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Introduction
- Consider a Hamiltonian system
(H) . p=-H,, ¢=H,
Whefe p, € R" and H: R""— R, or concisely
(H) ' ¢=JH'(2) ,

where z2=(p, q¢) and J = ( I —g) with I being the identity of R™".

Ekeland-Lasry [3] obtained

THEOREM 1. If an energy surface S of H 18 a C*® boundary of a
compact, stmctly convex subset C of R and if there are positive numbers
ry, 1, With

(0.1) <V 2r,
such that | ‘
(0.2) r.BcCcr,B

where B is the closed ball, ‘then there exist at least n distinct periodic
solutions of (H) on S.

(Hamiltonian H can be taken arbitrarily as long as it is C* and has
S as a regular energy surface. See Lemma 1.5 of [5].)

We identify C* with R*™ by z,=p;+1q; (=1, ---, n).

In this note we have :

THEOREM 2. We put

Received May 30, 1984



416 KIYOSHI HAYASHI

n—1
(0.3) 2 =3 iz, + 2,0
j=1 2
and Q,={zeC"; |z|l.=1}.
Let C be a compact, strictly convex subset of R** with C* boundary S.
Suppose there are positive numbers r, and r, with

(0.4) r, <24,
such that
(0.5) rQ.cCcr.Q, .

Then there exist at least n distinct periodic solutions of (H) on S.

We remark that Q, is a critical case which violates the condition
(0.2) with (0.1). Ambrosetti-Mancini [2] gave another proof of Theorem 1
with an extention, using Dual Action Principle developed in [1], which
will be explained in the next section. For Theorem 2, we also use the
principle and count the cohomological index, proposed in [4], of invariant
sets under an S* action a little carefully.

§1. Dual action principle.

This method was developed in [1] and gave another proof of Theorem
1 with an extension. We explain it briefly and collect some facts for
later use. ,

Let S be the C* boundary of a compact strictly convex subset C of
R™ (not necessarily satisfying (0.2) or (0.5)), whose interior contains the
origin.

Take 8>2 and determine the Hamiltonian H= H(z): R**— R by

1.1) HQ1)=8
1.2) H: g-homogeneous (H(\z)=x'H(z), A>0) .

Then H is coﬁvex, so the Legendre transform G=G(u) is obtained,
which is a-homogeneous (1/a+1/8=1, 1<a<?2).
2r
Put E= {u e L*(0, 2z; C™); Su = S u(t)dt=0} and define a C*-function
0
f: E—R by
__1f(. .
fay=—— Su Lu+|6w) ,

where z=Lu is determined by u=—J% and Sz=0. We also consider
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as a complex m-vector and wu-:Lu means the usual Euclidian inner product,
considering C* as the real 2xn-dimensional Euclidian space.
Finally put

M={ueB\; Su-Lu::a SG(u)} :
Then M is a C' Banach submanifold of E and J: M— R satisfies
the Palais-Smale condition.
And we have a one to one correspondence between critical points of

S in M and periodic orbits on S.
Futhermore we have

(1.3) m=min{f(u); w e M}>0,
and for e Z,=({1,2, ...}

14 ueM=>u=pu(p-)eM,
(1.5) Juf)=p°f(u) for ueM,

where 0=1/(2—a) and ¢=a/(2—a)=as.
And for w e E with Eu-Lu>O, there is the unique A>0 such that
Mee M. ) is explicitly determined by

(1.6) e=a G(u)/§ w-Lu (5) in [2])
where S means (1/2x) S
So
) )\.=[a§G(u):r it {u-Lu=1
and because of ‘
(1.8) | f(v):%aSG(v) for veM ((6) in [2])
we have
(1.9) foa)=Za § GOww)

=%N’a S G(u)

=?,7ji[a § G(u)]” if gu-Lu=1 .
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'§2. Harmonic oscillators. o : -

We consider the Hamilfonian |
. 1@ ,
2.1 . Hy(2)= 5 52‘;1 w;lzl* ,

where 0<w,<@,=---<w,=1 are angular frequencies.
Since the complex version of (H) is 2= 2z(a/az)H(z) and 2(8)’6—)H2(z)—
,z;, (H) becomes componentwisely

(2.2) z.,--":'bw,'z,- ’ J:l, 2, e,
Hence the j-th periodic solution With multiplicity e Z, is
2.3) c;et“i'a; ; ¢;€C\0, 0=t=2un/w;

where a; isj the j-th vector of the usual orthogonal basis of C"that is,
a;=(0, -+, 1, -+, 0).

