2,5),$ $SL(2,9)$ or $E$, and $C_{a}(H)\cong G_{n,r}$ for some relatively
prime integers $m,$ $r$ .

(ii) $H\cong SL(2,5),$ $O(C_{a}(H))\cong G_{f\hslash,t}$ for some relatively prime integers
$m,$ $r$ , and $C_{a}(H)/O(C_{a}(H))$ is a cyclic 2-group or a dihedral group of order
$2^{n}\geqq 4$ .

PROOF. Let $H$ be the perfect normal subgroup of $G$ such that $G/H$
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is solvable. We assume that $G$ does not satisfy the condition (1). Then
(4.1) implies that $V_{q}(H)\cong\Delta_{1}$ or $M_{2}(\Delta_{1}),$ $V_{q}(C_{a}(H))\cong\Delta_{2}$ or $M_{2}(\Delta_{2})$ for some
division algebras $\Delta_{1},$ $\Delta_{2}$ . Since $G/H$ is solvable, $C_{G}(H)/(H\cap C_{a}(H))$ is
solvable, which implies $C_{a}(H)$ is solvable.

First we assume that $V_{q}(H)\cong M_{2}(\Delta_{1})$ . Then it follows from (2.3)
$V_{q}(C_{a}(H))\cong\Delta_{2}$ . By (2.1) and (4.2) a Sylow 2-subgroup of $C_{\theta}(H)$ is cyclic,
and $C_{a}(H)\cong G_{m,r}$ for some relatively prime integers $m,$ $r$ . By (3.3) $ H\cong$

$SL(2,5),$ $SL(2,9)$ or $E$.
We assume that $V_{q}(H)\cong\Delta_{1}$ . In this case $H\cong SL(2,5)$ and $ V_{q}(H)\cong$

$\Lambda_{10,-1}$ , by (3.3). If $V_{q}(C_{a}(H))\cong\Delta_{2}$ , then $C_{a}(H)\cong G_{m,r}$ for some relatively
prime integers $m,$ $r$ . Thus we may assume that $V_{q}(C_{a}(H))\cong M_{2}(\Delta_{2})$ .

Let $P$ be a Sylow 2-subgroup of $C_{\theta}(H)$ . Suppose that $P$ is abelian.
By [7] (3.1) $C_{a}(H)/O(C_{a}(H))\cong P$. If $P$ is a non-cyclic group of order $>4$ ,
then $[P, H]\neq 1$ by (4.2). It is a contradiction. Thus $P$ is a cyclic group
or an elementary abelian group of order 4.

Next we suppose that $P$ is not abelian. We will prove that $P$ is a
dihedral group. By (4.2) $V_{q}(P)\cong M_{2}(\Gamma)$ for some division algebra $\Gamma$ . If
$\Gamma$ is not a commutative field, then $M_{2}(\Gamma)\supset M_{2}(\Lambda_{4,-1})\ni 1$ . Since $ V_{q}(H)\supset$

$\Lambda_{4,-1}\ni 1$ , it follows from (2.3) $[P, H]\neq 1$ . It is impossible. Thus $\Gamma$ is a
commutative field. If $P$ does not have a cyclic subgroup of index 2, then
$P$ has a subgroup $P_{0}$ of index 2 such that $ V_{q}(P_{0})\cong\Gamma\oplus\Gamma$ . Since $\Gamma$ is
commutative, $P_{0}$ is an abelian group. By (4.2) $|P_{0}|\leqq 4$ , and $P$ has a cyclic
subgroup of index 2. It is a contradiction. Thus $P$ has a cyclic subgroup
of index 2. In the case where $P\cong\langle a, b|a^{2^{n}}=1, b^{2}=1, bab^{-1}=a^{1+2^{n-1}}\rangle n\geqq 3$ ,
$ Z(P)=\langle a^{2}\rangle$ and $\Gamma\ni i$ . Therefore $V_{q}(P)\supset M_{2}(Q(i))\ni 1$ . It contradicts the
fact $P\subset C_{G}(H)$ by (2.3). Hence it follows from (4.2) that $P$ is a dihedral
group.

