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Let M, 4) be the full matrix algebra of degree 2 over a division
algebra 4 of characteristic 0. In [8] we determined the non-abelian
simple groups which are homomorphic images of multiplicative subgroups
of M,(4). In this paper we will study the non-solvable multiplicative
subgroups G of M,(4) such that Vy(G)=M,(d), where V(G)={3 a.9;|a; €
Q, 9.€ G}. Let N be the largest solvable normal subgroup of G. In §1
we will prove that G/N is isomorphic to a subgroup W of Aut(7T) with
W O T, where T=PSL(2, 5), PSL(2, 9) or PSL(2, 5) x PSL(2,5). Let H be
the largest normal subgroup of G such that [H, H]=H. We will prove
in §2 and §3 H=SL(2, 5), SL(2, 9), SL(2, 5) x SL(2, 5) or E, where E is
an extension of PSL(2,5) by DQ, the central product of the dihedral
group D of order 8 and the quaternion group @ of order 8. In §4 first
we will characterize G in the case where G has a normal subgroup M such
that Vy(M)=4,D4, for some division algebras 4, and 4,. In the other
case we will show the following;

(1) O(G) is a Z-group (i.e. all Sylow subgroups of O(G) are cyclic).

(2) G has a normal subgroup G, such that G,2o0(@), G/G, is a 2-group
of order <8, and G,/O(G)=SL(2, 5)P, SL(2, 9) or E, where P is a cyclic
2-group or a dihedral group of order 2"=4, and SL(2, 5)P is the central
product of SL(2, 5) and P.

§1. The largest solvable normal subgroup.

Al]l division algebras considered in this paper are of characteristic 0.
As usual Q and C denote respectively the rational number field and the
complex number field. By a subgroup of M,(4) we mean a finite multi-
plicative subgroup of M,(4). Let 4 be a division algebra and let K be a
field contained in the center of 4. Let G be a subgroup of M,(4). We
define Vi (G)={3 a.9.|a,. € K, g,€ G} as a K-subalgebra of M,(4).
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Let & be the class of finite groups G which satisfies the following
conditions (a) and (b):

(a) A Sylow 3-subgroup of G is an abelian group generated by at
most 2-elements.

(b) A non-abelian simple group which occurs as a composition factor
of G is isomorphic to PSL(2, 5) or PSL(2, 9).
If G is a subgroup of M,(4), then by [6] and [8] GeZ&. Let N be the
largest solvable normal subgroup of G. As is easily seen, G/Ne & and
the largest solvable normal subgroup of G/N is trivial.

LEMMA 1.1. Let G be an element of <. We assume that G 18 non-
solvable and that the largest solvable normal subgroup of G is trivial.
Then we have

(1) Let H be a mormal subgroup of G which s the direct product
of mom-abelian simple groups S;,, H=S,xS,X - xS,. Then n<2 and
H=PSL(2, 5), PSL(2,9) or PSL(2, 5)x PSL(2, 5).

(2) Let M be a minimal normal subgroup of G with M=+1. Then
M=PSL(2, 5), PSL(2,9) or PSL(2, 5)x PSL(2, 5).

(3) If Co(H)DM, then H=M=PSL(2, 5).

(4) There exists a normal subgroup T of G such that Ci(T)=1 and
T=PSL(2, 5), PSL(2,9) or PSL(2, 5)x PSL(2, 5).

PrROOF. (1) By the condition (b) S, is isomorphic to PSL(2, 5) or
PSL2,9), ©=1,2, ---, n. Since a Sylow 8-subgroup of PSL(2, 5) (resp.
PSL(2,9)) is a cyclic group (resp. an elementary abelian group of order
9), (1) follows directly from the condition (a).

(2) It is well known that M=SxSx --.- xS for some simple group
S. Since the largest solvable normal subgroup of G is trivial, S is non-
abelian. Therefore by (1) M= PSL(2, 5), PSL(2, 9) or PSL(2, 5) x PSL(2, 5).

(8) The condition Cx(H)DM means MH=Mx H, because MNHC
Cs H)NH=1. Since MH<G, it follows from (1) and (2) that M= H=
PSL(2, 5).

(4) Let L be a non-trivial minimal normal subgroup of G. By (2)
L=PSL(2,5), PSL(2,9) or PSL(2, 5)x PSL(2,5). If CyuL) is solvable,
then by the assumption Cy,(L)=1. Thus we may assume that C,(L) is
non-solvable. Let M be a minimal normal subgroup of G such that 1+
McC4 L). By (8) M=L=PSL(2, 5). Suppose that Cy(LM) is not solvable.
Let K be a minimal normal subgroup of G such that 1#KcCy(LM).
Then by (8) LM= K= PSL(2,5), which contradicts the fact LM=
PSL(2,5)x PSL(2,5). Hence CyxLM) is solvable, and Cy(LM)=1. In
this case, if we put T'=LM, then we get the assertion (4).



MULTIPLICATIVE SUBGROUPS 153

Using this lemma we have

PROPOSITION 1.2. Let 4 be a division algebra. Let G be a non-solv-
able subgroup of My, d). Then we have

(1) The largest solvable normal subgroup N of G is non-trivial.

(2) GJ/N is isomorphic to a subgroup Wof Aut(T) with WO T, where
T=PSL(2, 5), PSL(2, 9) or PSL(2, 5)x PSL(2, 5).

Proor. By (1.1) (4) there exists a normal subgroup T of G/N such
that Cgx(T)=1 and T=PSL(2,5), PSL(2,9) or PSL(2, 5)x PSL(2, 5).
Hence G/N is isomorphic to a subgroup of Aut(T). If N=1, then either
PSL(2,5) or PSL(2,9) is a subgroup of M,(4). But it contradicts the
main result in [8]. Therefore N=1.

