TokYo J. MATH.
VoL. 9, No. 1, 1986

On the Algebraic Independence of Certain Numbers Connected
with the Exponential and the Elliptic Functions

Masanori TOYODA and Takeshi YASUDA

Gakushuin University and Tokyo Samezu Technical High School
(Communicated by K. Katase)

Introduction

It has been conjectured in transcendental number theory that = and
log 2 are algebraically independent. It has also been conjectured that at
least one of the numbers 3,2, 27" and 3,7, (—1)"2-"* is transcendental.

Though no one has ever proved these conjectures, the authors have
proved the following

PROPOSITION. At least two of the numers
z, log2, 27, 3 (-2
n=0 n=0

are algebraically independent over Q. (This is a special case of Example
2.1, §1.)

Let x be a transcendental number, and let £ be a real number=2.
We shall say that « is of transcendence type=<k if there exists a constant
¢>0 depending only on x and &£ such that

log |P(x)| = —c(deg P+log H(P))*

for all non-trivial polynomials P in Z[X]. Here, deg P denotes the degree
of P, and H(P) denotes the height of P, i.e. the maximum of the absolute
values of the coefficients of P.

The idea of transcendence type was introduced by Lang in his book
[4]. For example, it follows from Fel’dman’s result [2, Theorem 4] that

(1) 7 is of transcendence type<2-+e¢, for every >0 .

This is a well-known. result in transcendental number theory.
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The above proposition can be deduced from the following general
theorem.

THEOREM. Let A(z) be a Weierstrass P-function with invariants
92 95 and let w,, w, be a pair of fundamental periods of S#(z). Assume
that x is a transcendental number of transcendence type<k, and that 2<

£<2+(1/3). Let a be any non-zero complex number. Then at least two
of the mumbers

z, Ay, G G5y @y, @, €°71, *“2

are algebraically independent over Q.

The purpose of the present paper is to prove the above theorem.

We wish to express our sincere gratitude to our teacher Prof. T.
Mitsui who has shown great interest in the results of the present paper
and has given friendly encouragement to the authors.

§1. Corollaries. In the first place we introduce a notation for
brevity.

NOTATION. For a finite set ScC, 3S denotes the maximal number
of algebraically independent elements in S.

We state some of the interesting consequences of the theorem.
From (1), we can take x== in our theorem. Moreover, let us take
a=1rm/w,, then we obtain the following results:

COROLLARY 1.
0{gz 95y @1y @, T, €77} =2,
where T=w,/w,.
We remark here that

9:=9:(®,, ®,)=60 o n)éz_m (mw,+nw,)™*

and

9s=gs(®,, ;)=140 >, , (mw, +nw,)™° .

(m,n) € Z2—{o

EXAMPLE 1.1. If 7 is a rational number, then
0{9:Q1, iz"), 9,1, ixn"), 7, e} =2 .
Let 6,(v, 7), 0,(v, 7), 64(v, 7) be the theta functions defined by
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v, D)= 3, (—1)rgrieriv

n=-—00

o0

02(,0’ ‘Z')= Z q(n—l/z)zezmttv ,

n=-—co

08(”7 T)= Z qn262mt” ’

where ¢=e** and Im(z)>0. Put
0,=6,0, 7) , 0,=06,(0, 7) , 0;=040, 7) ,
then the following classical formulas hold:

63-+63=0% ,

4
0., r>=—2§1<as+as+as> ,

__471,'6 4 4 8 404
9s(1, T)—?Y'(oo—az)(zaa'i“eoaz) .

Therefore, from Corollary 1, we obtain the following
COROLLARY 2.
o{x, T, €7, 0,5(0, 7), 6,0, )} =2 .
Let us take 7= —(log a)/zt in this corollary, then we have
EXAMPLE 2.1. If a is an algebraic number with |a|>1, then
a{n', log a, g a~, g (—1)"a'"’} =2.
Furthermore, we have

EXAMPLE 2.2.
a{n, log =, grc“"g, g,) (—1)"7:“”2} =2 (= —(log 7)/7%) .
From this example, we see that at least one of the numbers
log 7 , ,,2; T, g‘) (—1)"g—

must be tramscendental.
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Next, we put

qo=,}'=11(1—q2") , q1=nI=Il(1+q2") ,

%= 1}1 A+, = ,.11 (1—g™™).
Then we have the following classical formulas:
0s=0u0s ,  0o=00 ,
0.9:%:=1, 16901=q;—g; .
Therefore, from Corollary 2, we obtain

COROLLARY 3.
olm o [ —g), I A+am} 22

From this corollary we have two examples similar to Examples 2.1
and 2.2.

