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Introduction

This paper is a study of three different types of induced represen-
tations of algebraic groups over an algebraically closed field X. As an
application of it we can extend the method of Hecke algebras or Iwahori
algebras of finite Chevalley groups introduced by N. Iwahori over Z, the
ring of integers (see [4]) to the case of Chevalley groups G over K.

In section 1 we shall define the induced modules, but in case of
Chevalley group G these three induced modules are given as follows.
Let B be a certain Borel subgroup of G as in [10, §3] and K *=K—{0}.
Let »: B—» K™ be a rational linear character of B into K*. We shall
write A5, KG*X and ind¢)\ respectively for the three induced modules
induced from ), where KG is the algebra of G over K.

DEFINITIONS.
AM={f:G—K| f(bg)=n(b)f(g) for any beB and ge G}

(see [5]). We define gxf, where geG and ferg, to be the map of G
into K which takes x€ G to f(zg), i.e.,

9* f(x)=f(xg) (z,9€@G).

indgv={f € K[G]| f(bg)=\(b)f(g) for any be B and 9€G},
i.e.,
ind§ v =K[G]NA§, where K[G] is the coordinate ring of G .

We define X to be the map of G into K which takes xcG—B to 0
and xz€ B to \(x), then X )& and

KGQRxs L=KG*X (see Proposition 3.1)
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where L is a one-dimensional KB-module which affords the character
e

ind¢» and KG=xX are KG-submodules of A3 and these three induced
modules coincide with each other if G is finite (see Corollary 1.2 and
Remarks to (1.7)).

In section 2 we examine the basic properties of the induced modules
such as A& in case of abstract groups and show Frobenius Reciprocity
and Transitivity of Induction ete.

In section 3 we review the structure of certain spaces of KG-
homomorphisms such as Homgs(KG *X, A§), which will turn out to be a
generalization of Iwahori algebra. However, those KG-homomorphism
spaces were already studied in [8] in slightly different way.

In section 4 we show the extension as follows. It is well known
that if ind¢ A»#0, ind¢ \ contains a unique B-stable line generated by, say,
f, and KG=«f is an irreducible finite dimensional rational KG-module (see
[10, §12, Theorem 40]). Similar to the fact that the Iwahori algebra
deeply relates with the ordinary representation theory of finite Chevalley
groups (see [2] and [3]), we can describe the weight element f or KG*f
as the image of certain KG-homomorphism of KG *\* into A, where w,
is the element of maximal length of the Weyl group W of G. More
precisely Homg,(KG %", \%) has certain K-basis {a,|w € Ww,} (see Prop-
osition 4.2) and we have

f=( 3 f@)a)(n")
wewW ywg
where w, is a fixed representative of w in N (see Theorem 4.7).

We have also got a similar result to the theorems on modular rep-
resentations of finite Chevalley groups as in [6]. Let U be a certain
maximal connected unipotent subgroup of G contained in B (see [10, §3])
and 1, be the trivial one-dimensional linear character of U into K*, then
1¢ contains ind¢» as KG-submodule. Thus f is also contained in 1% and
we can describe it as the image of certain KG-homomorphism of KG+1,
into 1%, that is, Homgo(KG x1,, 19) contains a certain linearly independent
subset {4,, |hc H, we W} (see Proposition 4.3), and

f=C >3 Mh)Sf(@0o)Aka,)10)
weW wo,he H
(see Theorem 4.9). One can also find a similar formula in the case of
modular representations of finite Chevalley groups in [6, Proposition

3.1)].
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§1. Definitions.

We first explain three different concepts of induced modules in group
representation theory. ‘

LEMMA 1.1 (see [5]). Let G be a group and H be a subgroup of G.
Let kG and kH be the group algebras of G and H over a JSield k& respec-
tively. Let L be a left kH-module. We write L% for the set of all
mappings

f:G—L such that f(hg)=hf(g) for any he H and geG .

Then
(i) L§ becomes a left kG-module by the following operation

(Hi+R@=f(@+f(9) (fy, ficLE, geqG),
(ef)g)=cflg) : (feL%, ge@, cek),
(9 * f)(@)=f(xg) (feLg 9,v€q).

(ii) Let G= Upne_r Hz, (disjoint union) and {I,|i€ _#} be a k-basis
of L, i.e., L=@,. kl, (direct sum), then {z;'Ql, |1, m)e ~ X #} forms
a k-basis of kG, L.

(ili) Let f,n, be the mapping of G into L such that Sim(h2;) =011,
(heH and je _#), then f,,cL$ for any (i, m) e _#Z X _#, where Omm=1
and 6,;=0 if m==~73.

(iv) Let ¢ be a mapping of kGR,x L into LS which takes each xR,
t0 fim» where (i, m)e 7 X _#; then ¢ is an injective kG-homomorphism.

Proof is straightforward.

COROLLARY 1.2. Let G, H, L, k and ¢ be as in Lemma 1.1. If »#
18 a finite set, t.e., [G: H]<co, then ¢ is bijective.

PrROOF. Let feLf§ and f(®,)=13;c.-cinl; Wwhere me._# and ¢, ck,
then {c,.|(4, m)e _Z x _#} is a finite set. Since

cim.ftm € L?i and ( Zl P ctm.ﬂm)(x.‘i) =‘§ ct.‘il{=f(xi)

(t,m)e X 2 (t,m)e X
where j € _#, we have shown that f = t.m erxe CimSim € (KGR L). Hence
¢ is bijective. Q.E.D.