As is well known, Aut(PSL(2, 5))/PSL(2, 5) and Aut(PSL(2, 9))/PSL(2, 9)
are 2-groups.

LEMMA 1.3. Aut(PSL(2, 5) x PSL(2, 5))/(PSL(2, 5) x PSL(2, 5)) is a 2-
group.

PROOF. Let 7, (resp. 7,) be the morphism from PSL(2, 5) to
PSL(2, 5)x PSL(2, 5) determined by tz,(a)=(a, 1) (resp. 7,(a)=(1, a)). Let
2; be the projection of PSL(2, 5) x PSL(2, 5) on the i-th component. Let
o be an automorphism of PSL(2, 5)x PSL(2, 5). We denote by g,; the
morphism p,07; from PSL(2,5) to PSL(2,5). Since PSL(2, 5) is simple,
Ker g,;=1 or PSL(2, 5).

Now we will prove that.one of the following holds:

(1) Kero,=Kero,=1, Kerg,=Ker g,,=PSL(2, 5); or

(2) Kerog,=Kero,,=PSL(2,5), Ker g,=Ker g, =1.

Since p,0 is a surjection, Kerg,=1 or Kerog,=1. We assume that
Ker g,=Ker o,=1. Let a, b be a pair of elements of PSL(2, 5) satisfying
[a, b]=1. We put a’'=o5;'(a), b'=037'®). Then 7,(a)=(a’, 1) and 7,(")=
(1,0"), which implies [z,(a’), 7,(0")]=1 and [go7.(a’), pior,(b)]=1. It is
impossible because a=p,07,(a’) and b=p,0o7,(b"). Next we assume that
Ker g,;=Kerg,;=1. Then or,(PSL(2, 5))=07,(PSL(2, 5))=PSL(2, 5)x1 if
j=1, =1xPSL(2,5) if j=2. It is a contradiction.

Let v be an automorphism of PSL(2, 5)x PSL(2, 5) determined by
v(a, b)=(b, a). In the case (1) 6=(0,, 0x) € Aut(PSL(2, 5)) x Aut(PSL(2, 5)).
In the case (2) vo e Aut(PSL(2, 5)) x Aut(PSL(2, b)). Thus
Aut(PSL(2, 5) x PSL(2, 5))/(PSL(2, 5) x PSL(2, 5)) is a 2-group.

In [7] we proved that a solvable subgroup of M,(4) has a normal
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Hall {2, 8, 5, 7}-subgroup. This result can be generalized to any subgroup
of My (J4).

COROLLARY 1.4. Let 4 be a division algebra. Let G be a subgroup
of M,4). Then G has a normal Hall {2, 3, 5, T}-subgroup.

PROOF. We may assume that G is non-solvable. Let N be the largest
solvable normal subgroup of G. Let #={2,38,5,7}. Let H be a normal
Hall =#’-subgroup of N. Since PSL(2,5) and PSL(2,9) are m-groups,
Aut(PSL(2, 5)), Aut(PSL(2, 9)) and Aut(PSL(2, 5) x PSL(2, 5)) are m-groups.
By (1.2) H is a normal Hall z’-subgroup of G.

§2. Perfect groups.

A group G is perfect if [G, G]=G. In this paper we denote by D,
Q, DQ and DD respectively the dihedral group of order 8, the quaternion
group of order 8, the central product of D and @ and the central product
of D and D. In this section we will determine all perfect subgroups of
M,(4) such that no normal subgroup of G is isomorphic to DQ. Let m,
r be relatively prime integers, and put s=(r—1, m), t=m/s; n=the mini-
mal positive integer satisfying r"=1 mod m. Denote by G, . the group
generated by two elements a, b with the relations: a™=1, b"=a’ and
bab'=a". Let {, be a fixed primitive m-th root of unity and let o=o,
be the automorphism of Q({,) determined by the mapping {,—¢n. We
denote by 4, , the cyclic algebra (Q(,), o., C,).

First we recall the results in Amitsur [1].

(2.1) ([1]). Let G be a finite group and let 4 be a divison algebra.
Assume that Gc 4. Then we -have

(1) The odd Sylow subgroups of G are cyclic and the even Sylow
subgroups of G are cyclic or generalized quaternion.

(2) If all Sylow subgroups of G are cyclic, then G=G,,, for some
relatively prime integers m, r with (n, {)=1.

(3) A group G,, can be embedded in a division algebra if and only
if 4,, ,is a division algebra; then we have V,(G,, ,)=4,, and the isomor-
phism is obtained by the correspondence a«—{,, b—ao,.

(4) If Gisnotsolvable, then G=SL(2, 5)XG,, . and Vo(G)=4,y,_1Qodm, .=
(4, ReQ1V )R-

COROLLARY 2.2. Let G be a mon-trivial perfect subgroup of M, 4).
(1) If Vo(G)=4, for some division algebra 4,, then G=SL(2, 5) and
Vo(G)=4,, ;.
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(2) If Vo(G)=4,P4, for some division algebras 4,, 4,, them one of
the following holds:

(i) G=SL(2, 5) and V(G)=QPA,, _,; or

(i) G=SL(2, 5)xSL(2, 5) and Vy(G)=A,, P4, _,.

