Hilbert Transforms on One Parameter Groups of Operators

Shiro ISHIKAWA

Keio University

Introduction

In [1], M. Cotlar showed that M. Riesz's theorem could be extended to the case of a measure preserving flow as well as a real line or a circle. In this paper, more generally, we shall consider Hilbert transform on a one parameter group of operators on a complete locally convex space. For this, we define several terms and prepare some lemmas in what follows.

DEFINITION 1. Let R be a real field and let X be a complete locally convex space. Then $\{U_t; t \in R\}$ is said to be a one parameter group of operators on X, if the following conditions are satisfied;

- (i) U_t is a continuous linear operator on X for all $t \in \mathbb{R}$, and U_0 is an identity operator on X,
 - (ii) $U_tU_s=U_{t+s}$ for all $t, s \in R$,
- (iii) for any $t \in \mathbb{R}$ and any $x \in X$, $(U_{t+h} U_t)x$ converges to 0 as $h \to 0$ in the topology of X (for short, in X).

DEFINITION 2. A continuous linear operator $H_{\epsilon,N}(0<\epsilon< N<\infty)$ on X is defined as follows;

$$H_{\epsilon,N}x = \frac{1}{\pi} \int_{\epsilon < |t| < N} \frac{U_t x}{t} dt \quad (x \in X)$$

(this integral can be well defined since a mapping $t \in R \to (U_t x)/t \in X$ is continuous on a compact set $\{t \in R; \varepsilon \leq |t| \leq N\}$). Also, if $\lim_{\epsilon \to 0+, N \to \infty} H_{\epsilon, N} x$ exists in X, we denote it by Hx and call it a Hilbert transform of x. And the domain of H (i.e. $\{x \in X; Hx \text{ exists}\}$) is denoted by D(H).

LEMMA 1. Let X be a complete locally convex space and let $\{U_t; t \in R\}$ be a one parameter group of operators on X. Let x be any element in X represented by

$$x = \frac{1}{2\delta} \int_{-\delta}^{\delta} U_t v dt$$

where $\delta > 0$ and $v \in X$. Then $\lim_{\epsilon \to 0+} H_{\epsilon,1}x$ exists in X.

PROOF. Note that

$$\begin{split} \lim_{h \to 0} \frac{U_h x - U_{-h} x}{2h} &= \lim_{h \to 0} \frac{1}{2h} \left[U_h \left(\frac{1}{2\delta} \int_{-\delta}^{\delta} U_t v dt \right) - U_{-h} \left(\frac{1}{2\delta} \int_{-\delta}^{+\delta} U_t v dt \right) \right] \\ &= \lim_{h \to 0} \frac{1}{2h} \left[\frac{1}{2\delta} \int_{h-\delta}^{h+\delta} U_t v dt - \frac{1}{2\delta} \int_{-h-\delta}^{-h+\delta} U_t v dt \right] \\ &= \lim_{h \to 0} \frac{1}{2\delta} \left[\frac{1}{2h} \int_{\delta-h}^{\delta+h} U_t v dt - \frac{1}{2h} \int_{-\delta-h}^{-\delta+h} U_t v dt \right] \\ &= \frac{1}{2\delta} (U_\delta v - U_{-\delta} v) \ . \end{split}$$

Let q be any semi-norm from the system of semi-norms $\{q\}$ defining the topology of X. From above equality, there exists $\eta>0$ such that

$$q\left(rac{U_{\mathtt{h}}x-U_{\mathtt{-h}}x}{2h}-rac{U_{\mathtt{b}}v-U_{\mathtt{-b}}v}{2\delta}
ight) \leq 1$$
 , for all $0<|h|<\eta$.