It can be easily shown that ¢ is not bijective in general.

Now let K be an algebraically closed field and (G, .5%) be an algebraic
grouv over K, i.e., (G, &%) is a variety with a sheaf of K-valued functions
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%% on G and has the group operations which are morphisms of va-
rieties (see e.g. [9]). Since any finite group ¥ can be embedded into
a symmetric group S, (CGL.(K)), where n=|Z|, by the regular re-
presentation, from now on we assume that a given finite group ¥ is
contained in (G, &%). Since ¥ is a closed subgroup of G, it has the in-
duced sheaf of K-valued functions &% such that

F(0)=Ty,ns(0) for any open set O in &

which is contained in U,N¥ (1=i=sl), where U;’s are affine open éovering
of G and &,ns is a canonical sheaf of functions on the affine algebraic

variety U;,N¥.

LEMMA 1.8. Let (V, A) be an affine algebraic variety over K where
A is the coordinate ring of V. Let S be a finite subset of V and M(S, K)
be the set of all mappings of S into K. Then

{fIS|feA}=M(S, K) .

PrROOF. Clearly f|SeM(S, K) for any feA. Assume that S has ¢
different elements {s,, 8, -+, s;}. Let V;=V—(S—{s}). Since finite sets
are closed in V, V, is a union of finite principal open sets V,of V. V.=
U;V;. Since s,eV, and s;¢ V, if j#1, there exists f;€ A such that

f(8)#0 and fi(s;)=0 if j+#1, for any 1=t
Hence {f|S| f e A}=M(S, K). Q.E.D.

COROLLARY 1.4. Let (X, &%) be a variety over K with a finite afiine
open covering {U;|1=1,2, ---,l}. Let F be a finite subset of X with the
induced sheaf of K-valued functions % such that

F(0)=Ty,nr(0) for any open set O in F
which is contained in U,NF (1=i<l). Then
F(S)=M(S, K) for any subset S in F'.

PROOF. Since HAS NU)= Pp,nx(SNU)=MSNU, K) and S=
U SN U, feFH(S) if and only if 18N U, e M(SN U,, K) for any 1=:=l.
Hence %(S)=M(S, K). Q.E.D.

DEFINITION 1.5. Let (G, &%) be an algebraic group over K and M
be a vector space over K. We define Map(G, M) to be the K-space of
all mappings f of G into M such that
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f(G) spans a finite dimensional K-subspace N of M
(we write K{(f(G)) for N) and
f:G— N is a morphism of varieties .

PROPOSITION 1.6 (see [1]). Let (G, &%) be an algebraic group over K
and M be a wvector space over K. Then
(i) Map(G, M) is a left KG-module by the following operation:

G X Map(G, M)———»Map(G M),

(g, f)k———>g*f

where (g* f)(x)=f(xg) for an x<G.
(ii) If M=K, then Map(G, K)=S%G).
(il) FERx M is a left KG-module by the following operation

G x (%(G)@)K M)— -%(G)®x
(9, f®M) — (g * f)®m

and the map
o: %(G)®KM ——>Map(G M),

f ®m — P(f Qm)

- where p(fR@m)(g)=f(g)m (g€ @), is a KG-isomorphism.

(iv) Map(G, M) is a locally finite rational KG-module, i.e., KGx*f
is a finite dimensional rational KG-module for any f €Map(G, M), if
@) is locally finite and rational as left module.

DEFINITION 1.7. Let (G, $%) be an algebraic group over K and H be
a closed subgroup of G. Let V be a left KH-module, then we define the
induced KG-module ind%V induced from V to be the KG-submodule

ind$ V={f e Map(G,V) | f(hg)=hf(g) for all he H and g€ G}
of Map(G,V).

REMARKS TO (1.7). Let G, H and V be as in Definition 1.7. Then

(i) ind%, V=Map(G,V), where {1} is the trivial subgroup of G.
, (ii) ind%, K=.%(G), where K is_considered as the one-dimensional
trivial left module of {1}.

(iii) If Map(G,V) is locally finite and rational, e.g., G is affine, then
ind% V is also locally finite and rational.
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(iv) Let (¥, 5%) be a finite .subgroup of G and 5~ be a subgroup
of & and W be a K5#-module. Then

(a) indZ W is the set of all mappings f: & — W such that S(hg)=hf(g)
for all he 2 and gew, i.e., indZ W=WZ.

(b) There exists a K% -isomorphism ¢ of KZ Qx> W into indZ W such
that

U QW)= fin: & — W
()] w

where ¥=U,. 57, (disjoint union), W= &D..- Kw, (direct sum) and
h € 57

So far we have defined three types of induced modules of an algebraic
group (G, &%) over K, V§, ind§V and KGR« V where (H, %) is a closed
subgroup of (G, &%) and V is a KH-module. Though V§ contains ind¢V
and KGQxyV and all these three modules coincide in case of finite groups,
they are not equal in general.

§2. Basic properties of V§.

Let G be a group and H be a subgroup of G. Let kG and kH be
the group algebras of G and H over a field k respectively. We show
some basic properties of V§ such as Frobenius Reciprocity and Transitivity
of Induction etec., where V is a left kH-module.

