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Introduction

The author gave a characterization of finite determinacy of formal
vector fields in $[6, 7]$ . Originally the problem of finite determinacy was
proposed by R. Thom [8] for $C^{\infty}$-map germs and J. Mather gave a com-
plete answer to it [10]. Specially, for $C^{\infty}$-functions this concept is very
important in connection with the elementary catastroph theory [16].

Roughly speaking, for $C^{\infty}$-functions k-determinacy has upper semi-conti-
nuity on $k$ and the local structure of the orbit decomposition of function
space by the action of the local diffeomorphisms is reduced to that of
finite jet space.

On the other hand, for vector fields the situation is quite different.
Upper semi-continuity of k-determinacy is lost and the local orbit decom-
position is not reduced to that of finite jet space. Moreover, even local
triviality of orbits does not hold. Thus we can not hope to construct an
unfolding theory for vector fields except for some exceptional cases.
However, in this paper we see that in 2-dimensional case the classification
and the hierarchy can be simply described for finitely determined singu-
larities of formal vector fields.

\S 1. Definitions and the results.

Let $C$ be the field of complex numbers. Let $\mathscr{G}^{-}=C[[x, y]]$ be the
formal power series algebra. We denote by $\mathfrak{X}^{0}$ the set of formal vector
fields (i.e. derivations of $\mathscr{F}$) which have no constant terms. Naturally
$\mathfrak{X}^{0}$ has Lie algebra structure and we denote by $[, ]$ its Lie bracket.
Let $G$ be the group of algebra automorphisms of $L\mathscr{F}$ The group $G$ acts
on $\mathfrak{X}^{0}$ as $\varphi_{*}X=\varphi^{-1}X\varphi$ where $\varphi\in G$ and $X\in \mathfrak{X}^{0}$ . We say that two formal
vector fields $X$ and $Y$ are equivalent if there is an element $\varphi\in G$ such
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that $\varphi_{*}X=Y$. By $J^{k}$ we denote the k-jet space of formal vector fields.
We identify $J^{k}$ with the polynomial vector field of degree $k$ which have
no constant terms. Naturally $J^{k}$ has finite dimensional Lie algebra struc-
ture and we denote by $[, ]^{k}$ its Lie bracket. There is a canonical pro-
jection $j^{k}:\mathfrak{X}^{0}\rightarrow J^{k}$ and we take on $\mathfrak{X}^{0}$ the topology induced by $\{j^{k}\}_{k\geq 1}$ . We
say that $X\in \mathfrak{X}^{0}$ is k-determined if for any Ye $\mathfrak{X}^{0}$ such that $j^{k}X=j^{k}Y,$ $X$

and $Y$ are equivalent. A formal vector field $X$ is called finitely deter-
mined if $X$ is k-determined for some positive integer $k$ .

For $X\in \mathfrak{X}^{0}$ we denote by $X_{1}$ the l-jet of $X$. By linear transformation,
without loss of generality we can assume that $X_{1}$ is of the Jordan normaI
form. Let $\lambda_{1},$ $\lambda_{2}$ be the eigenvalues of $X_{1}$ . There are the following
cases:

(a) rank $X_{1}=2$ and
(i) Both $\lambda_{1}/\lambda_{2}$ and $\lambda_{2}/\lambda_{1}$ neither belong to $Q^{-}$ (the negative rational

numbers), nor to $N^{*}$ (the positive integers larger than one). This case
is classical (cf. [3]) and $X$ is l-determined.

(ii) $\lambda_{1}/x_{2}eQ^{-}$ (Leads to Theorem 1).
(iii) $\lambda_{1}/\lambda_{2}$ or $\lambda_{2}/\lambda_{1}\in N^{*}$ (Leads to Theorem $0$).
(b) rank $X_{1}=1$ and $X_{1}$ is semi-simple (Leads to Theorem 2).
(c) rank $X_{1}=0$ or the case $X_{1}=y\partial/\partial x(X$ is not finitely determined,

see [6]).