- PROOF. Since [G, G]=G, the assertion (1) follows directly from (2.1)(4).
We now assume that Vo(G)=4,D4, for some division algebras 4,, 4,.
Let p; be the projection of V(G) on the 4-th component of 4,P4,. Since
GC Vy(G), the morphism p: G— p,(G)x p,(G) determined by the mapping
9—(0.9), r(9)) is injective. Because [G, G]=G, [0(G), p(G)]=p(G) and
Vo(0o(@)=4,. By (1), p(G)=1 and 4,=Q, or po,(G)=SL(2, 5) and 4,=4,, _,.
Therefore Vo(G)=4,D4.=QP4,,_, or A, _,PAy, _,, because G=1. In the
case where Vyo(G)=QP4,_,, we may assume that o, (G)=1 and 0,(G)=
SL(2,5). Then since |[0,(G) =G| =]0/(G)X0(@)]=10(G), G=p(G=
SL(2, 5). ,
Next we assume that 4,=4,=4,,_,. Put K,=Kerp, t=1,2. Since
p is injective, K,N K,=1. Since K,K,/K,<]{SL(2, 5), K,K,/K,=1, Z(SL(2, 5))
or SL(2,5). The fact |G: K,|=|SL(2, 5)| implies |K,|=|K,|. If |[K.K,/K,|=
|[K,K,/K,|=1, then K,=K,=1 and G=SL(2,5). By [10] Q[SL(2, 5)]=
QD M,(Q)D My(A,,_,) D M(4,) DMQ) D M(QLV 5))D Ay,—;, Where 4=
(Q(Cy),7,—1). Hence Vo(SL(2,5)) % Ay, DAy, .. Thus |K,K,/K,|=|K,K,/K,|+#1.
Suppose that KK,/ K, = K,K,/K, = Z(SL(2, 5)). Since p(K.K,)C
O0.(K,K;) X p,(K,K,) C Z(SL(2, 5)) x Z(SL(2, 5)), we get K,K,CZ(G). Therefore
G is a central extension of PSL(2,5) with [G, G]=G. Since the Schur
multiplier of PSL(2, 5) is 2, we have that |[K,K,|<2. But it is impossible.
In fact, by the assumption, |K.K,|=|K,x K,|=|K,|*=|Z(SL(2, 5))*=4. Thus
K K,K,=SL(2,5). Since K,=KK,/K,=SL(2,5), |SL(2,5)xSL(2,5)=
K, K| = |G| =|0.(G) X 0,(G)|=|SL(2, 5) x SL(2, 5)]. Hence we conclude that
G=SL(2, 5)x SL(2, 5) if Vo(G)=Ay,_ P Ay, _;-

LEMMA 2.3. Let 4 be a division algebra. Let G, and G, be subgroups
of My(4). Let 1 be the unit element of My(4). Assume that VoG, con-
tains the simple algebra A, with A,21, i=1,2. If A, and A, satisfy
one of the following conditions (1)-(4), then we have [G,, G.]+#1.

(1) A=A=M,Q).

(2) A=A.,=A4,_,.

(3) A=4,_, and A,=M,(Q))-

(4) A, =A,_, and A,=M Q).

PrOOF. Suppose that [G,, G,]=1. In any case the center of A,=Q.
Since a,a,=a.a, for any element a,€ A,, 1=1, 2, A,QeA, is isomorphic to
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a Q-subalgebra 4,4, of M,(4). On the other hand M (Q)QM.(Q)=M,(Q),
Ao, . =M(Q), 4, .QeM(QUL))=M(QU)) and 4, _,RoM(QR))=
M(Q(7)). Hence in any case M,(4) contains a Q-subalgebra which is iso-
morphic to M(Q). It is a contradiction. Thus we obtain [G,, G.]#1.

LEMMA 2.4. Let G be a perfect subgroup of M,(4) such that Vo(G)=
M,(4). Then O(G) (the largest normal 2'-subgroup of G) 18 trivial.

PROOF. We assume that O(G)=1. If Vo(O(G)) is not a division al-
gebra, by [7] (2.83) G has a normal subgroup of index 2, contradicting
the assumption [G, G]=G. Therefore Vo(O(®)) is a division algebra. By
(2.1) all Sylow subgroups of O(G) are cyclic. Let p be the maximal prime
number which divides the order of O(G). Let P be a Sylow p-subgroup
of O(G). Then it is well known that P is a normal subgroup of O(G)
(see [5]). Thus P is a normal subgroup of G. Since G/C4(P) is abelian,
we have G=CyP). Let S, be a Sylow p-subgroup of G. Set R=
S,NZ(NgS,)). Then ROP. Since S, is abelian (See [6] Proposition 2.),
by [5] (20.12) there exists a normal subgroup G, of G such that G/G,=R.
Since [G, G]=G, we have G=G,, and R=1. Hence P=1. It is a contra-
diction. Therefore O(G)=1.

LEMMA 2.5. Let G be a perfect subgroup of M,4) such that Vo(G)=
M(4). We assume that no nmormal subgroup of G is isomorphic to DQ.
Let N be a normal subgroup of G. If N is a 2-group, then NCZ(G)
and N s cyclic. .

PrROOF. The proof is by induction on |[N|. Let ®(N) be the Frattini
subgroup of N. By induction ®(N)cZ(G) and &(N) is eyelic.

First we will prove that N is generated by at most 8 elements.

By [7] Vo(N)=4,, 4,D4, or M,(d4,) for some division algebras 4, and
4,. If Vo(N)=4,P4,, then it follows from [7] (2.83) that G has a normal
subgroup of index 2. It contradicts the assumption [G, G]=G. Therefore
Vo(N)=4, or My(4,). In the case where Vo(N)=4, N is cyclic or gener-
alized quaternion. It follows that N is generated by at most 2 elements.
Hence we may assume that Vo(N)=M,(4,). Suppose that 4, is a com-
mutative field. Then V(N)=M,(4,)Q,C=M,C). By [6] Lemma 8 N has
a normal subgroup N, of index 2 such that V (N,)=CP@C. It is easy to
see that N, is an abelian group generated by at most 2 elements. There-
fore N is generated by at most 3 elements. So it may be assumed that
4, is not commutative. If |@(IN)|=1, then N is abelian, which contradicts
the assumption Vyo(N)=M,(4,). Therefore |@(N)|=2. Suppose |Z(N)|>2.
Since Z(N)cthe center of M,(4,), Z(N) is cyclic. Put K=the center of



MULTIPLICATIVE SUBGROUPS 157

M,(4,). By |Z(N)|>2 K has an element of order 4, which implies K371,
Since K is a splitting field for N, it follows that 4,=K. However 4, is
not commutative. Thus |Z(N)/<2. Because O(N)CZ(R), 2< |O(N)|=
|Z(N)|<2. Therefore @(N)=Z(N) and |@(N)|=2. On the other hand
N/@(N) is an elementary abelian group of order <2 by [7]. Suppose
that |[N/®(N)|=2'. Since N is not abelian, [N, N]=@(N). Thus N is an
extra-special 2-group of order 32. It is well known that N=DD or DQ
(see [3]). And by the assumption N=DD. Since Q is a splitting field
for DD (See [3].), it follows that 4, is commutative. It is a contradic-
tion. Thus |N/@O(N)|<2°® and N is generated by at most 3 elements.