PROPOSITION 2.1. Let G be a group, H be a subgroup of G and V
be a kH-module.
(i) Let
&v: VG —V,
()] ()]
f — fQ1)
then e, 18 a kH-homomorphism.
(ii) For any kG-module M and kH-homomorphism ® of M into V,

there exists a wunique kG-homomorphism P: M—VE which makes the
Jollowing diagram commutative.

M—¢—+V

\NQ /
EN v
Vg
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PROOF. (i) e&p(h*f)=f(h)=hf(1)=he,(f) for any he H and f e V§.

(i) Let m e M, we define $(m) to be the map of G into V such that
Gogr—p(gm)e V. Since ¢ is a kH-homomorphism, #(m)e V§. Let
x, g€ G, then

z*(P(m))(g9) =P(m)(gx) = p(grm)=p(xm)(g) .

Hence z*x@(m)=@(@m) for any x€G and meM, that is, & is a kG-
homomorphism. Clearly &,°d(m)=®(m)1)=¢@(m) for any me M. Let
f: M—V§ be a kG-homomorphism such that ¢,of=¢. Since {f(m)}(1)=qp(m)
for any meM and {f(m)}(g)=gx*{f(m)}1)=f(gm)1)=p(gm), we have
f=a. Q.E.D,

COROLLARY TO (2.1) (Frobenius Reciprocity). Let M be a kG-module,
then

Hom, (M, V)=Hom,,,(M,V5§)
w w
PP
as k-spaces where V and & are as in (ii).

ProOPOSITION 2.2 (Transitivity of Induction). Let G be a group and
LD H be subgroups of G. Let V be a kH-module, then

(VES=VE as kG-modules .

PrOOF. Let
& :VE— V, &:VE— V and &:(VEI—> VE.
w w w ) w 0)
f—fQ) J—fQ) S — FQ)

From Proposition 2.1 there exist a kL-homomorphism +: V§—V% and la
kG-homomorphism +:V§ — (V£¢ which makes the following diagram
commutative.

Notice that
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FONg) : L—V for any fe V5 and geG .
w w
L — f(lg)
Now let e (VE)E. We define Z to be the map of G into V such that
Z(9)=(4(9))(1) where geG. Since

B:G— ViV
(0] (0] ()
g — p(g)— (u(g))(A)

and z(hg)= (p(hg))(1) = (b 1(g))(1) = (£(9))(h) = h(1(g)(1)) = h((g)) for any
he H and ge G, we have Ziec V§. Since

VX9 : L—V

() w

l — f(lg)
and Z(lg)=(£(lg))(1)=(1» 1(9))(1)=(4(9))@) for any le L and g € G, we have
¥(#)=p. Hence ¥ is surjective. Injectivity of 7 is clear. Q.E.D.

DEFINITION 2.3. Let G be a group and M and N be kG-modules,
then M, N becomes a kG-module by the following operation.

G X M®k N — M@k N
(O] w
(g, 5‘_‘. m@n,) — 2 gm,Qgn,

DEFINITION 2.4. Let G be a group and H a subgroup of G. Let V
be a left kH-module where k is a field. We define a kG-submodule V¢
of Vi to be the set of all mappings f: G —V such that f(G) generates a
finite dimensional k-subspace k{f(G)> of V and

S(hg)=hf(g) for any he H and geG .

PROPOSITION 2.5 (Tensor Identity). Let G be a group and H be a
subgroup of G. Let V be a kH-module, and W be a kG-module such that
kGw is finite dimensional for any we W. Then

VW L (VR
D (0]
JQw — [o(fQ@w): g — f(g)Rgw]
as kG-modules.

PROOF (see [1]). Let ]ﬁ(G,V) be the set of all mappings f of G into
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V such that f(G) generates a finite dimensional k-subspace of V. Then
M(G V) becomes a left kG-module by the following operation:

i+ LD =L@ +f9) (f» e MG,V), ge6),

(ef)(9)=cf(g) (fe M(G,V), geG, cck),
(9% f)(x)=f(xg) (feM@G,V), g,2¢G).

We first show that the map
D: M(G V)®,,W—-> M(G V®,,W)

f QQw — [D(f ®w) g f()RQgw]

is a kG- 1somorph1sm Let {v,lzeI } be a k-basis of V. Since V=p,.; kv,
(direct sum) and M(G, kv,)c M(G,V),

M@G,V)=M@G, D kv)=@ MG, kv) .

Hence ﬂ(G VIQuW = (@.e: MG, kv))QW = Dse; (.QLy)HG, V)R, W)
where 7, M(G, V)— M(G, kv,) is the projection and 1,:W — W is the iden-

tity map. Similarly since VQ, W=, kv.Q.W, we have MG, VR, W)=
@D.er MG, kv,Q,W). Thus we first check that

O| MG, kv)Q. W : M(G, kv)Q W —s M(G, kv,Q W)
(O] ()]
SRwW —— [0(fQw): g — f(9)RQgw]

is a k-isomorphism. Let
@ : MG, k)R, W — M(G, W) ,

(6] o
FRw —— [p(fQw): g +— f(g)gw]
?: MG, BYQ, W — M(G,W)  and
o ()]

JRw — [p,(f@w): g+— f(g)w]
P, M(G,W)— M(G,W) ,
w (4]