THEOREM $0$ . Let the l-jet $X_{1}$ of $X\in \mathfrak{X}^{0}$ be of the form $\lambda_{1}x\partial/\partial x+$

$\lambda_{2}y\partial/\partial y$ where $\lambda_{1}/\lambda_{2}\neq 0$ and $\lambda_{2}=m\lambda_{1}(m\geqq 2)$ . Then $X$ is equivalent to
one of the following:

(0-1) $X_{1}+x^{*}\partial/\partial y$ ,
(0-2) $X_{1}$ .
REMARK. By the change of variables, the case $\lambda_{2}=(1/m)\lambda_{1}$ is reduced

to Theorem $0$ .
THEOREM 1. Let the l-jet $X_{1}$ of $X$ be of the form $\lambda_{1}x\partial/\partial x+*y\partial/\partial y$

where $\lambda_{1}/x_{2}=-q/p$ and $p,$ $q$ are relatively prime positive integers. Then
$X$ is equivalent to one of the following:

(1-1) $X_{1}+\omega^{k}x\partial/\partial x+(b_{k}\omega^{k}+b_{2k}\omega^{2k})y\partial/\partial y,$ $(b_{k}\neq-p/q)$

(1-2) $X_{1}+q\omega^{k}x\partial/\partial x+(-p\omega^{k}+b_{L}\omega^{L}+\cdots+b_{2L-k}\omega^{2L-k}+b_{2L}\omega^{2L})y\partial/\partial y$ ,
($b_{L}\neq 0$ and $L>k$),

(1-3) $X_{1}+q\omega^{k}x\partial/\partial x+(-p)\omega^{k}y\partial/\partial y$

(1-4) $X_{1}$ ,
where $\omega=x^{p}y^{q}$ and $1\leqq k<L$ .

THEOREM 2. Let the l-jet $X_{1}$ of $X$ be of the form $\lambda_{1}x\partial/\partial x$ and $\lambda_{1}\neq 0$ .
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Then $X$ is equivalent to one of the following:
(2-1) $X_{1}+a_{k}xy^{k}\partial/\partial x+(y^{k}+b_{2k}y^{2k})y\partial/\partial y$ ,
(2-2) $X_{1}+xy^{k}\partial/\partial x+(b_{L}y^{L}+\cdots+b_{2L-k}y^{2L-k}+b_{2L}y^{2L})y\partial/\partial y$ , ( $b_{L}\neq 0$ and

$L>k)$ ,
(2-3) $X_{1}+xy^{k}\partial/\partial x$ ,
(2-4) $X_{1}$ .
DEFINITION. For a subset $S\subset \mathfrak{X}^{0}$ we say that $S$ is a constructible set

(resp. submanifold) of $\mathfrak{X}^{0}$ if for any positive integer $k,$ $j^{k}S$ is a con-
structible set (resp. submanifold) of $J^{k}$ .

DEFINITION. For a submanifold $M$ of $\mathfrak{X}^{0}$ , we define a codimension
$\tau(M)$ of $M$ in $\mathfrak{X}^{0}$ as $\tau(M)=\lim\tau_{k}(j^{k}M)$ where $\tau_{k}(j^{k}M)$ is a codimension of
$j^{k}M$ in $J^{k}$ . Obviously $GX$ is a submanifold of $\mathfrak{X}^{0}$ . We use $\tau(X)$ instead
of $\tau(GX)$ .

DEFINITION. For two submanifolds $M$ and $N$ of $\mathfrak{X}^{0}$ , we say that $M$

is adjacent to $N$ if the closure of $M$ contains $N$. We denote this
adjacency by $M\leftarrow N$.