We have, for any $0 < |h| < \eta$,

$$\begin{split} q\Big(\frac{U_{\mathbf{h}}x - U_{-\mathbf{h}}x}{2h}\Big) & \leq q\Big(\frac{U_{\mathbf{h}}x - U_{-\mathbf{h}}x}{2h} - \frac{U_{\mathbf{\delta}}v - U_{-\mathbf{\delta}}v}{2\delta}\Big) + q\Big(\frac{U_{\mathbf{\delta}}v - U_{-\mathbf{\delta}}v}{2\delta}\Big) \\ & \leq 1 + q\Big(\frac{U_{\mathbf{\delta}}v - U_{-\mathbf{\delta}}v}{2\delta}\Big) \;. \end{split}$$

Hence we see that, for any ε , ε' such that $0 < \varepsilon < \varepsilon' < \eta$,

$$\begin{split} q(H_{\epsilon,\mathbf{1}}x - H_{\epsilon',\mathbf{1}}x) &= q\Big(\frac{1}{\pi} \int_{\epsilon < |t| < \epsilon'} \frac{U_t x}{t} dt\Big) \\ &= q\Big(\frac{2}{\pi} \int_{\epsilon}^{\epsilon'} \frac{U_t x - U_{-t} x}{2t} dt\Big) \\ &\leq \frac{2(\varepsilon' - \varepsilon)}{\pi} \Big(1 + q\Big(\frac{U_{\delta}x - U_{-\delta}x}{2\delta}\Big)\Big) \end{split}$$

which implies that $\{H_{\epsilon,1}x\}_{\epsilon>0}$ is a Cauchy net as $\epsilon \to 0+$. Therefore, from the completeness of X, $\lim_{\epsilon\to 0+} H_{\epsilon,1}x$ exists in X. This completes the proof.

LEMMA 2. Let X be a complete locally convex space and let $\{U_t: t \in \mathbb{R}\}$ be a one parameter group of operators on X. Let x be any element of

X represented by

$$x\!=\!z\!-\!rac{1}{2T}\int_{-T}^{T}U_{s}zds$$
 ,

where T>0 and $z \in X$ and $\{U_t z\}$ is supposed to be bounded in X uniformly for $t \in \mathbb{R}$. Then $\lim_{N\to\infty} H_{1,N} x$ exists in X.

PROOF. Since X is complete, it is sufficient to prove that $\{H_{1,N}x\}_{N=1}^{\infty}$ is a Cauchy sequence as $N \to \infty$.

Let q be any semi-norm from the system of semi-norms $\{q\}$ defining the topology of X. Now we get that, for any N, N' such that 0 < T < N < N',

$$\begin{split} q(H_{1,N'}x-H_{1,N}x) &= \frac{1}{\pi}q\Big(\int_{N<|t|< N'} \frac{U_tx}{t}dt\Big) \\ &= \frac{1}{\pi}q\Big(\int_{N<|t|< N'} \frac{1}{t} U_t\Big(z-\frac{1}{2T}\int_{-T}^T U_szds\Big)dt\Big) \\ &= \frac{1}{\pi}q\Big(\frac{1}{2T}\int_{-T}^T \Big(\int_{N}^{N'} \frac{(U_t-U_{t+s})z}{t}dt + \int_{-N'}^{-N} \frac{(U_t-U_{t+s})z}{t}dt\Big)ds\Big) \\ &\leq \frac{1}{\pi}q\Big(\frac{1}{2T}\int_{-T}^T \Big(\int_{N}^{N'} \frac{(U_t-U_{t+s})z}{t}dt\Big)ds\Big) \\ &+ \frac{1}{\pi}q\Big(\frac{1}{2T}\int_{-T}^T \Big(\int_{-N'}^{-N} \frac{(U_t-U_{t+s})z}{t}dt\Big)ds\Big) \\ &= I_1 + I_2 \;, \quad say \;. \end{split}$$

Since we can, from the boundedness of $\{U_tz: t \in R\}$, take M>0 such that $q(U_tz) < M$ for all $t \in R$, we see that, for any N, N' such that $0 < T \le N \le N + T \le N'$.