T —— [py(7): g — g7(9)]

then @, and @, are well- deﬁned k-linear maps and p=@,op,. Let {f,|te T}
and {w;|j € J} be k-basis of M(G, k) and W respectively, then {(fiQw,|te T,
j€J} forms a k-basis of M(G, k)R, W. Assume that @35 Coif 1 Qw;)(x) =0
for any x € G where {c,;}Ck and almost all c,;’s are zero. Since

901(th ct,-ft®wj)(x)=t§;. ct,-ft(x)w,-=>;. (; C.if(@))w;=0
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for any 2 e G, 3 ¢.;f(x)=0 for any z € G and jeJ. Thus all ¢,;’s are zero
and @, is injective. Now let h € M(G,W) and {w,, w,, -+, w,} be a k-basis
of N=k{(h(G)) and

h:G—s N=kw - - - Dhw,

(O] (O]
g — h(g)=fi(@w,+ - -+ +f.(Qw,

where f(g9), «--, f.(9) €k, then h=p,C L, [ Qw,). Hence @, is bijective.
Since the map ‘
MG, W)— MG, W)
w ()]
T — [g—g7'7(9)]
is @7, @, is also bijective. Hence @=¢,op, is a k-isomorphism. Thus
we have shown that @ is a k-isomorphism. Let fQ®we M(G,V)R.W,
then
D(g(f Qw))(@) =P(g * f Qgw)(®) =g * f () Rrgw = f (xg) Rrgw
=(g*P(fQw))(x)  for any g,xeG,
which implies /th\at @ is a kG-isomorphism. Finally we show that
H(VERW)=(VR,W)E. Let fQwe ViR, W, then

O(f Qw)(hg)=f(hg)Dhgw =hf(g)Dhgw =hd(f Qw)(9)

for arg\heH and g€ G. Hence ¢( Vg@kW)c(V@/@,,\W)%. Conversely let
7€ (VR.W)§ and {w;]j€J} be a k-basis of W, then we have 7(g9)=
Diier Ti{@9RQgw; where t;(9)eV (7€J). Suppose that there exists
e [iQw;e MG, V)R, W such that (., f;@w;) =7, then z(g)=
2iier THOR9W; =350, F(9)R9w; and f(9)=1«g) for any jeJ and geG.
Hence it is enough to show that each f;€ V5. Since

7(hg)= JZ‘} 7i(hg)@hgw;=hr(g)= ,Z} hti(9)QQhgw; ,
we have fij(hg)=hf(g) for any he H and geG. Therefore f;e V¢ and
p=0| ViR, W is a kG-isomorphism. Q.E.D.
§3. Modules induced from linear representations.

Let G be a group and H a subgroup of G. Let A be a linear char-
acter of H into k*=k—{0}, where & is a field. We consider £ to be a

one-dimensional kH-module such that
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Hxk—k.

w L
(hy, 2) —— N(h)x

Thus we have Af={f:G—k| f(hg)=\(h)f(g) for any he H and gecG}.

Now let X: G—Fk be an extension of a: H—k such that X(h)=x(h)
for any k€ H and X\(g)=0 for any ge G—H, then X e)\% and h*xX=x(k)X
for any he H.

PROPOSITION 3.1 (see [8, Proposition (1.2) and (1.3)]). Let G be a
group and H a subgroup of G. Let -n be a linear character of H into
k*, where k is a field. Let \:G—k be the extension of n. Let G=
Ume.e H2,, (disjoint union) and f, be the mapping of G into k such that

Sulhe)=0u(h)  (heH, je #).

We assume that one of {x,} is 1. Then
(1) faeNg for any me _# and

¢ kG®ka -— X(I;i
w w
Tm QL — fon
18 an injective kG-homomorphism and (kGR.uk)=kG *X\;
(i) fa=2aa'*N\ for any me _#;
(iii) since x;'*\ takes the value zero outside of the coset Hzux,, for
any scalar c, <€k, we can define an element Dinec_eCan’*N of \% to be

Dime et Cnlm ¥ N AL p) =CN(h) where he H and m' e _#;
(1v) AG={ZmeeCuz'*N|Vc, k).

Proor. (i) From Lemma 1.1, f, €)% and ¢ is an injective kG-homo-
morphism. Let z,,=1, then ¢«(x;!®1)=f,.=x. Hence (kGR,x k)=kG*7C.

(ii) is clear from the proof of (i). '

(iii) It is clear that 3. .c.2='*X: G—k is a well-defined map. Let
he Hand geG. We can assume that hg € Hz,, for some m’'e_#. Hence
(Xime.e CuZn' *N)(hg) = cun(h') where hg=h'z, for some h'e H. Since
Come e CaZax X)) @) =c.AN(h7*R"), Wwe have

(32 eatt xD)(h9)=Ca(h) =AR)CuMAR)=MRI(E,_cutia’ + X)) -

Thus e e CaZal* X ENE.
(iv) Let f be an element of \%, then we have

F=3 fw)waisx . QE.D.
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Now let H, be a subgroup of G and A\, H,— k™ be a linear character
of H, into k*, where i=1,2. Let X\, be the extension of )\, and Y,=
EG+X, (i=1, 2). Let G= U, Hyx, (disjoint) and G= U,._, Hy, (disjoint).
We assume that one of {x,} and one of {y,} are 1. Y, has a k-basis
{xz'*X,} and Y, has a k-basis {y;'*X,} and

(>\11)%1= {“glr CYn't*x N | Ve, €k} .
We shall use the following notation, for x, y € G:

Yy=x"‘yx, Hf=x"'Hgx, HY=HNH, and

A HP — k.
w w
h +— N (xhx™)

We also write H;® for H,N Hf, where Hf=x"'Hx. Let G= U,.;D,, where
the D,s are distinct (H,, H,)-double cosets HixH, in G, and JCI be the
set of indices j such that for some ze€D;, Af=)\, on H*. It can be
easily checked that if A=, on H™ for some x € D;, then A\i=2x, on H®*
for all x € D;.