Assume that G/C4(N) is non-solvable. By (1.2) G/C4«(N) has an ele-
ment of order 5. Let g be an element of G such that the order of gCs(N)
is 5. Since N/O(N) is an elementary abelian group of order =<2°,
[Aut(N/O(N))|||GL(3, 2)|=2-8-7. Therefore for any ne N 9 'ngd(N)=
nd(N). We put z=n"'g"'ng and a=the order of O(N)=2¢. Then
(9°)7'mg®=n2=n. And the order of gCy(N) divides a=2¢, which is a
contradiction. Thus we obtain that G/CyN) is a solvable group. By
the assumption [G, G]=G we get G=C,(N). This means NCZ(G). Since
NcCZ(G)cthe center of My(d), it follows that N is eyclic. The proof of
the lemma is completed.

LEMMA 2.6. Let G be a perfect subgroup of M,(d) such that Vo(G)=
M,(4). We assume that no mormal subgroup of G is 1somorphic to DQ.
Let N be the largest solvable normal subgroup of G. Then we have

(1) G/N=PSL(2,5), PSL(2, 9) or PSL(2, 5)x PSL(2, 5).

(2) N is a cyclic 2-group and N=2Z(G)==1.

PrROOF. By (1.2) G/N is isomorphic to a subgroup W of Aut(T) with
WOT, where T=PSL(2, 5), PSL(2, 9) or PSL(2, 5)x PSL(2, 5). It follows
from (1.3) that Aut(T)/T is a 2-group. Therefore [G, G]=G means that
G/N=T.

Next we will show the assertion (2). Suppose that N is not a 2-group.
Since O(G)=1 by (2.4), there exist normal subgroups N,, N, of G such
that NON,DN,+1, N, is a 2-group and N,/N, is an elementary abelian
p-group for some odd prime p. By (2.5) N, is a cyclic group and N,CZ(G),
which implies N,=N,x(N,/N,). Thus O(G)DN,/N,=1. But it is impos-
sible. Hence we obtain that N is a 2-group. By (2.5) NcZ(G3), and
N=Z(G) because G/N=PSL(2, 5), PSL(2, 9) or PSL(2, 5)x PSL(2, 5).

Now we determine all perfect subgroups G of M,(4) suech that no
normal subgroup of G is isomorphic to DQ.
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PROPOSITION 2.7. Let 4 be a division algebra. Let G be a perfect
subgroup of M,(4) such that Vo(G)=M,4). If mo mormal subgroup of G
18 isomorphic to DQ, then G=SL(2, 5) or SL(2,9), and 4=(Q{), 7, —1),
where {(r)=Gal(Q(,)/Q).

ProOF. Let N be the largest solvable normal subgroup of G. By
(2.6) G/N=PSL(2,5), PSL(2,9) or PSL(2, 5)x PSL(2,5), and Z(G)=N.
This means that G is a central extension of G/N with [G, G]=G. The
central extensions of PSL(2,5), PSL(2,9) and PSL(2, 5)x PSL(2, 5) are
well known (see [9] V §25).

First we assume that G/N=PSL(2,5). Since |H*PSL(2, 5), C*)|=2,
IN|=2 and G=SL(2, 5).

In the case where G/N=PSL(2, 9), since |H*(PSL(2, 9), C*)|=6 and N
is a 2-group, we have that |N|=2 and G=SL(Z, 9).

Suppose that G/N= PSL(2,5) x PSL(2,5). Since H*(PSL(2,5)x PSL(2,5),
C*)=H*PSL(2, 5), C*)x H*PSL(2, 5), C*), there exists an epimorphism
o from SL(2, 5)xSL(2, 5) to G. Put G,=p(SL(2, 5)x1) and G,=
p(1x SL(2, 5)). Since N is cyclic and PSL(2, 5) is not a subgroup of
M,(d), G;=SL(2, 5), |G,NG,|=2 and [G,, G.]=1. If V(G,)=4,P4, for some
division algebras 4,, 4,, then G has a normal subgroup of index 2 by [7]
(2.3), contradicting the assumption [G, G]=G. Thus Vy(G,)=4% or M, (4*)
for some division algebra 4%, i=1,2. By (2.2) 49=4,, =4, Q.01 5)
if Vo(G)=4". By [10] 49=(@Q{%), 7, —1) if Vo(G)=M,(4"). In any
case it follows from (2.3) that [G,, G,]#1. But it is impossible. Thus
G/N# PSL(2, 5) x PSL(2, 5).

In the case where G=SL(2, 5) or SL(2,9), if QGP> M,(4), then 4=
(Q(,), 7, —1) (see [10]). The proof of proposition is completed.

§ 3. The extra-special 2-group DQ.

In this section we will determine all perfect subgroups of M,(4). In
§ 2 we determined these groups G if no normal subgroup of G is isomor-
phic to DQ. Thus we may assume that G has a normal subgroup which
is isomorphic to DQ.