$$\begin{split} I_{1} &= \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N'} \frac{U_{t}z}{t} dt - \int_{N+s}^{N'+s} \frac{U_{t}z}{t-s} dt \right) ds \right) \\ &\leq \frac{1}{2\pi T} q \binom{T}{0} \binom{N'}{N} \frac{U_{t}z}{t} dt - \int_{N+s}^{N'+s} \frac{U_{t}z}{t-s} dt \right) ds) \\ &+ \frac{1}{2\pi T} q \left(\int_{-T}^{0} \left(\int_{N}^{N'} \frac{U_{t}z}{t} dt - \int_{N+s}^{N'+s} \frac{U_{t}z}{t-s} dt \right) ds \right) \\ &= \frac{1}{2\pi T} q \left(\int_{0}^{T} \binom{N+s}{N} \frac{U_{t}z}{t} dt + \int_{N+s}^{N'} \left(\frac{1}{t} - \frac{1}{t-s} \right) U_{t}z dt - \int_{N'}^{N'+s} \frac{U_{t}z}{t-s} dt \right) ds \right) \\ &+ \int_{-T}^{0} \left(-\int_{N+s}^{N} \frac{U_{t}z}{t-s} dt + \int_{N}^{N'+s} \left(\frac{1}{t} - \frac{1}{t-s} \right) U_{t}z dt + \int_{N'+s}^{N'} \frac{U_{t}z}{t} dt \right) ds \right) \end{split}$$

$$\leq \frac{M}{2\pi T} \int_{0}^{T} \binom{N+s}{s} \frac{1}{t} dt + \int_{N+s}^{N'} \left(\frac{1}{t-s} - \frac{1}{t}\right) dt + \int_{N'}^{N'+s} \frac{1}{t-s} dt ds
+ \frac{M}{2\pi T} \int_{-T}^{0} \left(\int_{N+s}^{N} \frac{1}{t-s} dt + \int_{N}^{N'+s} \left(\frac{1}{t} - \frac{1}{t-s}\right) dt + \int_{N'+s}^{N'} \frac{1}{t} dt dt ds
\leq \frac{M}{2\pi T} \int_{0}^{T} \left(\log \frac{N+s}{N} + \log \frac{(N'-s)(N+s)}{NN'} + \log \frac{N'+s}{N'}\right) ds
+ \frac{M}{2\pi T} \int_{-T}^{0} \left(\log \frac{N}{N+s} + \log \frac{(N'+s)(N-s)}{NN'} + \log \frac{N'}{N'+s}\right) ds
(1) \to 0 \quad (as \ N, N' \to \infty) .$$

Also we see as in the above estimation of I_1 that, for any N, N' such that $0 < T \le N \le N' \le N + T$ (< N + 2T),

$$\begin{split} I_{\mathbf{i}} &= \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N'} \frac{(U_{t} - U_{t+s})z}{t} dt \right) ds \right) \\ &\leq \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N+2T} \frac{(U_{t} - U_{t+s})z}{t} dt \right) ds \right) \\ &+ \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N'}^{N+2T} \frac{(U_{t} - U_{t+s})z}{t} dt \right) ds \right) \\ &\to 0 \quad \text{(as } N, N' \to \infty) \; . \end{split}$$

From this and (1), we see that $I_1 \to 0$ as $N, N' \to \infty$. In a similar way, we can also see that $I_2 \to 0$ as $N, N' \to \infty$. Hence this implies that $\{H_{1,N}x\}_{N=1}^{\infty}$ is a Cauchy sequence in X. This completes the proof.

§1. Main theorems.

Now we can show the following theorems by Lemma 1 and Lemma 2.

THEOREM 1. Let X be a complete locally convex space and let $\{U_i: t \in R\}$ be a one parameter group of operators on X. Let x be any element in X represented by

$$x = \frac{1}{2\delta} \int_{-\delta}^{\delta} U_{s} \left(z - \frac{1}{2T} \int_{-T}^{T} U_{t}z dt\right) ds + v$$

where δ , T>0, $z \in X$ and $v \in X$ such that $U_t v = v$ for all $t \in R$ and $\{U_t z\}$ is supposed to be bounded in X uniformly for $t \in R$.

Then $\lim_{\epsilon \to 0+,N\to\infty} H_{\epsilon,N}x$ exists in X (i.e. $x \in D(H)$).