It follows from Fel’dman’s result [3, Theorem] that if g,, g, are
algebraic and .Z#(z) has complex multiplication, then any non-zero period
w of #(z) is of transcendence typex2-+¢, for every £>0. Hence, we
can take x=w, in our theorem, and obtain the following result:

COROLLARY 4. If g,, g, are algebraic and #(z) has complex multipli-
cation, then

o{a, w,, e**1, e**2} =2,
Jor any mon-zero complex number a.
ExXAMPLE 4.1. If » is a rational number, then
d{w,, e, e} =2,
where 7=w,/w,. (a=wi™.)
EXAMPLE 4.2. If a is an algebraic number 0, and log %0, then
o{w, log a, a’}=2 . (a=(log a)/w,.)
EXAMPLE 4.3.

o{w,, log w,, wi}=2 . (a=(log w,)/w,.)
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§2. Preliminary lesnmas. Let z be a transcendental number, and
let K be a finite extension of the field Q(x). Then we can write

K=Q(z, 6) ,

where ¢ is algebraic over Q(x), and is integral over the ring Z[x]. Let
d be the degree of ¢ over Q(z), then an element I" of the ring Z[x, 6]
can be expressed uniquely in the form

r=S pwe,

v=0

where Py(z), -+, P, (%) € Z[x].
With respect to # and 4, we define the degree of I by

deg I'= max {deg P,},

0svsd—1

and the height of I by
H(I’)=Oggggl {H(P,)} .
Further, we define the size of I" by
s(I"y=max{l+deg I', log H(I')} .

(See Waldschmidt [5].)
Letr, ---,I', be n elements of Z[x, 8], then the following inequali-
ties hold:

s(i‘, I';)=max {s(I"))}+1logn ,
i=1 1Sisn

s(jl'[:1 F,~>§c . 32:‘,1 s(I'y) ,

where ¢>0 is a constant depending only on « and §. These inequalities
are easily verified.

LEMMA 1. Let I' be a non-zero element of Z[x, 6], and let
P=P(x)= Ngsouy(I") € Z[x]
be the morm of I' € K over Q(x). Then we have
s(P)=c-s(I)

and
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log |P(x)|=log || +¢ - s(I") ,
where ¢>0 18 a constant depending only on x and 6.

PrOOF. See Lemma 4.2.20 of [5].

LEMMA 2 (Siegel’s lemma). Let
.zniAiiXJ"—"O (i=1’ * m)
=

be a system of linear equations with coefficients A,; in Zlzx, 6], and n=2m.
Let o be a mumber =1 such that s(A;)<o, for all i, j. Then there
exists a non-trivial solution X; e Z[z, 6], =1, ---, n, with

s(X;)<c(og+logn), for each j,
where ¢>0 18 a constant depending only on x and 4.

PrROOF. See Lemma 4.3.1 of [5].

LEMMA 3. Let t=0, n=0 be integers. There exists a polynomial
R,,eZ[X, X', Y], of degree at most »+2t in X, t in X' and t inY,
such that

d* _ '), L
L (=R 70, 7) 20

L(R,)=9(\+1),

where L(R, ;) denotes the length of R,,, i.e. the sum of the absolute values
of the coefficients of R, ;.

ProoF. The proof is easy by induction on ¢, starting from Z"(z)=
6.7(2)" — (1/2)g..

LEMMA 4. If a is a mon-zero complex mumber, then the following
three functions

z, e*, F(2)
are algebraically independent over C.

PrOOF. Assume that the lemma is false, then there exists a non-
zero polynomial P(X,, X,, X;,) in C[X, X,, X;] such that P(z, e**, F*(z))
vanishes identically.

The polynomial P can be expressed in the form
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szz____:a) Aj(le Xz)Xg ’

where A(X,, X,), -+, A.(X,, X)) €C[X, X,]. Without loss of generality,
we can assume that A4,(X,, X,)=+0. ‘

Since the two functions 2z, e** are algebraically independent over C
(see Lemma 1.4.1 of [5]), the function f(z) defined by

f(2)= Az, e*)
does not vanish identically. Hence we see that m=1, and so we have
that ‘
f(2)=—F(2) ;5;]‘1 Aj(z, e*)F(z)' .
From this equality, we find that the number =n(f, r) of zeros of f(z) in
the disc |z|<r satisfies
n(f, r)=c,r*, for all sufficiently large r,

where ¢,>0 is independent of r.
On the other hand, using (1.5.5) of [5], we have

~n(f, r)Scr, for all sufficiently large r,

where ¢,>0 is independent of ». But this upper estimate for =n(f, r)
contradicts the lower estimate for n(f, ), and the contradiction proves
the lemma.