We put D={a, bla*=1, b*=1, bab*=a*) and Q=<c, d|c*=1, ¢*=d?,
ded*=c™*). Let set S={x|xe DQ, x*=1}—{1}. Then S is decomposed into
the disjoint conjugate classes of DQ, S=CUC,UC,UC,UC,UC;, where
C,={a?}, C,={b, a®}, C,={ab, a’b}, Cy={ac, a’c}, C,={ad, a’d} and C,={acd,
a*cd}). We set 2={C, C,, C, C,, C;}. Let z be an automorphism of DQ.
Since C;=C,, r induces a permutation ¥ on 2. Let ¢ be the homomor-
phism from Aut(DQ) to S, determined by ¢(z)=%. Let reKerg¢. Then
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7 induces the identity map on DQ/[DQ, DQ], and, as is well known, 7 is
an inner automorphism of DQ. Thus Ker ¢=Inn Aut(DQ). Leta, 8, 7, 6
be the automorphisms of DQ determined by the following:

a*=a, b*=ab, c*=¢, d*=d,

af=bc™', bf=ab, cf=c, d*=a"'bed,

a’=bd™*, b'=ab, ¢"=abed, d'=d, and

a’=a’bed, b’=ab, c*=a"'bd, d’=abec.
Then ¢(a)=(C,, C), ¢(B)=(C,, C, Cy), ¢(7)=(C,, C, C,) and ¢(8)=(C,, C,, Cy).
Since ¢(a), ¢(B8), #(¥) and ¢(0) generate S;, Aut(DQ)/Inn Aut(DQ)=S, and
#({B, 7, 0))=A,=PSL(2, 5). It is easy to see that 3, 7, d can be regarded
as permutations on {b, ab, ac, ad, acd}. For any o€ Aut(DQ), =1 if ¢
is the identity permutation on {b, ab, ac, ad, acd}. Therefore we obtain
that (B, 7, 0)=A,=PSL(2,5). Let H be a central extension of (g, 7, )
by <{a*) with [H, H]=H. Then H=SL(2, 5) (see [9] V §25). Let {u,|ce
{B, 7,0y} be a set of representatives of (B, 7, 0> in H. The set HDQ
forms a group if we define u;'xu,=2°, 6€{B, 7,6), x€ DQ. We denote
this group by E. Since HNDQ=<{a?»>, E is an extension of PSL(2, 5)
by DQ.

LEMMA 3.1. E is a subgroup of M)A, _,) and Vy(DQ)= Vyo(E)=
M,(A,-,)- -

PROOF. 4, _, is the ordinary quaternion algebra over @, i.e. 4, ,=
Q+Qi+Qj+Qk with the relations; *=j*=k*=—1, ij=—ji=k. Let p
be the homomorphism from E to M,(4, _,) determined by

0 1\ -1 0 1 0 J 0)
= = = , d = o
0@): (_1 O) . o) ( 0 1) O (O ) o) (0 9
r —x Yy —vy [z —z
O(ug) = <0_6 E) ’ o(uy) = <ﬂ ?7> and 0(u;) = (2 5) ’
where x=(1—1)/2, y=(1—3)/2 and z=(1—k)/2. It is easy to see that
Vo(o(DQ))=M(4,,_,). \ :

We will show that p is injective. Suppose that Ker oN DQ+#1. Then
Ker oNZ(DQ)+1. Since |Z(DQ)|=2, Ker pDZ(DQ). Therefore o(DQ)=
D@/Ker o is an abelian group, because DQ/Z(DQ) is an elementary abelian
group. However [po(c), p(d)]#1. Thus Ker oNDQ=1. We set 2'={p(C)),
0(C,), o(Cy), p(C)), o(Cy)}. Let oeE. Then p(o) in%es_a permutation
o(o) on 2'. We denote by ¢ the mapping o(g)— 0(0). We can easily
check that ¢(<p(us), o(uy), o(us)))=PSL(2, 5) and Ker ¢ D> po(DQ). Therefore
lo(E)|=|p(E): Ker ¢| |Ker | =|PSL(2, 5)| |o(DQ)|=|PSL(2, 5)| |IDQ|=|E|. Thus
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o is injective. Hence we can regard E as a subgroup of My(4, _,).
The fact Vo(DQ)=M,(4,_,) and the fact Vo(DQ)C Vo(E)CT My (4, ,)
imply Vo(E)=M,(4,,_,), as desired.

Let G be a perfect subgroup of M,(4). We assume that G has a
normal subgroup N which is isomorphic to DQ.

LEMMA 3.2. If Vo(G)=M,y(4), then |Cx(N)|=2.

PrOOF. In the proof of (83.1) we showed that DQcC M,(4,_,) and
Vo(DQ)=M,(4,,_,). Since DQ/[DQ, DQ] is an elementary abelian group
of order 16, Q[DQ/[DQ, DQ]1=QPQP- - -PQ. Because dim, M,(4, _,)=16,
Q[DQ]=QPADP - - - PAPM;(4,,_,). Therefore Vo(N)=My (4, _,). Let P be
a Sylow 2-subgroup of C,(N). Suppose that P has an element x of order
4. Then Vo(N)Ve((a))= Vo(N)®e Vo({2)) D My(4, )RR ZM(Q(). It
contradicts the fact Vyo(IN) Vo({x)) CM,(4). This implies that any element
of P is of order <2. Thus by [6] P is an elementary abelian group
generated by at most 2 elements. It follows from [7] (3.1) that Cu(N)
has a normal 2-complement M. Since O(G)=1 by (2.4), M=1 and Co(N)=P.
If |Co(N)|=|P|=4, then Vo(P)=Q®A, and by [7] (2.3) G has a normal
subgroup of index 2. But it is impossible. Therefore |Cy(N)|=|P|=2.