PROOF. Since it is clear that $H_{\bullet,N}v=0$, we see

$$\begin{split} H_{\epsilon,N}x &= H_{\epsilon,N}\Big(\frac{1}{2\delta}\int_{-\delta}^{\delta}U_{s}\Big(z - \frac{1}{2T}\int_{-T}^{T}U_{t}zdt\Big)ds\Big) \\ &= H_{\epsilon,1}\Big(\frac{1}{2\delta}\int_{-\delta}^{\delta}U_{s}\Big(z - \frac{1}{2T}\int_{-T}^{T}U_{t}zdt\Big)ds\Big) \\ &+ H_{1,N}\Big(\frac{1}{2\delta}\int_{-\delta}^{\delta}U_{s}zds - \frac{1}{2T}\int_{-T}^{T}U_{t}\Big(\frac{1}{2\delta}\int_{-\delta}^{\delta}U_{s}zds\Big)dt\Big) \end{split}$$

which implies, from Lemma 1 and 2, that $\lim_{s\to 0+,N\to\infty} H_{s,N}x$ exists in X, since $\left\{U_t\left(\frac{1}{2\delta}\int_{-\delta}^{\delta}U_szds\right)\right\}$ is clearly bounded in X uniformly for $t\in R$.

THEOREM 2. Let X be a complete locally convex space and let $\{U_t: t \in \mathbf{R}\}$ be a one parameter group of operators on X such that the set $\left\{x \in X: \lim_{T \to \infty} (1/2T) \int_{-T}^{T} U_t x dt \text{ (denoted by } \overline{x}) \text{ exists in } X \text{ and } \{U_t x\} \text{ is bounded in } X \text{ uniformly for } t \in \mathbf{R}\right\}$ is dense in X. Then the domain of H (denoted by D(H)) is a dense set in X.

PROOF. Let u be any element in X and let V be any balanced convex neighborhood of 0 in X. Then, we can find δ , T>0 and an x in the dense set in the assumption such that

$$u-x \in \frac{V}{3}$$
, $x-\frac{1}{2\delta}\int_{-s}^{s} U_{s}xds \in \frac{V}{3}$

and

$$\frac{1}{2\delta}\int_{-\delta}^{\delta}U_{s}\left(\frac{1}{2T}\int_{-T}^{T}U_{t}xdt\right)ds-\bar{x}\in\frac{V}{3}$$
.

Then, we see that

$$u - \left[\frac{1}{2\delta} \int_{-\delta}^{\delta} U_{\bullet} \left(x - \frac{1}{2T} \int_{-T}^{T} U_{t}x dt\right) ds + \overline{x}\right]$$

$$= [u - x] + \left[x - \frac{1}{2\delta} \int_{-\delta}^{\delta} U_{\bullet}x ds\right] + \left[\frac{1}{2\delta} \int_{-\delta}^{\delta} U_{\bullet} \left(\frac{1}{2T} \int_{-T}^{T} U_{t}x dt\right) ds - \overline{x}\right]$$

$$\in \frac{V}{3} + \frac{V}{3} + \frac{V}{3} = V.$$
(2)

Also, since we can easily see that $U_t\overline{x}=\overline{x}$ for all $t \in \mathbb{R}$, we get, by Theorem 1, that

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} U_{s} \left(x - \frac{1}{2T} \int_{-T}^{T} U_{t} x dt \right) ds + \overline{x} \in D(H) .$$

From this and (2), it follows that D(H) is dense in X, since $u \in X$ and neighborhood V of 0 in X are arbitrary.

THEOREM 3. Let X be a complete locally convex space and let $\{U_t: t \in \mathbf{R}\}$ be a one parameter group of operators on X such that the set $\{x \in X: \lim_{T\to\infty} (1/2T) \int_{-T}^T U_t x dt \text{ (denoted by } \overline{x} \text{) exists in } X \text{ and } \{U_t x\} \text{ is bounded in } X \text{ uniformly for } t \in \mathbf{R} \}$ is dense in X. Assume that, for any neighbourhood V of 0 in X, there exists a neighborhood W of 0 in X such that

$$H_{\epsilon,N}z \in V$$
 for all $z \in W$ and $0 < \epsilon < N < \infty$.

Then, for any $x \in X$, Hx exists in X. Moreover, H is a continuous linear operator on X.

PROOF. Let x be any element in X. It is sufficient to prove that $\{H_{\varepsilon,N}x\}$ is a Cauchy net as $\varepsilon \to 0+$, $N \to \infty$. Let V be any balanced convex neighbourhood of 0 in X. Take a balanced convex neighbourhood W of 0 in X such that

$$H_{\epsilon,N}z \in \frac{V}{3}$$
 for all $z \in W$ and $0 < \epsilon < N < \infty$.