Now, we define $A_{k,k},’ A_{k,L},$ $A_{k,\infty},$ $A_{\infty\infty}$ as follows:
$A_{k,k}:=$ { $X\in \mathfrak{X}^{0};X$ is equivalent to the form (1-1)} ,
$A_{k,L}:=$ { $X\in \mathfrak{X}^{0};X$ is equivalent to the form (1-2)},
$A_{k,\infty}:=$ { $X\in \mathfrak{X}^{0};X$ is equivalent to the form (1-3)} ,
$A_{\infty\infty}:=$ { $X\in \mathfrak{X}^{0};X$ is equivalent to the form (1-4)}.

In the same way we define $B_{k,k},$ $B_{k,L},$ $B_{k,\infty},$ $B_{\infty\infty}$ corresponding to Theo-
rem 2 (2-1), (2-2), (2-3), (2-4).

THEOREM 3. The subsets $A_{k,L},$ $B_{k,L}(1\leqq k\leqq L\leqq\infty)$ are constructible sub-
manifolds of $\mathfrak{X}^{0}$ and $\tau(A_{k,L})=\tau(B_{k,L})=k+L$ . The adjacency of $\{A_{k,L}\}_{1\leqq k\xi L}$

is given by

$ A_{1,1}\leftarrow A_{1,2\backslash _{A_{2,2}}}\leftarrow\leftarrow A_{2,3}\leftarrow\cdot\cdot\leftarrow.A_{2}A_{1,3}\leftarrow A_{1,4}\leftarrow\cdots\leftarrow.A_{1}\backslash \backslash \backslash ^{\infty}\backslash A_{3,3}\leftarrow\backslash ..\backslash \infty$

.
$\backslash $

$\cdots$

$\backslash A_{\infty\infty}\backslash $
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and for $\{B_{k,L}\}_{1\leqq k\leq L}$ we have the same diagram of adjacency.

REMARK. After I had finished this work, I was informed that $th\epsilon$

classification problem of 2-dimensional singularities is very classical subject
(cf. [3], [5] and J. Martinet’s report at Bourbaki seminer $n^{o}$ 564 $(1980_{J}^{\backslash }$

and its references), thus a part of the results of this paper might be
already known.

\S 2. Preliminaries.

In this section we state several propositions without proofs. Their
proofs are found in [6]. We denote by $GL^{k}$ the k-jet space of automor.
phisms of $\sim \mathscr{F}$ In a natural way $GL^{k}$ has a Lie group structure. The
group $GL^{k}$ acts on $J^{k}$ as follows; $\varphi_{k^{*}}X_{k}=\varphi_{k}^{-1}X_{k}\varphi_{k}$ where $\varphi_{k}\in GL^{k}$ and
$X_{k}\in J^{k}$ . Obviously we have $j^{k}GX=GL^{k}(j^{k}X)$ .

PROPOSITION 2.1. The tangent space $TGL^{k}X_{k}$ of the orbit $GL^{k}X_{k}$ at
$X_{k}$ is given by

$TGL^{k}X_{k}=\{[X_{k}, Y_{k}];Y_{k}eJ^{k}\}$ .
In particular, the codimension $\tau_{k}(X_{k})$ of $GL^{k}X_{k}$ in $J^{k}$ is given by

$\tau_{k}(X_{k})=\dim_{c}\{Y_{k}\in J^{k};[X_{k}, Y_{k}]^{k}=0\}$ .
For $X\in \mathfrak{X}^{0}$ we decompose $X$ as $X=X+X^{n}$ where $X$ (resp. $X^{n}$) is

the semi-simple (resp. nilpotent) part of the mapping $X:\mathscr{G}^{-}\rightarrow \mathscr{G}^{-}$ $W\epsilon$

see that $X$ and $X^{n}$ are also derivations of $\mathscr{F}^{-}$ and $[X, X^{n}]=0$ . More.
over we see that for $\varphi eG,$ $(\varphi_{*}X)^{s}=\varphi_{*}X$“ and $(\varphi_{*}X)^{n}=\varphi_{*}X^{n}$ .