§3. Proof of the Theorem. Let K, be the field
K,=Q(z, a, 9., 95, @, ®,, €**, €**?)
and let K be the field
K=K(e, e***, ¢**??) ,

where e,=F(w,/2). We prove our theorem by contradiction. Assume
that the transcendence degree of the field K, over @ is 1. Then the
transcendence degree of the field K over @ is also 1, since K is algebraic
over K,. Therefore we can write :

K=Q(x, 0) ,

where ¢ is algebraic over Q(x), and is integral over Z[x].
Let N be a sufficiently large integer, and define
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L0=Ns[10g N] ’ L1=[N3—3”] ’ L2=[Nl+y] ’
T=N*, H=[N"*],

where >0 is a sufficiently small number.

Hereafter, ¢, c,, - -+ denote positive constants which are independent
of N.

LEMMA 5. There exists a non-zero polynomial

Lo Lg

P=3, 3 Z Py My M) XD XM X2 € Z[z, 6][ X, X, X,]

49=0 2;=0 2g=0
such that the function F'(z) defined by
F(2) =Pz, F(z), e*)

satisfies the following two conditions:

(2) d' F( +h1w1+h2wz) 0 for 0<t<T,
dzt
0<h, h.<H,
(hy h))eZX Z ;
(3) 8(P(\oy My M) =e;Ni(log N)* for all ng, Ay A,
PROOF. We can regard (2) as the linear homogeneous system
Ly Ly Ly
(4) S\ S S e (L +hio,+hao,) =0
ig=0 2;=0 2;=0 2

(0=t<T;0=h,, h.<H)

of TH? equations in (L,+1)(I,+1)(L,+1) unknowns @(\)=®N\g Ay \2) €
Z[x, 0], where

t
Gt,(l) (z) —_ d_t(zlog(z)llelgaz) .
dz

Since any element of K is a quotient of two elements of Z[z, 6], we
can write

w,=2I/T,, w,=1,/T,, e.=I,/l,, g.=2I,/T", ,
e*V*=II',, e** =L/l , a=I,/T",,

where I'y, «-+, 'y € Z[x, 6].
By Leibnitz’s rule, we have
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t ! . x"0 ! . zlo—"o
00"'0’31;2“(')2:‘ O, ! g, ! g, ! ()-'0 - 0'0) !

X R"lsll(ﬁ(z), g’(z), _;_gz) . (Nza)"z . ezzaz ,

Gz,(l) (2)=

where R, ; are the polynomials of Lemma 3. Hence we obtain
G, (Qzl- +h,w,+ hzwz)

— t! .Y
(5) —%00!0_1!0_2! (7\' _0_0)' ol,Zl(Fs/Foy Os F-t/FO)

X (L 2hy) Ty + oI~ 20(n, Iy 2 i+ tishs [ishs

X I"(-)— (Rg—0og+0g-+29+220h1 +220ks) .

Let us multiply each equation of (4) by I':*, then, by (5) and Lemma
3, we see that the coefficients '

G, (%— +h,,+ h2w2>

of the new system lie in Z[x, 4] and have
sizes<c¢,L,log N<¢,N(log N)*.

Therefore, by Lemma 2, the system (4) has non-trivial solution P(\) €
Z[z, 0] satisfying the condition (8), so that the required result follows.

From Lemma 4, we see that the function F(z) is not identically zero.
Let N, be the maximal integer such that

(6) ;tF( Lt b, +hao,)=0 for 0St<N?,
0<h,, h,<[N; ] .
Then there exist integers p, I,, I, such that
0=p<(N,+1?, 0=, L<[V,+1)*],
(1) o(liz"F< @ +llwl+l2w2>¢0

%F( L Lo, +Lw,)=0, for 0=¢<p.
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We define T,, H,, w, & bﬁy

T,=N?,

H,=[N;"],

=—C')2—‘-+l1co1+lza)2 ,

e=2 Fw) .