Assume xze€G and H,=U, H®h, (disjoint), then we have HaxH,=
U, Hxh, (disjoint) and also Hax'H,= U, h;'2 *H, (disjoint) (see [7, Lemma
2.1).

PROPOSITION 3.2 (see [8, Proposition (2.1)]). Let G, H, \,, Y, and J
etc. be as above. Let g;€ D;* be a fixed representative of each double
coset D;* (jeJ). Let

H,= U H¥7"h, (disjoint) .

We always assume that one of {h,}, that ts, h,, is 1. Then

(i) Since H,9;H,= U, h;'g;H, (disjoint) and GO U; H,g;H, (disjoint),
we can assume {y;'}o{h;7'g;} and define an element 3, N\.(h,)h;7'g;*X, of
(M)%,, as in Proposition (8.1), to be (30, Mo(R)Ri'g;* X)(Rg7 y) = No(h, )Ny (h)
where he H, and (3, M(h)h79;*N)(®)=0 2f x ¢ D;.

(ii) Let A;(X)=.M(k)RT'g;* N, then

AJ' : Y2 -_ (7\11)?11
v oo
m;l * 7\'2 . x;lAi(kz)

18 a well defined kG-homomorphism for each jeJ.
(iii) {A;}je; are linearly independent in Hom,o(Y,, (\)%,)-
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PrOOF. (i) From Proposition 8.1 (iv), certainly 3, n,(k,)h:'g;+X, belongs
to (W)E,. .

(ii) Since {xz'*A,} is a k-basis of Y,, A, is a well-defined k-linear
map. Let ge G and assume

GO * Ny = Tmiht % Ny = Ng ()l % X,
where gx,'=wx,lh for some m,e_# and he H,. Then we have
A(gaz'* No) = No(B) A1 (Ns)

We shall show that gA;(x;'*X,)=A;(gxn'*X,). Since r'H,=H,=
U, B7'h7 HE T (disjoint), there exists r,e H¥7® such that h~*h7*=h'r,
for each s. Notice gA;(x;'*X\,)=gxn'A,;(X,)= TmhA;(N;). Let x¢D;, then
wh & D; and we have n,(h)A;(X,)(@) =0=hA;(X,)(x). Assume h,g;'h, € H,g; H,=
D;= U, H,g7'h, where h,c H,, then we have

Ma(h) A1 (0) (hog7 T,) = No(B)Na (P s (B
and
kA ;N (g7 ) = Aj(N) (o7 B oh) = Ai(N) (Rog7 v, )
= A;N)(ho97' 779597 Rer) = No(By DN (o 727779 5)
= NP )Ny (Ro)NT ("' D =Ne(Be )My (RN (75 D)
=7\,2(7',_1h,r)7\,1(h0) = Nz(hsh))q(ho) .
Hence hA;(\,) =n(h)A;(X\,) for any h € H,. Thus A,;(grz'xN,) = ()i A () =
Tmih Ai(N) =gx7"A;(N,) =g A (!t *N,) for all ge G and m e _~.
(iii) Suppose 3;.,t;A4;=0, where ¢;€k and almost all ¢,’s are zero,

then ;s t;4,(00)(hg7'h,) =t; Ns(h, )\ (R)=0 for any j,eJ and hgilh, € D;,.
Hence ¢;=0 for all jeJ and {4,};., are linearly independent. Q.E. D

Sinece A;(X.) =3, Ma(R)R;'g; %%, € (W% and A4«(X,) vanishes outside of the
coset D;, for any scalar c;e€k we can define an element (3., c;A;)(\,) of
(\D%, to be

(j%. chj)(Xz) =JZEZJ(§] cihy(h)hi g * x1) .
Since (A)%, is a kG-module, we can define
(Z} c;iA)(@='*X,) to be 90;.1(2} ¢; AN € (WDE,
Je€ Je

for each x;'. Thus we have

(X ;A (@n’ * Ng) = Tw (> 0 A) (M) =1 w20 (3 ea(R)RTgx )
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We also define (3je; €iA)(Sime e L * ;) t0 be Do e ta(Slier €A *N,)
where almost all ¢,’'s €k are zero.

THEOREM 3.3 (see [8, Theorem (2.2)]). Let G, H, N\, Y, and A; (jeJ)
etc. be as before.

(i) Let _#F={jeJ||Dj'/H|< >} and E=Hom,(Y,,Y,), then E is a
k-subspace of Hom,o(Y,, \)%,) and {A;|j€ _F} forms a k-basis of E.

(ii) For any scalars {c;ek|jed}, DljesciA; is a well-defined kG-
homomorphism of Y, into (\)%,.

(iii) Let f be an arbitrary element of Hom,o(Y,, (\)%,), then there
exists a unique scalar ¢; €k for each jcJ such that

f=2 c;A; .
Jed

PROOF. (i) Since Y,Cc(\)%,, E is a k-subspace of Hom,s(Y, (\)%,)-
From [7, Theorem (1.8)] it is clear that {A;|je€ £} forms a k-basis of E.