We will show that $C_{a}(H)/O(C_{a}(H))\cong P$. Suppose that $ C_{\sigma}(H)/O(C_{a}(H))\not\cong$

$P$. Then $C_{a}(H)$ has normal subgroups $K_{0},$ $K_{1},$ $K_{2}$ such that $ C_{a}(H)\supset K_{2}\supset$

$K_{1}\supset K_{0}=O(C_{a}(H)),$ $K_{2}/K_{1}$ is an elementary abelian p-group for some odd
prime $p$ and $K_{1}/K_{0}$ is a 2-group. If $K_{1}/K_{0}$ is abelian, then by [7] (3.1)
$K_{2}$ has a normal 2-complement $K$. Since $K$ is a characteristic subgroup
of $K_{2},$ $C_{a}(H)\triangleright K$ and $O(C_{a}(H))\supset K$, which is a contradiction. Thus $K_{1}/K_{0}$

is not abelian. Since $K_{1}/K_{0}$ is a subgroup of dihedral group, $K_{1}/K_{0}$ is a
dihedral group and $Aut(K_{1}/K_{0})$ is a 2-group. Let $L/K_{0}$ be a Sylow p-
subgroup of $C_{K_{2}/K_{0}}(K_{1}/K_{0})$ . Then $[L/K_{0}, K_{1}/K_{0}]=1$ and $L/K_{0}\cong K_{2}/K_{1}$ , be-
cause $|K_{2}/K_{0}:C_{K_{2}/K_{0}}(K_{1}/K_{0})|||Aut(K_{1}/K_{0})|$ . Thus we have that $ K_{2}/K_{0}\cong$

$(L/K_{0})\times(K_{1}/K_{0})$ . Hence $K_{2}$ has a normal 2-complement $L$ , which is a
contradiction. Thus we conclude that $C_{a}(H)/O(C_{a}(H))\cong P$.

Finally we will prove that $O(C_{a}(H))\cong G_{m,r}$ for some relatively prime
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integers $m,$ $r$ . If $V_{q}(O(C_{a}(H)))\cong\Delta_{1}\oplus\Delta_{2}$ for some division algebras $\Delta_{1},$ $\Delta_{2}$ ,
then by (4.1) $G$ satisfies the condition (1). So $V_{q}(O(C_{a}(H)))$ is a division
algebra. It follows from (2.1) that $O(C_{G}(H))\cong G.,$. for some relatively
prime integers $m,$ $r$ .

THEOREM 4.4. Let $\Delta$ be a division algebra. Let $G$ be a non-solvable
subgroup of $M_{2}(\Delta)$ such that $V_{q}(G)=M_{2}(\Delta)$ . Assume that $G$ does not satisfy
the condition (1) in (4.3). Then there exists a chain of normal subgroups

of $G,$ $G\supset G_{1}\supset G_{2}=O(G)$ , which satisfies the following conditions (1)$-(3)$ .
(1) $G_{1}/G_{2}\cong SL(2,5)P,$ $SL(2,9)$ or $E$, where $P$ is a cyclic 2-group or

a dihedral group of order $2^{n}\geqq 4$ , and $SL(2,5)P$ is the central product of
$SL(2,5)$ and $P$.

(2) $G/G_{1}$ is a 2-group. The order $|G/G_{1}|\leqq 4$ if $G_{1}/G_{2}\cong SL(2,5)P,$ $\leqq 8$

if $G_{1}/G_{2}\cong SL(2,9),$ $\leqq 2$ if $G_{1}/G_{g}\cong E$.
(3) $0(G)\cong G.,$ . for some relatively prime integers $m,$ $r$ with $(n, t)=1$ .
PROOF. Let $H$ be the perfect normal subgroup of $G$ such that $G/H$

is solvable. Let $N$ be the largest solvable normal subgroup of $G$ . Since
$G$ does not satisfy the condition (1) in (4.3), it follows from (4.1) that
$V_{Q}(O(G))$ is a division algebra. By (2.1) $0(G)\cong G.,$ . for some relatively
prime integers $m,$ $r$ with $(n, t)=1$ , and $N\supset O(G)$ .