The factor group G/C4xN) is isomorphic to a subgroup of Aut(N).
Since Aut(N)=<a, B, 7, 0)DQ/[DQ, DQ] and [G, G]=G, G/Cs(N)=
(B, 7, dDQJ[DQ, DQ]. We denote this isomorphism by ¢. Let p be the
morphism from G to Aut(DQ) determined by the mapping x— g(xCe(N)).
We put H=p"{B, 7, 6)). On the other hand G/C;(C4,(N)) is isomorphic to
a subgroup of Aut(Cy(N)). Since |C4(N)|=2 and [G, G]=G, we have G=
Cx(Cs(N)), and so C,(N)C Z(G). Because H/Cy(N)=PSL(2, 5), H is a cen-
tral extension of PSL(2, 5) by Cs(N). It follows that [H, H]Cx«N)/Ce(N)=
[PSL(2, 5), PSL(2, 5)]=PSL(2,5). If [H, HINCsN)=1, then [H, H]=
PSL(2, 5) and [H, HlcM,4). It is a contradiction (see {8]). Therefore
[H, H]|DC4xN) and [H, Hl=H. Thus H=SL(2,5). By the definition of
E we have G=HN=E. Let V be an irreducible M,(4)-module. Put K=
the center of M,(4). Since [G, G]=G, by [7] (2.3) the number of all iso-
morphism classes of irreducible KN-submodules of V is 1. Therefore
V=UPUP---PU as KN-module, where U is an irreducible KN-module.
Let X be an irreducible complex character corresponding to U. Since
QIDRI=QDAD - - - BYDPM,(4,,_,), we have CN=C[DQ=CPHCD- - -DCD
M,(C). This shows X(1)=16, because X is faithful character. For any
g€ E the irreducible character X* has degree 16, and X=X, because N
has only one irreducible character X of degree 16. This implies X%|,=
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|G: N|X. Since X% Xe=X%y, X)y=|G: N [, X is decomposed into the
irreducible complex characters g, of G, X®=p4+pt,+ -+ +py, where t=
G: N|. Since 15, X%)a=(ttlx, X)w, p(1)=A(1). Thus |G: N|X1)=2°(1)=
2= t(1)=|G: N|X(1), which implies p,(1)=X(1)=16. Let ¢ be an irre-
ducible complex character corresponding to V. Since (ttlxy X)yw#1, we have
¢#(1)=16, which shows dim, M (4)=16=dim, M, (4, _,)=dimg My (4,,_ReK).
Since M,(4)D M, (4, _,ReK), we have M(4)=M,(4,,_,RQK).
Hence by (2.2) and (2.7) we have

THEOREM 3.3. Let 4 be a division algebra. Let G be a perfect sub-
group of My(4). Then one of the following holds:

(1) G=SL(2,5) and Vo(G)=4,, _;;

(2) G=SL(2,5) and Vo(G)=QP4,, _;

(3) G=SL(2, 5)xSL(2, 5) and Vo(G)= A,y _ DAy,

(4) G=SL(2,5) and Vo(G)=M((Q&), 7, —1))

(5) G=SL(Z, 9) and Vo(G)=MA(QE), 7, —1)); or

(6) G=E and Vo(G)=M,(A,_,QcK) for some commutative field K.

§ 4. Non-solvable groups.

In this section we consider non-solvable subgroups of My(4).

Let G be a non-solvable subgroup of M,(4) such that Vo(G)=M,(4).
Then G has a perfect normal subgroup H such that G/H is solvable. By
[7] 2.1) Vo(H)=4,, 4,P4, or M,4,) for some division algebras 4,, 4,.

LEMMA 4.1. Let N be a normal subgroup of G. Assume that Vo(N)=
4,P4d,. Then

(1) G has a normal subgroup G, of index 2.

(2) Put G/G,={G,, gG,}. Then there exist normal subgroups T,, T,
of G, and relatively prime integers m, r such that T.NnT,=1, T?=T,,
G,/T,=SL(2, 5)x G, , and A=4,_1Qodm,

Proor. By [7] (2.3) G has a normal subgroup G, of index 2 such
that Vo(G,)=4P4. Moreover G, has normal subgroups 7T, T, satisfying
T'NT,=1, TY=T, and G,/T,=po(G,), where {1, g} is a set of representatives
of G/G, in G and p is the projection of Vo(G,) on the first component of
4P4. Therefore G/T,=G,/T,. If G,/T, is solvable, then G,/T, and
T.\T,/T;=T, are solvable. This means that G, is solvable. But it is im-
possible. Therefore G,/T, is non-solvable. Since Vy(0(G,)=4, it follows
from (2.1) that o(G)=SL(2, 5)x G, , and 4=4,, QoA , for some rela-
tively prime integers m, 7.
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LEMMA 4.2. Assume that Vo(H)=4, or My(4,). Let P bea non-cyclic
2-subgroup of M,(4) of order >4.

(1) If V(P)=T, or I'®rI, for some division algebras I',, I's, then
[H, P]+#1. '

(2) Especially, if P is the quaternion group of order 8 or an abelian
group, then [H, P]+1.

PROOF. (1) By (3.3) Vo(H)D 4, _,51 or Vo(H)DM(QE:))DOM,(Q) > 1.
First we assume that Vo(P)=I,. Since P is not cyclic, it follows from
(2.1) that P is generalized quaternion and Vo(P)D4,_,21. By (2.3) we
have that [H, P]#1. Next we assume that V(P)=I'\DI". In the case
where Vo (H)DM,Q)>1, if [H, Pl=1 then My(4) DM @Q)Q( D)=
M )PMLI,). It is a contradiction. So we may assume that Vo(H)D
A4,_,21. In the case where P is abelian, since P is generated by at most
2 elements, |P|>4 implies that P has an element of order 4. Thus
Vo(P)DQDQ(1)31. If [P, Hl=1, then Myd)D A, _,Q(QDAH)=4, D
M,(Q®)), which is a contradiction. Therefore [P, H]#1. In the case
where P is non-abelian, I',D4,_, or I;D4, _,. Thus Vo(P)2QPA4,,,>1.
If [H, Pl=1, then M (Q)®o(QPA, _)=M,Q)DMA,,_,). Thus [H, P]+1.