(ii) Sinece {xz'*X,} is a k-basis of Y,, D};c;c;A; is a well-defined k-
linear map of Y, into (\)%,. Let geG and me_#; and assume gx,'=x..h
for some m,€ _# and h€ H,. Then

(5, 054,02+ %)= (5, 054wt * K) = haWmi(S, 0sA)(R)

Since g(jes CiA) (@1 * X)) =9%n' (jes CiANN) =Tmih(Xijes ¢;A)(N;), We only
have to show that

h(ff_‘} c;iANN,) =7\,2(h)(’§} CiANN,) -
Let x ¢ D; for any jeJ, then since xh ¢ D; for any je€J, we have
M ;4D )H@) =12 (35 en(ho)Ri g5+ )} (@h)=0
) =;:2(h){(j§, ¢; AN} )

Assume x € D, for some je€J, then since xh belongs to D;=H,g7'H,, we
have

h{(g} ;A (X)) (@) = ¢;A,;(N)(@wh) = c {h A;(X)}(2)
= ;A ;(h * Xe) () = ¢ Na() A;(N) () =>\'2(h)(’_§af ;A )N)() -
Hence 3);.;c;A; is a well-defined kG-homomorphism.
(iii) Let take a fixed representative g, from each (H,, H,)-double coset

D;* (i e I) such that {g9,};,c;D{9;};e;. Let H,= U, H®%"r, (disjoint) for each
1€ 1, then we have H,g9.H,= U, r;'9.H, (disjoint) and we can take a k-basis
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of Y, to be U, {r;'g;*\,| H,= U, H*"r, (disjoint)}. We always assume
that one of {r;}, that is, r, is 1.

Let f be an arbitrary element of Hom,(Y,, (\,)%,), then we have
SR =201 €077 9:x X,, Where ¢, , € k and almost all {c, ;} are not necessarily
zero. Since hx f(X,)=f(h*X;)=x,(h)f(X,) for any h e H,, we have

h qz;; cq,t"';lgt * Ny = No(R) qZ;, cq,t'r;lgt * N =q§;. cq,ckz(h)'r;lgt * 7\.'1 .

Hence (3}, €q,77'0:* M) (@h) =, ¢q.ine(B)T7 g, * X)) () for any x € D,, because
H,g:'H,h=H,g;*H,= U, H,g;'r,. Let 74 € {7y}, then we have

(qu Co, 17 G * N)(9T 7 g) =Cqp i = (zq‘, Co, NPT G * N)(97Y) = Cop, A7)
Thus we have c,,,=\,(7)c,,,. for any r, €{r,}. Hence |
FO)=3 3% c0n, Ml )73 g, My
=; Cq.,z(Zq'. M(TITTGixN)
Let he H™, then
Cont(Z5 M )T g% M)(GT 1) = €0, Mal)

= cq,,i(qu Ne(T )77 g * N)(RigT) = eq, My (RPY) .

Hence ¢, ;#0 only when \f7'=), on H¥ . Thus we have
f(xz) ':EAI cq:-,:i(zqa )\'2(7'q)7'<z_lgj * Xl) = (.'Elf cq!,.‘iAJ')(—XQ) .

Since >};c; ¢, ;A; is a kEG-homomorphism from (ii), we have f=3,. 7 Cqu iAje
It is clear that the scalars {c, ;|j€J} are uniquely determined by f,
because f(X,)(g7")=c,, ; for each jeJ. Q.E.D.

REMARK. Let (G, &%) be an algebraic group over K and (H, %) be
a closed subgroup of G. Let n: H— K* be a homomorphism of algebraic
groups of H into (K*, K[X, X™']), i.e., one-dimensional rational represen-
tation of H over K. Clearly »: H—K* is a one-dimensional rational
representation of H if and only if »: H—K* is a group homomorphism
and )€ .S (H). Since a map f: G— K is a morphism of varieties if and
only if f e $%(G), we have

indg n=1% N FA4%(G) (see Proposition 1.6) .

However KGx*x=)% N KG does not hold in general, where KG is embedded
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into K%, ={f: G— K| f is a mapping} as follows:
KG;’Kg,

w w

g—ll 5 g*
(where g* is a mapping of G into K which takes g to 1 and g to 0 if
g+¢'), because X does not belong to KG if H is infinite.

§4. An application to Chevalley groups.

In this section we follow the same notation as in [10, §3], that is,
G is a Chevalley group defined over an algebraically closed field K with
respect to a given finite dimensional semisimple Lie algebra & over the
complex number field and a finite dimensional faithful module of & Let
> be the root system of &%, then G has a set of generators {x,({)|ael
and t€ K} and the following subgroups.