We put
ey .Hp(z).=—}3-lz'lf.
for g>2. -
H, is g-homogeneous and satisfies (1.1) if S is
(2.5) {zeC"; |2,=8""} .

The Legendre transform G,(u) of Hy(z) is
(2.6) N - Gw)= —Iul“

where lulg 21—1 TJ'“JI 75_1/(0:
We attach the suffix 0 for the notations as G, f, M m, ete. derlved
from. H,. An elementary calculation glves

LEMMA 1. The corresponding critical point of £y in M, to (2.3) is
2.7 vi(t) = piti*e"'a;
and, writing v; as v;, we have

(2.8) )=o) =(ur %

We also have :
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2.9)  Lot=Low
J2 3

(2.10) S V8L =808 1978 .

Thus, for S defined by 2.5)

m,=min{f(u); u € M;}=Ff(v,) =-:-;: ,
}Lehce |
(2.11) Sw)=tim, and f,(v¥)= (pz',) m, .

We write G, f,, M,, m, for friQ in §1 (1,—1 2) as G f, M m for C.
Then (0.5) implies .

2.12) G.(w)=G(w) < Gy(u) -
Also we have (i=1, 2) |

2.13) _ G (w)=Ri{Gy(u) ,

where

(2.14) =1LV,

hence (0.4) becomes
(2.15) R,/R, <2 .-
* Further we have S ;
_LEMMA 2. m,=m,R}® and Rie“a,e M, attains m, (=1, 2).

Proor. By Lemma 1, w= ce“a,,, Wlth some ¢>0, attains m,. Since
we M, we have

g w-Lw=a § G (w)

=a§ RiGy(w) (by (2.13))
=refrs T Gy @6y
ol L =Ree* . :

On the other hand Lw=_‘w~,_hen¢e’ Sw ~Lw= S lcl*—c
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Thus we have ¢*=R%*, hence ¢=R}. So

m=f(w)
=moa { Gw) (by (1.8)
=ma § BiG(w) (by (2.13))
=m,Ric* .
=m R . Q.E.D.

Also we have
LEMMA 3. m,smémz.

PROOF. Let w=RJe*a,c M, be the point which attains m, by Lemma
2. Then for some A>0, ww e M.

AT =q § G(w) /S w- Lw (by (1.6))
<a g ReG(w)/R2® (by (2.12) and (2.13))
= R¢R}*| R}’
=1.
Hence
m=fOww)
" § GOw) (by (1.8))
smua § RIG,(w0) (by (2.12))
=m,Ri N § G,(w)
<m,R;R{"
=m, R}’
=m,. (by Lemma 2)

Now, since R*G,(u)=G(u), we have
min{G(u); Iu|=1};7‘1;Ri" ,

thus this R, plays the role of » in Lemma 3 of [2].
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Because b in the lemma equals 7, we have m=(x/®R¥=m,R¥’=m,
by (1.5) in the proof of the lemma. Q.E.D.
§3. Proof of Theorem 2.

By (2.15), we can take a number v>1 with

(3'1) v(.9+1)/2.9_l_§_2_<21/4 .
R,
First we obtain

LEMMA 4. If we M with fw)S(V 2v)'m, then f,(\u)<2%my™, where
A>0 is determined so as to xu e M,.