Suppose that $H\cong SL(2,5)$ or $SL(2,9)$ . For any $h\in H,$ $n\in N$, we have
$[h, n]=\pm 1$ , because $H\cap N=\{\pm 1\}$ . Therefore $n^{-2}hn^{2}=h$ , which implies
$|N:C_{N}(H)|\leqq 2$ . Since $C_{a}(H)$ is a solvable normal subgroup of $G$ by (4.3),

we have $N\supseteqq C_{\theta}(H)$ and $C_{N}(H)=C_{a}(H)\supseteqq O(G)$ . We put $G_{1}=HC_{a}(H)$ . Since
$|Aut(PSL(2,5))/PSL(2,5)|=2$ and $|Aut(PSL(2,9))/PSL(2,9)|=4$ , it follows
from (1.2) that $|G/HN|\leqq 2$ if $H\cong SL(2,5)$ , $\leqq 4$ if $H\cong SL(2,9)$ . Thus
$|G/HC_{a}(H)|\leqq 4$ if $H\cong SL(2,5),$ $\leqq 8$ if $H\cong SL(2,9)$ .

Let $P$ be a Sylow 2-subgroup of $C_{a}(H)$ . Then $HP$ is the central
product of $H$ and $P$. By (4.3) if $H\cong SL(2,5)$ , then $P$ is a cyclic group
or a dihedral group of order $\geqq 4$ . Suppose that $H\cong SL(2,9)$ . By the
proof of (4.3) and by (3.3) $V_{q}(H)\cong M_{2}((Q(\zeta_{3}), \tau, -1))$ and $V_{q}(C_{a}(H))$ is a
division algebra. If $C_{a}(H)$ has an element of order 4, then $ V_{q}(C_{a}(H))\supset$

$Q(i)$ a1, and $M_{2}(\Delta)\supset M_{2}((Q(\zeta_{8}), \tau, -1))\otimes_{q}Q(i)\cong M(Q(i))$ . But it is impos-
sible. Therefore $|P|=2$ if $H\cong SL(2,9)$ .

$WenowassumethatH\cong E$. $SinceQ[DQ]\cong Q\oplus Q\oplus\cdots\oplus Q\oplus M_{2}(\Lambda_{4,-1})$ we
have $V_{q}(DQ)\cong M_{2}(A_{4,-1})$ . It follows from (2.3) that $V_{0}(C_{a}(DQ))$ is a division
algebra. If $C_{a}(DQ)$ has an element of order 4, then $V_{p}(C_{a}(DQ))\supset Q(i)\ni 1$ ,
which is a contradiction. Therefore the order of a Sylow 2-subgroup
of $C_{a}(DQ)$ is 2. We set $G_{1}=EC_{a}(DQ)$ . Since $|Aut(DQ):(E/[DQ, DQ])|=2$ ,
$|G/EC_{G}(DQ)|\leqq 2$ . Thus we have $0(G)=O(C_{a}(DQ))$ , which means $G_{1}/G_{2}\cong E$,
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because $|E\cap C_{a}(DQ)|=2$ . The proof of the theorem is completed.

\S 5. Additional result.

Let $G$ be a subgroup of $M_{2}(\Delta)$ such that $V_{q}(G)=M_{2}(\Delta)$ . Let $P$ be a
Sylow 2-subgroup of $G$ . Then $V_{q}(P)\cong\Delta_{1},$ $\Delta_{1}\oplus\Delta_{2}$ or $M_{2}(\Delta_{1})$ , where $\Delta_{1}$ and
$\Delta_{2}$ are commutative fields or the quaternion algebras $\Lambda_{2^{n},-1}$ (see [6]).
We put $H_{n}=\Lambda_{2^{n},-1}$ . In [7] we considered all finite subgroups of $M_{2}(\Delta)$ with
abelian Sylow 2-groups. So we may assume that $P$ is not abelian. If
$V_{q}(P)\cong\Delta_{1}$ , then $P$ is a generalized quaternion group.

Here we will prove a proposition which gives an information on $G$

in the case where $V_{q}(P)\cong\Delta_{1}\oplus\Delta_{2}$ or $M_{2}(\Delta_{1})$ .
PROPOSITION 5.1. Let $\Delta$ be a division algebra. Let $G$ be a subgroup

of $M_{2}(\Delta)$ such that $V_{q}(G)=M_{2}(\Delta)$ . Let $P$ be a Sylow 2-subgroup of $G$ .
Assume that $V_{q}(P)$ satisfies one of the following eonditions.

(1) $V_{q}(P)\cong H_{n}\oplus K,$ $n\geqq 3$ , where $K$ is a commutative field.
(2) $V_{q}(P)\cong H.\oplus H.,$ $n\geqq 3,$ $n\geqq m\geqq 2$ .
(3) $V_{q}(P)\cong M_{2}(H_{n}),$ $n\geqq 3$ .