U={z,(t)|a>0 and te K) .
H=<(h,(t)|a€X and te K*),
where h,(t)=w,(t)w. (1) and w,(t) =2, (E)x_(—t )z (t) .
B=UH.
N=Lw,(t)|lae X and te K*) .
Let W be the Weyl group of ¥, then there exists an isomorphism ¢ of

W onto N/H which takes each reflection w,€ W of o€ to w,1H. G
has a Bruhat decomposition

G= U BwB (BwB=Bw'B= w=w")

wew

and every element of BwB is uniquely expressed as a product of an
element from B, a fixed representative w, of w in N and an element
from U,, where

U,=<{x,(t)|lae PNw™(—P) and te K)

and P is the set of positive roots of X (see [10, §3, Theorem 4 and 4]).
Hence G has a (U, U)-double coset decomposition
G= U UnU (UnU=Un'U=n=n')

neN

and Uhw,U=Uhw,U, for any he H and we W.
Now let n: B— K* be a linear character of B into K*, then KeraD U,

because U is the commutator subgroup of B. Hence we can identify the
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set of all linear characters of B into K* with the set of all linear char-
acters of H into K*, because B> U and B/U=H.
Let X\ be the extension of A as in §3 and Y;=KG=x*X, then

PROPOSITION 4.1 (see [7, Theorem (2.1)]). Let G be a Chevalley group
over an algebraically closed field K, and U, H and B etc. be as before.
Let x»: B— K™ be a linear character of B into K*. Then

(i) the module Y, is indecomposable; and

(ii) for any pair of linear characters » and N of B into K*, it
holds A=\ if and only if there exists a mon-trivial KG-homomorphism
of Y; into Yy

(iii) dimg Endgs(Y,)=1.

Since B"**»=B“» and A'“w=)\“¢ for any he H (for the definition of
A, see §3), we shall write \* for A“», where we W. Similarly let X
be the set of all linear character of H into K*, then W operates on X
as follows:

WxX—X where \N“: H— K> .
w w w w

(w, A) ——\¥ h —— n(whw™)

We define W, to be the isotropy group {we W|a*=x on H} of ) in W
(e X). It can be easily verified that

Wam={we W|x“=x on B~ B}

for any linear character ) of B into K*. Hence we also write W, for
Waa when X\ is a linear character of B into K*.

PROPOSITION 4.2 (see Proposition 8.2 and Theorem 3.83). Let G be a
Chevalley group over an algebraically closed field K, and U, H and B etec.
be as before. Let n: B— K* be a linear character of B into K* where
1=1, 2 and

W ={we WAY=\,} .

(i) Since Bw;'B=U,w;'B and Bw;'B= Usew, uw,'B (disjoint), we
can define an element 3.,.;, uwz'*\, of (\)§ as in Proposition 3.2, where
we %, to be

(D) uwz'*n)(bw,u' ) =x,(b) where w' € U, and be B

UeUy,

and
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(S uwzt*N)(@x)=0 +f © ¢ Bw,B .

uely
(ii) Let a,(Ae)=iuer, U@L * Ny, then

@i Y3 — ()3
(.I)_ (O _
Tl * Ny — T Au(N,)

1s a well-defined KG-homomorphism for each w € %", where G= U,._ . Bz,
(disjoint union) and {X.}= Upew @y U,.
(iii) {a.|we P} forms a K-basis of Homga(Y, (A)%).

PROPOSITION 4.3 (see Proposition 3.2 and Theorem 3.3). Let G be a
Chevalley group over an algebraically closed field K, and U, H and B etc.
be as before. Let 1,: U— K* be the trivial linear character of U into
K*, t.e., 15(u)=1 for any uec U.

(i) Since Uwz'h U= U,w3'h U for any he H and we W and

Uwz;h U= U uwz'h*U (disjoint) ,

ueUy

we can define an element X..vp, uw3thx1, of 1% as in Proposition 3.2
to be

(S uwzh'*15)(whw,u' ) =1 where w' € U, and u,€ U

Uuely,

and

(S uwzth™*1,)(x)=0 if ¢ Uhw,U .

ueUy

(ii) Let Apuy(lo)=uer, uwzh ™ *1y, then
Ahm/w: KG * I; R 13
()]

— w —
x;l * 1U P m;lAhmw(lv)

is a well-defined KG-homomorphism for each m=hw, €N, where G=
Uuer U, (disjoint) and {x.}= Usenwew hw, U.,.

(iii) Let @ be an arbitrary element of Homyy(KG x1,, 18), then there
exists a unique scalar c¢;., € K for each n=hw,€N ‘such that

P= 2 chm,,Ahw” .

heH,weW

Now we shall review the representation theory of G over K.

DEFINITION 4.4. Let V be a locally finite rational KG-module. Then
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we call veV a weight vector of the module if there exists a linear
character » of H over K such that

hv=x(h)v for all he H.

When v+#0, we call » a weight of the module. It is clear that the
weight )\ belongs to K[H], the coordinate ring of H.

THEOREM 4.5 (see [10, §12, Theorem 40]). Let A\ be a rational linear
character of B into K*. Then if ind§a+#0 (see Definition 1.7), ind$
contains a unique B-stable line A. The weight of A is \*°, where w, 18
the element of maximal length of the Weyl group W of G.

ProOF. From the Lie-Kolchin theorem it is clear that ind$ ) contains
a B-stable line, because ind% ) is locally finite rational and B is connected
and solvable.

Since G is connected and U HU is open in G (see [10, §5, proof of
Theorem 6; Theorem 7]), Bw,U=w,U*HU is open and dense in G. Let
f be an element of

indgn={f € S%(G) | f(bg)=n(Db)f(g) for any be B and ge G},

then we have f(bw,u)=x(b)f(w,u) for any bwsu € Bw,U. Notice v.,=U.
Let 4 be a B-stable line in ind¢)n. Assume f be a non-zero element of
4, then we have

S (bwqu) =n(b) S (won) =N(b) S (wo)

for any bw,u € Bw,U, because U is the commutator subgroup of B. Suppose
that 4’ is another B-stable line in ind¢ ) generated by f’, then

J(wo) S (dwou) =N (0) = f (wo) 7 f (bwue) .