PROPOSITION 2.2. If the l-jet $X_{1}$ of $X$ is of the form $X_{1}=x_{1}x\partial/\partial x+$

$\lambda_{2}y\partial/\partial y$ , then there exists $\varphi\in G$ such that

$(*)$
$\varphi_{*}X_{1}=X_{1}+\sum_{\mu_{1}\lambda_{1}+\mu_{2}\lambda_{2}=\lambda_{1}}a_{\mu_{1}\mu_{2}}x^{\mu_{1}}y^{\mu_{2}}\partial/\partial x+\sum_{\nu_{1}\lambda_{1}+\nu_{2}\lambda_{2}=\lambda_{2}}b_{\nu_{1}\nu_{2}}x^{\nu_{1}}y^{\nu_{2}}\partial/\partial y$

where $\mu_{1},$ $\mu_{2},$ $\nu_{1}$ and $\nu_{2}$ are non-negative integers and $\mu_{1}+\mu_{2}\geqq 2,$ $\nu_{1}+v_{2}\geqq 2$ .
Moreover the semi-simple part of $(^{*})$ is $X_{1}$ .

REMARK. We call $(^{*})$ the normal form of $X$. A more general nor.
mal form theorem can be seen in $[6, 14]$ . Note that the higher terms
appeared in the normal form are the terms which commute $X_{1}$ with
respect to Lie product.

PROPOSITION 2.3 (Takens [15]). Let $X$, Ye $\mathfrak{X}^{0}$ . If $j^{1}Y=0$ and $j^{k}[X_{1}$
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$Y]=0$ , then $j^{k+1}(\exp Y)_{*}X=j^{k+1}(X+[X, Y])$ .

\S 3. Proof of Theorems $0,1$ and 2.

3.0. PROOF OF THEOREM $0$ . Since $\lambda_{2}=m\lambda_{1}$ and $m\geqq 2$ , from Proposi-
tion 2.2, the normal form of $X$ is $X_{1}+ax^{m}\partial/\partial y$ . In the case $a\neq 0$ , by
linear transformation $X$ is equivalent to $X_{1}+x^{m}\partial/\partial y$ . The case $a=0$ is
(0-2). Thus in both cases $X$ is m-determined. Note that in the case
(0-1) $\tau(X)=2$ and in the case (0-2) $\tau(X_{1})=3$ .

3.1. PROOF OF THEOREM 1. From Proposition 2.2, the normal form
of $X$ is given by (1-4) or the following:

$(^{**})$
$X_{1}+(\sum_{t=k}a_{l}\omega^{l})x\partial/\partial x+(\sum_{l=k}b_{i}\omega^{l})y\partial/\partial y$

where $\omega=x^{p}y^{q}$ and $(a_{k}, b_{k})\neq(0,0)$ . For simplicity we use $J^{(m)}$ (resp. $\tau_{(m)}$ )
instead of $J^{mtp+q)+1}$ (resp. $\tau_{m(p+q)+1}$).

LEMMA 3.1.1. Let the notations be as above. Then $k$ is uniquely
determined by $GX$.

PROOF. Let $X$ be of the form $(^{**})$ . Then from Proposition 2.1,

$\tau_{(k)}(X)=\dim\{\langle qx\partial/\partial x-py\partial/\partial y, \omega x\partial/\partial x, \cdots, \omega^{k}y\partial/\partial y\rangle_{c}\}=2k+1$ .
On the other hand

$\tau_{(k)}(X_{1})=\dim\{\langle x\partial/\partial x, y\partial/\partial y, \omega x\partial/\partial x, \cdots, \omega^{k}y\partial/\partial y\rangle_{c}\}=2k+2$ .
Now, we classify $(^{**})$ into two cases (1) $pa_{k}+qb_{k}\neq 0$ and (2) $pa_{k}+$

$qb_{k}=0$ . By linear change of coordinate we easily see that both (1) and
(2) are equivalent respectively to the following (1), (2) in $J^{tk)}$ .