(2) If P is the quaternion group of order 8 or an abelian group,
then QP does not contain a simple algebla which is isomorphic to My(I")
for some division algebra I'. Thus Vo(P)=I, or I''PI", for some division
algebra I',, I',. Therefore by (1) [H, P]#+1.

We now have

THEOREM 4.3. Let 4 be a division algebra. Let G be a mon-solvable
subgroup of My(d) such that Vo(G)=M,(d). Then G satisfies one of the
JSollowing conditions (1) and (2).

(1) G has a normal subgroup G, of index 2. Put G/G,={G,, 9G,}.
Then there exist mormal subgroups T, T, of G, and relatively prime
integers m, r such that T.NT,=1, T!=T,, G,/T,=SL(2, 5)XG,,, and 4=
Alo,—1®QAm,r'

(2) Let H be the perfect normal subgroup of G such that G/H 1is
solvable. Then H and Cy(H) satisfy the one of the following conditions,

(i) H=SL(2,5), SLZ2,9) or E, and Co(H)=G.,,, for some relatively
prime integers m, r.

(i) H=SL(, 5), O(C4H))=G,,, for some relatively prime integers
m, r, and Cy(H)/O(C4(H)) is a cyclic 2-group or a dihedral group of order
2" =>4.

PROOF. Let H be the perfect normal subgroup of G such that G/H
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is solvable. We assume that G does not satisfy the condition (1). Then
(4.1) implies that Vo(H)=4, or My(4,), Vo(Co(H))=4, or M,(4,) for some
division algebras 4,, 4,. Since G/H is solvable, C,(H)/(HNC,H)) is
solvable, which implies C,(H) is solvable.

First we assume that V,o(H)=M,(4,). Then it follows from (2.3)
Vo(Cs(H))=4,. By (2.1) and (4.2) a Sylow 2-subgroup of Cy(H) is cyclic,
and C4,H)=G,,, for some relatively prime integers m, r. By (3.3) H=
SL(2,5), SL(2,9) or E

We assume that Vo(H)=4,. In this case H=SL(2,5) and Vy(H)=
dio,—1, by (8.3). If Vo(Cy(H))=4,, then Cy(H)=G,, , for some relatively
prime integers m, r. Thus we may assume that Vo(Cy(H))=M,(4,).

Let P be a Sylow 2-subgroup of C,(H). Suppose that P is abelian.
By [7] (8.1) C4(H)/O(Cy(H))=P. If P is a non-cyclic group of order >4,
then [P, H]+#1 by (4.2). It is a contradiction. Thus P is a cyeclic group
or an elementary abelian group of order 4.

Next we suppose that P is not abelian. We will prove that P is a
dihedral group. By (4.2) Vo(P)=M,I') for some division algebra I". If
I' is not a commutative field, then M,(I")DM,(4,_,)91. Since Vo(H)D
4,,_,31, it follows from (2.8) [P, H]#1. It is impossible. Thus I is a
commutative field. If P does not have a cyclic subgroup of index 2, then
P has a subgroup P, of index 2 such that Vo(P)=I'PI'. Since I' is
commutative, P, is an abelian group. By (4.2) |P,|<4, and P has a eyclic
subgroup of index 2. It is a contradiction. Thus P has a cyclic subgroup
of index 2. In the case where P={a, b|a*"=1, b*=1, bab~'=a***"™") n=38,
Z(P)=<{a*» and I'54. Therefore Vyo(P)DM,Q(:))>1l. It contradicts the
fact PCCy(H) by (2.8). Hence it follows from (4.2) that P is a dihedral
group.

We will show that Co(H)/O(Cy(H))=P. Suppose that C;(H)/O(Cx(H))%
P. Then C4(H) has normal subgroups K,, K,, K, such that C,(H)DK,D
K,DK,=0(Cy(H)), K,/K, is an elementary abelian p-group for some odd
prime p and K,/K, is a 2-group. If K,/K, is abelian, then by [7] (3.1)
K, has a normal 2-complement K. Since K is a characteristic subgroup
of K,, C4(H)[> K and O(Ci(H))D K, which is a contradiction. Thus K,/K,
is not abelian. Since K,/K, is a subgroup of dihedral group, K,/K, is a
dihedral group and Aut(K,/K,) is a 2-group. Let L/K, be a Sylow p-
subgroup of Cg,x(K,/K,). Then [L/K, K,/K,]=1 and L/K,=K,/K,, be-
cause |K,/K,: Cr x(K,/K,)|||Aut(K,/K,)]. Thus we have that K,/K,=
(L/K,)x (K,/K,). Hence K, has a normal 2-complement L, which is a
contradiction. Thus we conclude that C,(H)/O(Cy(H))=P.

Finally we will prove that O(C4(H))=G,,, for some relatively prime
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integers m, r. If Vo(O(C4(H)))=4,D4, for some division algebras 4,, 4,,
then by (4.1) G satisfies the condition (1). So V(O(Ce(H))) is a division
algebra. It follows from (2.1) that O(C,(H))=G,,, for some relatively
prime integers m, r.

THEOREM 4.4. Let 4 be a division algebra. Let G be a mon-solvable
subgroup of M,(4) such that Vo(G)=M,(d4). Assume that G does not satisfy
the condition (1) in (4.3). Then there exists a chain of normal subgroups
of G, GoG,DG,=0(®), which satisfies the following conditions (1)-(3).

1) G,/G,=SL(2, 5)P, SL(2,9) or E, where P i3 a cyclic 2-group or
a dihedral group of order 2"=4, and SL(2, 5)P is the central product of
SL(2, 5) and P.