PROOF.
v—e=a { G, / § w-Lu by (1.6)
—a g G.(w) /a S Gw) | (w e M)
<1, (by (2.12))
so A=1. Hence
fo=ma § G.0w) (by (1.8)
=N"M, S G.(w)
<ma { G by (2.12))
=f(u) (by (1.8))
=0V 2v)m
=0V 2 v)m, ~ (by Lemma 3)
=02 v)'m, R’ (by Lemma 2)
é(l/-2—v)‘9mo(v“‘9+”/2‘9 R121’4)2‘9 (by (3_1))

=19 Im 9L R929/

=2%"'m, R’

=2%my~t. (by Lemma 2)
Q.E.D.

We denote M°={ue M; flu)=c} and Mi={u € M, fi(u)=c}, 1=1, 2.
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Now we use the theory of cohomological index [4]. For the defini-

tion and the properties, we refer [5], [3]. The index of an invariant set
K under an S' action is denoted by #(K).

On E, hence on M or M, we consider the usual S' action
Au=u(s+-) for seS'=R/2zZ.

We put 7=01"2v)’m and 7,=2°m»*. Then we have

LEMMA 5. (M")=1.

PROOF. There is a periodic solution in M” attaining m, hence 1=
1(M") by 2° and 5° of Lemma 1.13 of [5].

Lemma 4 gives an equivariant map from M” into M1, so 2° of the
lemma gives «(M?) <i(MD™M).

From Lemma 1, m, is a critical value of multiplicity 1 and next
critical value is 2%m,. Since 7,<2%n,, we have (M) <1. Q.E.D.

For 1=1, 2, -+, we define I';,={KcCM; K: compact invariant subset of
M, «(K)=1} and

k.= inf Max f(K) .
Kely
Then k, k,, --- are critical values of f. If k,=k;, ©1<j, then i (the
set of critical points of the level x,=k;)=j5—1+1 (III of [3]).

LEMMA 6. x,=7.

PROOF. For any Kel, by 2° of Lemma 1.13 of [5], K cannot be
involved in M”. Hence Max f(K)>7%. Therefore k.=7. (1(K)=2, i(M")=1
by Lemma 5.) ‘ Q.E.D.

LEMMA 7. £,.=(2V"2)'m.
The proof is given in §4.

ProOF OF THEOREM 2. If, in the critical values x,, ---, k,,,, at least
two of them coincide, there exist infinitely many geometrically distinct
critical points on the level, so the theorem is given.

Therefore we only consider the case

V 2IM<S K, <Kh,< <K, <2V 2)°m .

In this case we have geometrically distinct n» critical points, we shall
prove the theorem, as follows.



NEAR THE HAMILTONIAN 423

If critical points ¢, and ¢; corresponding to x, and K; respectively
are geometrically same, that is, ¢,=c* and ¢;=c* for some ce M and

#¢</’¢j'
Since fle;)=£;=(2V"2)*m<8%m, p1; must be 2 and g,=1. Therefore

¢;=c;. This is a contradiction because

K;=2%,22°9>(21"2)'m . Q.E.D.

§4. Proof of Lemma 7. |
For §=(&, ++*, 6w fus) €C™, we put

(4.1) We=EV+ o +E&,0,+&, .0 € F .
Then, from (2.10), we have

(4.2) % Uer Lue=2°18, P+ -+« + 2018, P+ |8, + 2%|¢, .
=lgll* .
We put Y={zeC"*; ||¢|]|=1} and for e 3, we define
3
4.9) wo=[aGw],

then (1.7) implies @,(&)=N()u, € M, and we have
@4 foopo=mf a{ G| . by 9

Now we have
LEMMA 8. Max f, o ¢(2)=2%m,.

ProoF. This will be done by only a little careful change of nota-

tions as follows: ‘
We put

k(&)= aGy(ue) = (2°+|g, )+ - - - +29+ll$;-1|?,+ &0+ Enti2%€" ),
then the following estimate gives the lemma by (4.4):

(4.5) Max {g h(e); g€ z} —gorn

From the shape of h, we may consider only real ¢&; (the phase of
.+ 18 cancelled under the integration from 0 to 27), so we change ¢; to
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z;. For x=(x, z, *-*, ,4,) € R**', we write |
h(x, t)=(2%*'2}+ - - - + 20}, + % + 2%, + 20,2, COS )V
and
He)={ hia, tidt .
We seek the maxin;um of H(x) under the constraint
ll2||>=2%2+ - - - +2%%_, + a2 +2%2,, =1 .