(1) $X_{1}+\omega^{k}x\partial/\partial x+b_{k}\omega^{k}y\partial/\partial y,$ $(b_{k}\neq-p/q)$

(2) $X_{1}+q\omega^{k}x\partial/\partial x-p\omega^{k}y\partial/\partial y$ .
By $G_{tm)}$ (resp. $G_{(m),1}$) we denote the vector space spanned by $\{\omega^{n}x\partial/\partial x$ ,

$\omega^{m}y\partial/\partial y\}$ (resp. $\{q\omega^{m}x\partial/\partial x-p\omega^{m}y\partial/\partial y\}$). The formal vector field $X$ given
by $(^{**})$ can be expressed as $ X_{1}+X_{(k)}+X_{(k+1)}+\cdots$ where $X_{(j)}\in G_{(j)},$ $j=$

$k,$ $k+1,$ $\cdots$ .
LEMMA 3.1.2. We fix the ordered basis $\{\omega^{m}x\partial/\partial x, \omega^{m}y\partial/\partial y\}$ of $G_{(m)}$

$(m=1,2, \cdots)$ . Then $X_{(j)}=a\omega^{j}x\partial/\partial x+b\omega^{j}y\partial/\partial y$ induces the linear map-
ping $[X_{(j)}, -]:G_{(m)}\rightarrow G_{(m+j)}$ and its representation matrix is given by

$\left\{\begin{array}{ll}(m-j)pa+mqb & -jqa\\-jpb & (m-j)qb+mpa\end{array}\right\}$
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and the determinant of this matrix equals $m(m-j)(pa+qb)^{2}$ .
PROOF. Direct computations.

Case (1). We use the same arguments as in $[6, 15]$ . From Lemma
3.1.2, $[X_{(k)}, -]:G_{\{rn)}\rightarrow G_{(n+k)}$ is not surjective if and only if $m=k$ . First
we take $Y_{(1)}\in G_{(1)}$ such that $[X_{(k)}, Y_{(1)}]=-X_{(k+1)}$ , then from Proposition
2.3, we have $j^{(k+1)}(\exp Y_{(1)})_{*}X=X_{1}+X_{(k)}$ . Moreover, from $[X_{1}, Y_{(1)}]=0$ we
have $[X_{1}, (\exp Y_{(1)})_{*}X]=[(\exp Y_{(1)})_{*}X_{1}, (\exp Y_{(1)})_{*}X]=(\exp Y_{(1)})_{*}[X_{1}, X]=0$ ,

Thus $(\exp Y_{(1)})_{*}X$ is also of the normal form $(^{**})$ with different coefficients.
In the same way we can choose $Y_{(n\cdot)}\in G_{(n)}(m=1, \cdots, k-1)$ such that
$j^{(2k-1)}(\exp Y_{(k-1)})_{*}\cdots(\exp Y_{(1)})_{*}X=X_{1}+X_{(k)}$ . When $m=k$ we have $[X_{\{k)}$ ,
$G_{(k)}]=G_{(2k),1}$ and we decompose $G_{(2k)}$ as $G_{(2k),1}\oplus\langle\omega^{2k}y\partial/\partial y\rangle_{c}$ . Then there is
$Y_{(k)}\in G_{(k)}$ such that $j^{(2k)}(\exp Y_{(k)})_{*}\cdots(\exp Y_{(1)})_{*}X=X_{1}+X_{(k)}+b_{2k}\omega^{2k}y\partial/\partial y$ .
Inductively, using Proposition 2.3, we can eliminate the higher terms and
we obtain the normal form (1-1).

LEMMA 3.1.3. For $X_{(k)}=q\omega^{k}x\partial/\partial x-p\omega^{k}y\partial/\partial y$ , we have
(i) $[X_{(k)}, G_{(*)}]=G_{(n+k),1}$ ,
(ii) $ker\{[X_{(k)}, -]: G_{(n)}\rightarrow G_{(n\cdot+k)}\}=G_{(’ n),1}$ ,
(iii) $[G_{(j)}, G_{(n).1}]=G_{(m+j),1}$ .
PROOF. This is an easy concequence of Lemma 3.1.2.
Now, we classify case (2) into two cases.
(2) There is a positive integer $L$ such that $pa_{L}+qb_{L}\neq 0$ .
(2) For any $j\geqq k,$ $pa_{j}+qb_{j}=0$ .