Then the Schur index of $\Delta$ is 2, and $G$ is a subgroup of $GL(4, C)$ .
To prove this proposition we will use the following result.

(5.2) (Benard-Schacher [2]). Let $\chi$ be an irreducible complex character
of finite group. Then $\zeta_{m}\in Q(\chi)$ , if $m_{q}(\chi)=m$ .

PROOF OF PROPOSITION. Let $s$ be the Schur index of $\Delta$ . Then by
(5.2) $\zeta_{\epsilon}$ is contained in the center of $\Delta$ . Thus $V_{q(\zeta.)}(P)\subset M_{2}(\Delta)$ . We denote
by $L_{n}$ the center of $H_{n}$ . Then $L_{n}=Q(\zeta_{a}+\zeta_{a}^{-1})$ , where $a=2^{n}$ .

First we show that $Q(\zeta.)$ is not a splitting field for $H_{n}$ . Assume that
$Q(\zeta.)$ is a splitting field for $H_{n}$ . In the case (1), $ M_{2}(\Delta)\supset V_{Q(\zeta.)}(P)\cong$

$Q(\zeta_{\epsilon})\otimes_{L_{n}}H_{n}\oplus Q(\zeta_{\epsilon})\otimes_{K}K\cong M_{2}(L_{n}(\zeta_{\epsilon}))\oplus K(\zeta_{\epsilon})$ , which is a contradiction. In
the case (2), $M_{2}(\Delta)\supset V_{Q(\zeta_{\epsilon})}(P)\cong M_{2}(L_{n}(\zeta_{\epsilon}))\oplus Q(\zeta_{\epsilon})\otimes_{L_{m}}H_{n}$ , which is a con-
tradiction. If $V_{q}(P)\cong M_{2}(H_{n})$ , then $V_{Q(\zeta_{\epsilon})}(P)\cong Q(\zeta.)\otimes_{L_{\hslash}}M_{2}(H_{n})\cong M_{4}(L_{n}(\zeta_{\epsilon}))$ ,
which implies $V_{Q(\zeta_{\epsilon})}(P)\not\subset M_{2}(\Delta)$ . Thus $Q(\zeta_{\iota})$ is not a splitting field for $H_{n}$ .

Next we show that $Q(\zeta_{\epsilon})$ is a splitting field for $H_{n}$ if $s>2$ . Since
$L_{n}(\zeta_{\epsilon})\supset Q(\zeta_{8}+\zeta_{8}^{-1})=Q(\sqrt{2})$ by the assumption on $n$ , the local degrees of
$L_{n}(\zeta_{\epsilon})$ at all primes of $L_{n}(\zeta.)$ extending the rational prime (2) are even.
If $s>2$ , then $L_{n}(\zeta.)$ is totally imaginary. It follows from [4] that $L_{n}(\zeta.)$

is a splitting field for $H_{2}=\Lambda_{4,-1}$ . Thus $ H_{n}\otimes_{L_{*}},Q(\zeta_{\epsilon})\cong(\Lambda_{4,-1}\otimes_{Q}L_{n})\otimes_{L_{\hslash}}Q(\zeta_{\epsilon})\cong$

$\Lambda_{4,-1}\otimes_{Q}L_{n}(\zeta.)\cong M_{2}(L_{n}(\zeta.))$ . Hence we conclude that $s\leqq 2$ .
Finally we show that $s=2$ . Suppose that $s=1$ . Then $\Delta$ is a field,
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and $V_{O}(P)\subset M_{2}(\Delta)\subset M_{2}(\Delta)\otimes {}_{A}C=M_{2}(C)$ . It follows that $V_{c}(P)\subset M_{2}(C)$ . But

it is impossible. In fact, $V_{c}(P)\cong(H_{n}\otimes_{L}.C)\oplus(K\otimes C)\cong M_{2}(C)\oplus C$ if $ V_{0}(P)\cong$

$H_{n}\oplus K$, $V_{c}(P)\cong(H_{n}\otimes_{L_{\hslash}}C)\oplus(H_{l}\otimes_{L_{*}},C)\cong M_{2}(C)\oplus M_{2}(C)$ if $V_{q}(P)\cong H_{n}\oplus H_{n}$ ,

and $V_{c}(P)\cong M_{a}(H_{n})\otimes_{L}.C\cong M_{4}(C)$ if $V_{0}(P)\cong M_{2}(H_{n})$ .
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