Let b=(b, - -, b,,,) be the point with |[[b]|=1 which attains the maximum
of H().
Then there is a Lagrange multiplier A with

Hﬂ=§ %( )“’2"1'2‘9“'261?7\,'2‘9“1)1

qu—1=§ g_( )o2-1.29+1.9p  —=),.29+p

2
(4.6) H, ={ ()20, +2°",., cos t)=n-20,
4. H,, = SO0moi@ 2,0 42, cos =020, .,

First we consider tfle case
(i) b;#0 for some 5j=1,2, ---, n—1.

Then we have
(4.8) =2 S L( et
Remarking that 26=#+1, from (4.7), we have

b, g %-( )*2"1.28+1 cos £ =0 .

If the integral part g ...=0, then (4.6) implies

2b,, S %( )¥*t=b, 2\ .
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Thus, since A0, we have b,=0 by (4.8).
If the integral part g «++#0, we have also b,=0.
Then we have

H(b) = g R, ©)

=§ (28+1(bf+ s +bi—1+bi+1))a/2
=2 o]

=2,
Next we consider the case
(i) b;=0 for any j=1,2, --., n—1.

In this case, the problem becomes to maximize
S (22 4+ 2%%x%  , +2° 2,2, 10 cos t)*

under the constraint «%-+2%2,,=1.
We put y==z, and 2=2%%,,,. Then

H(y, =Y (4" +2¢+2 Tz cos )"
={ 1y +1 et
and the constraint is

Yy +22=1.

In this case

(4.9) H(y, z)=§ Iy +1 2 ze"|

= “?/-l-l/?ze”llﬁa
S (ly+2ze*|| e+ (V' 2 —1)||ze"|| 1a)*
=(|ly+2ze"||La+ (12 —1)|2])* .

We put y=cos ¢ and z=sing. Then

Iy +zelige={ ly+ze
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== g (.'y’+vz’+2yz cos t)*"
=§ (1+sin 20 -cos t)* .
We define for —1<a=1

fla)= § (1+a cos £)*dt .

Then
fl(a)= § —;i(l +a cos t)**! cos tdt

and

f(a)= § %—(%—1)(1 +a cos £)*/*~% cos® tdt

<o0.

Also we have f'(0)=0.
This means fla), —1=<a =1, attains its maximum 1 at a=0.
Thus we have, under y*+2°=1,

ly+ze*||2«<1 .
Therefore, by (4.9), we have

H(y, 2)<1+02 =Djz|)"
=2%,

proving (4.5). Q.E.D.
LEMMA 9. We define ¢: 2 — M as @,: T —M,. Then
Max f o p(Z)=(2V 2 )'m .

PrROOF. For any £¢€ 3, we have

fo ¢(5)=mo|:a § G(ue)]” (by (1.9))
<m] a S Gz(ue):lu by (2.12))
=mo[a g Gy(ue) PR by (2.13))

=fy 0 ¢o(5)'R§‘9
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=2m,R%° (by Lemma 8)

<2°my(R,-2'4)** (by (2.15))

=2V 2)*m, R’

=(21"2)'m,

<@V 2)'m . (by Lemma 3)
Q.E.D.

PROOF OF LEMMA 7. To compute the index of Y, we use 6° of Lemma
1.13 of [5]. We can find 2(n+1)-dimensional invariant subspace F' and ¥
is equivariantly isomorphic to Fn.s» (for &, see 6°).

Hence #(X)=(1/2)dim F=n+1.

We consider the equivariant map ¢: 3 — M and put K=@(X). Then

2° of Lemma 1.13 in [5] gives Kerl,,, and Max(K)<(2/ 2 )m by
Lemma 9.

Hence «,,,<Max f(K)< (21" 2)'m. Q.E.D.
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