In the case (2) we denote by $L$ the minimum $L$ such that $pa_{L}+qb_{L}\neq 0$ .
We set $\mathscr{G}=ker\{X : \mathscr{G}^{-}\rightarrow_{\llcorner}\mathscr{F}\}$ where $X$ is the semi-simple part of $X$.

LEMMA 3.1.4. In the case (2) the above $L$ is uniquely determined
by $GX$.

PROOF. Suppose that $X$ is of the form $(^{**})$ . Then $\ovalbox{\tt\small REJECT}$ is given by
$\ovalbox{\tt\small REJECT}=C[[\omega]]$ where $\omega=x^{p}y^{q}$ . We denote by $\mathfrak{M}ae$, the maximal ideal of $\mathscr{G}$

Then $L$ is given by $\mathfrak{M}_{x}^{L+1}=X(\mathfrak{M}_{x})$ . This completes the proof.

Case (2) . We decompose $G_{(j)}$ as $G_{(j),1}\oplus\langle\omega^{j}y\partial/\partial y\rangle_{\sigma}$ . From Lemma
3.1.3, using the same arguments as in the proof of Case (1), without loss
of generality we can assume that $X$ is of the following form;

$ X=X_{1}+X_{(k)}+X_{(L)}+X_{(L+1)}+\cdots$

where $X_{(j)}\in\langle\omega^{j}y\partial/\partial y\rangle_{c}(j=L, L+1, \cdots)$ and $X_{(L)}\neq 0$ . Now, we take $Y_{(m)}\in$

$G_{(n),1},$ $Y_{(n)}\neq 0$ . Then we have [X, $Y_{(’ n)}$ ] $=[X_{(L)}, Y_{(’ n)}]+[X_{(L+1)}, Y_{(’*)}]+\cdots$ .
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From Lemma 3.1.3 we can choose $Y_{(L+m+j-k)}\in G_{(L+m+j-k)}(j=0,1,$ $\cdots,$ $L-$

$k-1)$ such that $[X_{(L+j)}, Y_{(m)}]=-[X_{(k)}, Y_{(L+m+j-k)}]$ . We set $\tilde{Y}_{m}=Y_{(m)}+$

$Y_{(L+m-k)}+\cdots+Y_{(2L+m-2k-1)}$ , then we have [X, $Y_{m}$] $=[X_{(2L-k)}, Y_{(m)}]+[X_{(L)}$ ,
$Y_{(L+m-k)}]+higher$ terms. From Lemma 3.1.2 we see that $[X_{(2L-k)}, Y_{(m)}]+$

$[X_{(L)}, Y_{(L+m-k)}]\in G_{(2L+m-k)}$ and $\not\in G_{(2L+m-k),1}$ if and only if $L+m-k\neq L$ i.e.
$m\neq k$ . Thus we have [X, $\langle\tilde{Y}_{m}\rangle_{c}\oplus G_{(2L+m-2k)}$ ] $=G_{(2L+m-k)}+higher$ terms
$(m\neq k)$ . From Proposition 2.3 we can eliminate the terms of $G_{(2L+m-k)}$

$(m=1,2, \cdots)$ except for the only term of $\langle\omega^{2L}y\partial/\partial y\rangle_{C}$ . Thus we obtain
the normal form (1-2).