From Theorem 2, there exist y in D(H) and $0 < \varepsilon_0 < N_0 < \infty$ such that

$$x-u \in W$$

and

$$H_{\epsilon,N}y-H_{\epsilon',N'}y\in \frac{V}{3}$$

for all ε , ε' , N and N' such that $0<\varepsilon$, $\varepsilon'<\varepsilon_0$ and $N_0< N$, $N'<\infty$. Then we see that, for any ε , ε' , N and N' such that $0<\varepsilon$, $\varepsilon'<\varepsilon_0$ and $N_0< N$, $N'<\infty$,

$$\begin{split} H_{\epsilon,N}x - H_{\epsilon',N'}x \\ &= (H_{\epsilon,N}y - H_{\epsilon',N'}y) + H_{\epsilon,N}(x-y) - H_{\epsilon',N'}(x-y) \\ &\in \frac{V}{3} + \frac{V}{3} + \frac{V}{3} = V \;, \end{split}$$

which implies that $\{H_{\varepsilon,N}x\}$ is a Cauchy net as $\varepsilon \to 0+$ and $N\to \infty$. Then we get, from the completeness of X, that Hx exists in X.

Next we shall prove that H is a continuous linear operator on X. Since the linearity of H trivially follows, it is sufficient to prove the

continuity of H at 0 in X. Let K be any balanced convex neibourhood of 0 in X. Then by the assumption there exists a balanced convex neibourhood G of 0 in X such that

(3)
$$H_{\varepsilon,N}z \in \frac{K}{2}$$
 for all $z \in G$ and $0 < \varepsilon < N < \infty$.

Let u be any element in G. Since $\lim_{\epsilon \to 0+, N \to \infty} H_{\epsilon,N} u = Hu$ in X, there exist ϵ_1 and N_1 such that

$$Hu-H_{\varepsilon_1,N_1}u\in \frac{K}{2}$$
.

Hence we see, from this and (3), that

and

$$Hu = Hu - H_{\epsilon_1, N_1}u + H_{\epsilon_1, N_1}u$$

$$\in \frac{K}{2} + \frac{K}{2} = K$$

which implies the continuity of H at 0 in X. Therefore we have that H is a continuous linear operator on X. This completes the proof.

COROLLARY 1. Let X be a Banach space and let $\{U_t \in R\}$ be a one parameter group of operators on X such that

(i) the set
$$\left\{x \in X: \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} U_t x dt \text{ exists in } X \text{ and } \right\}$$

 $\{U_tx\}$ is bounded in X uniformly for $t \in R$ is dense in X

(ii) there exists a C>0 such that $||H_{\epsilon,N}x|| \le C||x||$ for all $x \in X$ and $0 < \epsilon < N < \infty$.

Then, for any $x \in X$, Hx exists in X. Moreover, H is a continuous linear operator on X.

PROOF. The proof immediately follows from Theorem 3.

COROLLARY 2. Let X be a Hilbert space and let $\{U_t: t \in \mathbf{R}\}$ be a one parameter group of unitary operators on X (i.e. $U_t^* = U_{-t}$ for all $t \in \mathbf{R}$). Then the Hilbert transform H is a continuous linear operator on X.

PROOF. A first part of condition (i) in Corollary 1 is satisfied in a Hilbert space from von Neumann's ergodic theorem. And a second part

of condition (i) in Corollary 1 is clearly satisfied since $||U_t||=1$ for all $t \in \mathbb{R}$. Therefore it is sufficient to prove that the condition (ii) in Corollary 1 is satisfied in the Hilbert space X. This is assured in the following lemma.

LEMMA 3. X and $\{U_t: t \in \mathbb{R}\}$ are defined as in Corollary 2. Then, it follows that

$$||H_{\varepsilon,N}x|| \le ||x||$$
 for all $x \in X$ and $0 < \varepsilon < N < \infty$.