dz

An upper estimate for &. Let o(z) be the Weierstrass sigma function
associated with .<#(z), then both o(2) and 0(2)2.Z*(z) are entire functions.
Hence the function F(z) defined by

F(2)=0(2)""F(2)
is also entire. From (7), we see that

(8) % () = (w)e .
V4

We put
r=NF#? R=N}.
Let us denote by IF’OI‘,D the maximum of [Fy(z)] on [2|=p. By Cauchy’s

estimate and the maximum principle, we have

, 77 ol
9 I—F Ié-———F TSP, .
(9) d2r o(w) ('r—lw)”] olr =D |y

From (6), we see that the number of zeros of F(z) in the dise |z|<7,
counted with multiplicities, is at least T,H?. Hence, by Schwarz lemma
(see Lemma 1.3.1 of [7]), we have

log|Fy|, <log|Fy|,— T.H} log(R/2r)

(10) <log IFOIR—%#NI"” log N, .

We note here that (8) implies
[Py My No)| Sexp{c;N°(log N)?} for all Ny Ay Ag
and that the function ¢(z) is entire of order 2. Hence we find that

(11) ‘ |Fy| g =exp(c, L, R***) ,
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where ¢>0 is a sufficiently small number.

From (9), (10) and (11), we obtain

(12) log | ;; Fiy(w) [ < —_}l.lev—w log N, .

Let {(2) be the Weierstrass zeta function associated with <#(z), then

o(w)=(—1)ththhg(w,/2)
X exp{(l,{(w,/2) +1.5(,/2)) (@, + 1,0, + L.w,)} .

By this equality, we have
(13) lo(w)|=e .

Thus we obtain from (8), (12) and (13) that
(14)  loglegl< —pNI ™ log N, .

A lower estimate for & From the definition of & we see that
I e Zlw, 6] ,
where L, =N{[log N,]. Hence, putting I"=I?us, we see that the norm
P=P(x)=Ng/ou(I")

of I'e K over Q(x) is a non-zero element of Z[x]. If we estimate the
size of I', then we have

s(I") = c¢sL, log N, =c;Ni(log N,)* .
By this and Lemma 1, we have that
(15) s(P)=c,-s(I")=c,Ni(log N,)?,

and that
log|P(x)| <log|I"| +¢s - s(I")
(16) =¢sLy, +loglé| +c5 - s(I)
<loglé| + ¢, Ni(log N,)*.

Since z is of transcendence type<k, we have by (15) that
(17) log|P(x)| = —¢,,8(P)* = — ¢, Ni*(log N,)** .
Thus we obtain from (16) and (17) that
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(18)

But
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—c¢,3Ni*(log N,)** §10g|5| .
CONCLUSION. We obtain from (14) and (18) that

— ¢, N*(log Ny* < —%pN;—w log N, .

this inequality contradicts the hypothesis that x<2-+(1/3), and the

contradiction proves the theorem.

[1]
[2]

(3]

[4]
[5]
(6]

[7]

References

G. V. CHUDNOVSKY, Algebraic independence of values of exponential and elliptic fune-
tions, Proc. I. C. M., Helsinki (1978), 339-350.

N. I. FEL’DMAN, Approximation of certain transcendental numbers. I, The approximation
of logarithms of algebraic numbers, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951),
53-74; Amer. Math. Soc. Transl. Ser. 2, 59 (1966), 224-245.

N. 1. FEL’DMAN, Simultaneous approximation of the periods of an elliptic function by
algebraic numbers, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 563-576; Amer.
Math. Soc. Transl. Ser. 2, 59 (1966). 271-284.

S. LANG, Introduction to transcendental numbers, Addison-Wesley, Reading, Mass., 1966.

M. WALDSCHMIDT, Nombres  Transcendants, Lecture Notes in Math., 402, Springer-
Verlag, Berlin, 1974.

M. WaALDScHMIDT, Les travaux de G. V. Cudnovskii sur les nombres transcendants, Leec-
ture Notes in Math., 567, Springer-Verlag, Berlin, 1977, 274-299.

M. WALDSCHMIDT, Transcendence Methods, Queen’s Papers in Pure and Appl. Math.,
52, Queen’s Univ., Kingston, Ontario, 1979.

Present Address:

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
GAKUSHUIN UNIVERSITY

MEJ1ro, TosHIMA-KU, ToKYO 171

AND

TokYO0 SAMEZU TECHNICAL HiGH ScHoOL
1-10-40 HIGASHIOI, SHINAGAWA-KU, TokYO 140