Case (2) . In this case $X$ is given by

$ X=X_{1}+X_{(k)}+X_{(k+1)}+\cdots$

where $X_{(j)}\in G_{(j),1}(j=k, k+1, \cdots)$ . Note that $X|ae’=0$ in this case. From
Proposition 2.3 and Lemma 3.1.3, there is $Y_{(1)}\in G_{(1)}$ such that

$(\exp Y_{(1)})_{*}X=X_{1}+X_{(k)}+X_{(k+2)}^{\prime}+X_{(k+3)}^{\prime}+\cdots$

Since the property $X|_{\ovalbox{\tt\small REJECT}},=0$ is invariant under the action of $G$ , so we
have $X_{(j)}^{\prime}\in G_{(j),1}(j=k+2, k+3, \cdots)$ . Thus we can eliminate inductively
the higher terms and we obtain the normal form (1-3).

REMARK. From the proof of Theorem 1, we easily see that we can
choose the different normal forms $(1-1)\sim(1-3)$ corresponding to the choice
of the compliment linear subspace of $G_{(j),1}$ in $G_{(j)}$ .

Theorem 2 can be proved in the same way, so we ommit the proof.

COROLLARY. For any formal vector field $X$ of $A_{k,L}$ (resp. $B_{k,L}$) $X$ is
$(2L(p+q)+1)$-determined (resp. $(2L+1)$-determined).

\S 4. Proof of Theorem 3.

The following proposition was obtained by R. Thom as a corollary
of Seidenberg-Tarski theorem.

PROPOSITION 4.1 ([8, 14]). Let $S$’ be a constructible set of $J^{k}$ . Then
$S=GL^{k}S^{\prime}$ is also constructible set of $J^{k}$ .

From this proposition, we easily see that $A_{k,L}$ and $B_{k,L}(1\leqq k\leqq L\leqq\infty)$

are constructible sets of $\mathfrak{X}^{0}$ .
LEMMA 4.2. The subsets $A_{k,L}$ and $B_{k,L}(1\leqq k\leqq L\leqq\infty)$ are submani-

folds of $\mathfrak{X}^{0}$ .
PROOF. The case $A_{k,\infty}(k=1,2, \cdots)$ is trivial. For $A_{k,L}(L<\infty)$ it is
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enough to prove that $j^{(2L)}A_{k.L}$ is a submanifold of $J^{(2L)}$ . We take $X\in A_{k}$ ,

which is of the form (1-1) or (1-2). We prove that $j^{(2L)}A_{k,L}$ is a sub
manfold in a neighbourhood of $X$ in $J^{(2L)}$ . Note that

[X, $x^{\alpha}y^{\beta}\partial/\partial x$] $=(\alpha\lambda_{1}+\beta\lambda_{2}-\lambda_{1})x^{\alpha}y^{\beta}\partial/\partial x+higher$ terms ,

[X, $x^{\alpha}y^{\rho}\partial/\partial y$] $=(\alpha\lambda_{1}+\beta\lambda_{2}-\lambda_{2})x^{\alpha}y^{l}\partial/\partial y+higher$ terms.

From the above facts and the caluculations in the proof of Theorem
we easily see that

$TGL^{(2L)}X\cap\langle\omega^{k}y\partial/\partial y, \omega^{L}y\partial/\partial y, \cdots, \omega^{(2L-k)}y\partial/\partial y, \omega^{2L}y\partial/\partial y\rangle=\{0\}$ .
Therefore the parameter directions of (1-1) and (1-2) are in the dire $($

tions transversal to $TGL^{(2L)}X$ in $J^{(2L)}$ . Thus $j^{(2L)}A_{k.L}$ is a submanifold $0$

$J^{(2L)}$ . We can prove in the same way for $B_{k,L}$ .
Now, the adjacency is obvious from the normal forms $(1-1)\sim(1-4)$ an

$(2-1)\sim(2-4)$ .
LEMMA 4.3. $\tau(A_{k,k})=\tau(B_{k,k})=2k$ .
PROOF. We assume that $X\in A_{k,k}$ is of the form (1-1). Then $fro\iota$

Proposition 2.1, we have

$\tau_{(2k)}(X)=\dim\{\langle qx\partial/\partial x-py\partial/\partial y,$ $\omega^{k}x\partial/\partial x+b_{k}\omega^{k}y\partial/\partial y$ ,
$\omega^{k+1}x\partial/\partial x,$

$\cdots,$
$\omega^{2k}y\partial/\partial y\rangle_{c}$}

$=2k+2$ .
Since the dimension of parmeters of (1-1) is two, so we have $\tau(A_{k,k})--$

$\tau_{(2k)}(j^{(2k)}A_{k,k})=2k$ . For the case $B_{k,k}$ we can prove in the same way.