PROOF. We see, from Stone's Theorem, that

$$egin{aligned} ||H_{oldsymbol{\epsilon},N}x||^2 &= \left\|rac{1}{\pi}\int_{oldsymbol{\epsilon}<|tt|< N}rac{U_tx}{t}dt
ight\|^2 \ &= \left\|rac{1}{\pi}\int_{oldsymbol{\epsilon}<|tt|< N}rac{1}{t}\Big(\int_{-\infty}^{\infty}e^{it\lambda}dE(\lambda)x\Big)dt
ight\|^2 \ &= \left\|\int_{-\infty}^{\infty}g_{oldsymbol{\epsilon},N}(\lambda)dE(\lambda)x
ight\|^2 \ &= \int_{-\infty}^{\infty}|g_{oldsymbol{\epsilon},N}(\lambda)|^2d\,||E(\lambda)x||^2 \;, \end{aligned}$$

where $\{E(\lambda): \lambda \in \mathbb{R}\}$ is a spectral family of the one parameter group of unitary operators $\{U_t: t \in \mathbb{R}\}$ and

$$g_{\epsilon,N}(\lambda) = \frac{1}{\pi} \int_{\epsilon < |t| < N} \frac{e^{i\lambda t}}{t} dt$$
.

Since we can easily show that $|g_{\epsilon,N}(\lambda)| \leq 1$ for all $\lambda \in \mathbb{R}$ and $0 < \epsilon < N < \infty$, we see that

$$||H_{\epsilon,N}x||^2 \leq \int_{-\infty}^{\infty} d||E(\lambda)x||^2$$

 $\leq ||x||^2.$

for all $x \in X$ and $0 < \varepsilon < N < \infty$. Hence this completes the proof.

§2. Application.

Let (Ω, B, μ) be a σ -finite measure space and let $L^p(\Omega)$ $(1 \le p < \infty)$ be the set of all p-order integrable functions on Ω with norm $|| \cdot ||_p$. We define $\{T_t: t \in R\}$ as a measure preserving flow on Ω , that is,

- (i) for any $t \in R$, T_t is a measure preserving transformation on Ω and T_0 is an identity on Ω ,
 - (ii) $T_tT_s=T_{t+s}$ for all $t,s\in R$,

(iii) a mapping $(t, \omega) \in \mathbb{R} \times \Omega \to T_t \omega \in \Omega$ is measurable. Now we can define a one parameter group of operators $\{U_t : t \in \mathbb{R}\}$ on $L^p(\Omega)$ such that for all $f \in L^p(\Omega)$.

$$(U_t f)(\omega) = f(T_t \omega)$$
 for all $t \in \mathbb{R}$ and $\omega \in \Omega$.

It is well known that $\{U_t: t \in \mathbf{R}\}$ satisfies all conditions in Definition 1 and that $U_t^* = U_{-t}$ for all $t \in \mathbf{R}$ in $L^2(\Omega)$. Under these preparations, we see the following proposition in [2].

PROPOSITION 1. There exists a constant C>0 (independent of ε , N and λ) such that

$$\mu\Big\{\boldsymbol{\omega}\in\boldsymbol{\varOmega}\colon \Big|\frac{1}{\pi}\int_{\boldsymbol{\iota}<|\boldsymbol{\iota}|< N}\frac{f(T_{\boldsymbol{\iota}}\boldsymbol{\omega})}{t}dt\Big|> \lambda\Big\}\!\leq\!\!\frac{C}{\lambda}||f||_{\scriptscriptstyle 1}$$

for all $0 < \varepsilon < N < \infty$, $0 < \lambda < \infty$ and all $f \in L^1(\Omega)$.

PROOF. See [2].

Now we have the following generalized M. Riesz's theorem which was first proved by M. Cotlar [1]. Our proof is based on Corollary 1.

THEOREM 4. Let (Ω, B, μ) be a σ -finite measure space and let $\{T_t: t \in R\}$ be a measure preserving flow on Ω . Let p be any real such that 1 .

Then, it follows that

- (i) for any $f \in L^p(\Omega)$, $\lim_{t \to 0+, N \to \infty} (1/\pi) \int_{t < |t| < N} (f(T_t \omega)/t) dt$ (denoted by Hf) exists in the norm topology of $L^p(\Omega)$,
 - (ii) H is a continuous linear operator on $L^p(\Omega)$.

PROOF. As the previous arguments, we define a one parameter group of operators $\{U_t; t \in \mathbb{R}\}$ on $L^p(\Omega)$ such that, for any $f \in L^p(\Omega)$,

$$(U_t f)(\omega) = f(T_t \omega)$$
 for all $t \in R$ and $\omega \in \Omega$.