(2) G/G, is a 2-group. The order |G/G,|=4 if G,/G,=SL(2, 5)P, <8
if G/G,=SL(2,9), =2 f G,/G,;=E.

8) O(G)=G.,. ., for some relatively prime integers m, r with (n, t)=1.

PrROOF. Let H be the perfect normal subgroup of G such that G/H
is solvable. Let N be the largest solvable normal subgroup of G. Since
G does not satisfy the condition (1) in (4.8), it follows from (4.1) that
Vo(O(G)) is a division algebra. By (2.1) X(G)=G,,, for some relatively
prime integers m, » with (n, t)=1, and NDO(G).

Suppose that H=SL(2, 5) or SL(2,9). For any h€ H, n€ N, we have
[k, n]=%1, because HNN={+x1}. Therefore n*hn*=h, which implies
|N: Cy(H)|=2. Since Cyi(H) is a solvable normal subgroup of G by (4.3),
we have N2Cy(H) and Cy(H)=C4(H)20(G). We put G,=HCyx(H). Since
|Aut(PSL(2, 5))/PSL(2, 5)|=2 and |Aut(PSL(2, 9))/PSL(2, 9)|=4, it follows
from (1.2) that |G/HN|=2 if H=SL(2,5), <4 if H=SL(,9). Thus
|G/HCy«(H)| =4 if H=SL(2,5), =8 if H=SL(2, 9).

Let P be a Sylow 2-subgroup of Cy(H). Then HP is the central
product of H and P. By (4.8) if H=SL(2, 5), then P is a cyclic group
or a dihedral group of order =4. Suppose that H=SL(2,9). By the
proof of (4.3) and by (8.3) Vo(H)=M,(Q{&,), v, —1)) and V(Ce(H)) is a
division algebra. If C,(H) has an element of order 4, then Vy(Cy,(H))D
Q) 21, and M(4)DM,(QQ&), 7, —1))QeQ(1)=M(Q(¢)). But it is impos-
sible. Therefore |[P|=2 if H=SL(2, 9).

We now assume that H=FE. Since Q[DQ|=QPRD - - -HRDPM,(4,, _,) we
have Vo(DQ)=M,(4, _,). It follows from (2.3) that V,(Ce(DQ)) is a division
algebra. If Cy(DQ) has an element of order 4, then Vy(Cyo(DQ))DQ() 31,
which is a contradiction. Therefore the order of a Sylow 2-subgroup
of C,(DQ) is 2. We set G,=ECy«(DQ). Since |Aut(DQ): (E/[DQ, DQ))|=2,
|G/EC,(DQ)|=2. Thus we have O(G)=0(Cx(DQ)), which means G,/G.=F,
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because |ENCyDQ)|=2. The proof of the theorem is completed.

§ 5. Additional result.

Let G be a subgroup of M,(4) such that Vo(G)=My,d). Let P be a
Sylow 2-subgroup of G. Then Vo(P)=4,, 4, P4, or My(d,), where 4, and
4, are commutative fields or the quaternion algebras A, (see [6]).
We put H,=4,._,. In [7] we considered all finite subgroups of M,(4) with
abelian Sylow 2-groups. So we may assume that P is not abelian. If
Vo(P)=4,, then P is a generalized quaternion group. _

Here we will prove a proposition which gives an information on G
in the case where Vy(P)=4,P4, or M,(4,).

PROPOSITION 5.1. Let 4 be a division algebra. Let G be a subgroup
of M,(4) such that Vo(G)=M,d4). Let P be a Sylow 2-subgroup of G.
Assume that Vo(P) satisfies one of the following conditions.

(1) Vo(P)=H,DK, n=8, where K is a commutative field.

(2) Vo(P)=H,DH,, n=8, n=m=2.

3) Vo(P)=M(H,), nz3.
Then the Schur index of 4 is 2, and G is a subgroup of GL(4, C).

To prove this proposition we will use the following result.

(6.2) (Benard-Schacher [2]). Let X be an irreducible complex character
of finite group. Then ¢, € Q(X), if mo(X)=m.

PROOF OF PROPOSITION. Let s be the Schur index of 4. Then by
(6.2) &, is contained in the center of 4. Thus Ve, (P)CTMy(4). We denote
by L, the center of H,. Then L,=Q({,+;'), where a=2".

First we show that Q({,) is not a splitting field for H,. Assume that
Q) is a splitting field for H,. In the case (1), M,(d4)> Voe (P)=
QLR H.PRUL)RxK = M,(L,(£,)DK(E,), which is a contradiction. In
the case (2), My(4)D Vo, (P)=MyL,({, NBRE)R,, H,, which is a con-
tradiction. If Vo(P)=M,(H,), then Vo (P)=QC)R. M,(H,)=M,(L,Z,),
which implies Vo ,(P)Z M,(4). Thus Q(C,) is not a splitting field for H,.

Next we show that Q({,) is a splitting field for H, if s>2. Since
L,£)2Q(%:+L)=Q(1'2) by the assumption on =, the local degrees of
L.(,) at all primes of L,(,) extending the rational prime (2) are even.
If s>2, then L,(,) is totally imaginary. It follows from [4] that L,.(&,)
is a splitting field for H,=4, ,. Thus H, 2Q1, Q)= (4,,_,ReL,)R;, R, )"'
A, QoL (E)=M,(L,(,). Hence we conclude that s<2.

Finally we show that s=2. Suppose that s=1. Then 4 is a field,
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and Vo(P)C My(4) C M(HR.LC=M,(C). It follows that Ve(P)CM,(C). But
it is impossible. In fact, Ve(P)=(H,Q.,C)B(KQC)=M,(C)PC if Vo(P)=
H®K, V(P)=H,®. 0P H\Q:,0)=MC)DMC) if VolP)=H.DHn,
and Ve(P)=M(H,)®.,C=M/C) if Vo(P)=MyH.,).
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