PROPOSITION 4.4. $\tau(A_{k,L})=\tau(B_{k,L})=k+L$ .
PROOF. We prove this proposition by the induction on $L-k$ . Tl

case $L-k=0$ is Lemma 4.3. We assume that $\tau(W_{k,k+}.)=2k+s$ for k–
1, 2, 3, $\cdots$ , where $W$ stands for $A$ and $B$ . Then by the adjacenc
$W_{k.k+}.\leftarrow W_{k.k+\cdot+1}\leftarrow W_{k+1.k+\cdot+1}$ we have $2k+s<\tau(W_{k,k+\cdot+1})<2k+s+2$ . Thu
we have $\tau(W_{k,k+\cdot+1})=2k+s+1$ . This completes the proof.

\S 5. Real case.

Let $X$ be a germ of $C^{\infty}$-vector field at $(R^{2},0)$ with $X(O)=0$ . $W$

denote by $\lambda_{1},$ $\lambda_{2}$ the eigenvalues of l-jet $X_{1}$ of $X$. From Sternberg
linearization theorem, if (i) $\mathscr{G},$ $\lambda_{1}=\ovalbox{\tt\small REJECT}_{8}\lambda_{2}\neq 0$ or (ii) $\lambda_{1},$ $\lambda_{2}$ are non-ze]

real numbers and $\lambda_{1}/\lambda_{2}\not\in Q^{-}$ , then $X$ is l-determined as $C^{\infty}$-germ. $Ft$
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other case (Section 1 case (a) (ii) (iii), case (b) and case $(c)$), we have
the similar theorems with Theorems $0,1$ and 2 in the formal category.
However, from Sternberg’s work, we see that a $C^{\infty}$-vector field germ $X$

which has a hyperbolic singularity at the origin is k-determined as $C^{\infty}-$

germ if and only if $\infty- iet$ of $X$ at the origin is formally k-determined.
Thus Theorem $0$ and Theorem 1 (1-1), (1-2) hold. And Theorem 3 holds
replacing ”constructible submanifolds” by ”semi-algebraic submanifolds”.
Finally we state the pure imaginary eigenvalue case.

THEOREM 4. Let the l-jet $X_{1}$ of real formal vector field $X$ be of the
form $\theta x\partial/\partial y-\theta y\partial/\partial x$ where $\theta\in R$ and $\theta\neq 0$ . Then $X$ is equivalent to one
of the following:

(4-1) $X_{1}+(\delta\gamma^{k}+a_{2k}\gamma^{2k})(x\partial/\partial x+y\partial/\partial y)+b_{k}\gamma^{k}(x\partial/\partial y-y\partial/\partial x)$ ,
(4-2) $X_{1}+(a_{L}\gamma^{L}+\cdots+a_{2L-k}\gamma^{2L-k}+a_{2L}\gamma^{2L})(x\partial/\partial x+y\partial/\partial y)+\delta\gamma^{k}(x\partial/\partial y-$

$y\partial/\partial x),$ ($a_{L}\neq 0$ and $L>k$),
(4-3) $X_{1}+\delta\gamma^{k}(x\partial/\partial y-y\partial/\partial x)$ ,
(4-4) $X_{1}$ ,

where $\delta=\pm 1$ and $\gamma=x^{2}+y^{2}$ .
REMARK. See Takens [14] for the normal form of $X$.
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