First we see, from von Neumann's and Yoshida's ergodic theorem, that the first part of condition (i) in Corollary 1 is satisfied, that is, $\lim_{T\to\infty} (1/2T) \int_{-T}^T U_t x dt$ exists in X for all $x\in X$. And the second part of condition (i) in Corollary 1 is clearly satisfied since $||U_t f||_p = ||f||_p$ for all $f\in L^p(\Omega)$. Therefore it is sufficient to show that the condition (ii) in Corollary 1 is satisfied.

By Proposition 1 and Lemma 3, there exists a constant C>0 such that, for any $0<\varepsilon< N<\infty$,

$$\mu\{\omega\in\Omega\colon |H_{\epsilon,N}f|>\lambda\}\leq \frac{C}{\lambda}||f||_1 \text{ for all } f\in L^1(\Omega)$$

and

$$||H_{\epsilon,N}f||_2 \leq ||f||_2$$
 for all $f \in L^2(\Omega)$.

This implies, from Marcinkiewicz's interpolation theorem, that, for any $1 , there exists a constant <math>C_p > 0$ such that

(4)
$$||H_{\epsilon,N}f||_p \le C_p ||f||_p$$
 for all $0 < \varepsilon < N < \infty$ and $f \in L^p(\Omega)$.

In the case of $2 \le p < \infty$, put q = p/(p-1). Then, we see that, for any $0 < \varepsilon < N < \infty$, $f \in L^p(\Omega)$ and $g \in L^q(\Omega)$,

$$\begin{split} \int_{\Omega} H_{\epsilon,N} f \cdot g d\mu &= \int_{\Omega} \left(\frac{1}{\pi} \int_{\epsilon < |t| < N} \frac{U_{t} f}{t} dt \right) g d\mu \\ &= \int_{\Omega} \left(\frac{1}{\pi} \int_{\epsilon < |t| < N} \frac{f(T_{t} \omega)}{t} dt \right) \cdot g(\omega) d\mu \\ &= \int_{\epsilon < |t| < N} \frac{1}{\pi t} \left(\int_{\Omega} f(T_{t} \omega) g(\omega) d\mu \right) dt \\ &= \int_{\epsilon < |t| < N} \frac{1}{\pi t} \left(\int_{\Omega} f(\omega) g(T_{-t} \omega) d\mu \right) dt \\ &= -\int_{\Omega} f\left(\frac{1}{\pi} \int_{\epsilon < |t| < T} \frac{U_{t} g}{t} dt \right) d\mu \\ &= -\left(\int_{\Omega} f \cdot H_{\epsilon,N} g d\mu \right) d\mu \end{split}$$

which implies, by Hörder's inequality and (4), that

$$||H_{\epsilon,N}f||_p = \sup \left\{ \left| \int_{\Omega} H_{\epsilon,N}f \cdot g d\mu \right| : ||g||_q \leq 1 \right\}$$

$$= \sup \left\{ \left| \int_{\Omega} f \cdot H_{\epsilon,N}g d\mu \right| : ||g||_q \leq 1 \right\}$$

$$\leq \sup \{ ||f||_p ||H_{\epsilon,N}g||_q : ||g||_q \leq 1 \}$$

$$\leq C_q ||f||_p = C_{p/(p-1)} ||f||_p .$$

It follows, from this and (4), that, for any p such that $1 , there exists <math>C_p > 0$ such that

$$||H_{\varepsilon,N}f||_p \le C_p' ||f||_p$$
 for all $0 < \varepsilon < N < \infty$ and $f \in L^p(\Omega)$.

This shows that the condition (ii) in Corollary 1 is satisfied. Therefore, by Corollary 1, the proof is completed.

The author wishes to express his sincere thanks to Professor S. Koizumi of Keio university and the referee.

References

- [1] M. COTLAR, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyama, 1 (1955), 105-167.
- [2] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.
- [3] K. Petersen, Another proof of the existence of the ergodic Hilbert transform, Proc. Amer. Math. Soc., 88 (1983), 39-43.
- [4] K. Yoshida, Functional Analysis, Springer-Verlag Berlin-Heidelberg-New York, 1971.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND TECHNOLOGY
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU
YOKOHAMA 223