Hence f'=f"(w,)f(w,)"*f on the dense open subset Bw,U, which shows
S'=f"w)f(w,)*f on G. Thus we have shown that A=/4".

Let fe 4, then h x f(bwu) =f(bw,uh) =F(bw.hw; wu") = N0)N(w.hws ) flw,)
for any bw,u € Bw,U. Since hx* f=x\"(h)f on Bw,U, the weight of f is
Ao, Q.E.D.

COROLLARY 4.6 (cf. [6] and Proposition 4.1). Let )\ be a rational
linear character of B into K* and soc(ind§ ) be the socle of ind§, that
18, the sum of all irreducible KG-submodules of ind$\. Assume that
ind§ A0, then

(i) soc(ind\) s irreducible;

(ii) indg N s an indecomposable KG-module;
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(iii) for any rational linear character \' of B into K* the following
three statements are equivalent

a) indg§a=ind§\,

b) soc(ind$ A)=soc(indg \'),

c) aA=\;

(iv) Jfor any finite dimensional irreducible rational KG-module S,
there exists a unique rational linear character X of B into K* such that
S=soc(@ind$ X).

PROOF. (i) Since ind§ )\ is locally finite and rational (see Proposition
1.6 and Definition 1.7), it contains a non-trivial rational irreducible KG-
submodule and any irreducible KG-submodule is of finite dimension and
rational. Let M be an irreducible submodule of ind¢A. Then M cotains a
B-stable line from the Lie-Kolchin theorem. Hence M contains the unique
B-stable line 4. Thus M=soc(ind$§ \).

(ii) is clear from (i).

(iii) Assume that ind$ A=ind$ \’, then the unique B-stable lines of
ind¢ », and ind¢ )\’ have the same weight \*. Hence a=)'. Similarly
soc(ind§ A)=soc(ind$ \’) implies A =2)\'.

(iv) From the Lie-Kolchin theorem, S contains a B-stable line A.
Since dimg S/4=dimgS—1, from the induction S contains a B-submodule
T of dimension dim;S—1. Let X be the weight of S/T. Since

Hom (S, S/T)=Homg(S, ind§ X)

as K-spaces from the Frobenius Reciprocity, there exists a non-trivial
KG-homomorphism of S into ind§ X. Hence S=soc(ind$ X). Q.E.D.

THEOREM 4.7. Let G be a Chevalley group over an algebraically
closed field K and U, H and B etc. be as before. Let N be a rational
linear character of B into K* such that ind% x=+0 and f be a mon-zero
wetght vector im ind§ N\ of weight \*° where w, is the element of maximal
length of the Weyl group W of G. Then

(1) {we W|\"=1"}=Ww,;

(ii) for any we W, f|BwB+0 if and only if flw,)+#0;

(iii) we Ww, if fl®,)+0;

(V) = Cwewm @00, )A") where {a,|we Waw,} is the K-basis of
Homs(KG *\*, \3) given as in Proposition 4.2.

PROOF. (i) is clear from the fact that wi=1.
(ii) Let bw,u € Bw,U,, then flbw,u)=10b)f(w,). Hence f|BwB+#0
if and onmly if Aw,)+#0.
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(iii) Assume that flw,)#0. Since flw,h)=\"(h)f(®,)=fw.h@o;'®,)=
A(h)f(w,) for any h e H, we have \“=)\"°, i.e., w e W,w,.

(iv) Since (Zweszof(ww)aw)(ﬁ)(bwwu"l)=f(cow)>\,(b) for any bw,u''e
Bw, U, where w € W,w, and (Xuew u, J{®0)2,) W) Bw'B=0 if w’' e Ww,, we
have f=3",cw u,f(@u)0,(A"). Q.E.D.

REMARKS 4.8. Let G, » and f etc. be as in Theorem 4.7, then
(i) KG=x\ contains no finite dimensional rational KG-submodule;
(ii) AEDKG*1Pind§ .

PrROOF. (i) Assume that KG X\ contains a finite dimensional rational
irreducible KG-submodule V and V=soc(ind% X) for some rational linear
character X of B into K*. Since

— _ 0 Y ACEZD Y
H wo A) =
omyga(KG x X*°, KG *\) {K £ Amo—r,
from Proposition 4.1, the existence of a non-trivial homomorphism of KGx*X*
onto V (CKGx*X\) is a contradiction.
(ii) is clear from Q). Q.E.D.

THEOREM 4.9 (cf. [6, Proposition (8.1)]). Let G be a Chevalley group
over an algebraically closed field K and U, H and B etc. be as before.
Let 1;: U—K* be the trivial non-zero linear character of U into K* and
 be a rational linear character of B into K* such that ind3an++0 and f
be a non-zero weight vector in ind§n of weight A*° where w, 18 the element
of the maximal length of the Weyl group W of G. Then

(i) indén s a KG-submodule of 1§ and

1¢>indg xDsoc(indi )2 f ;

(i1) =0 3 Hh(h)f(ww)Ahw,,)(_l:z)

weW wg,h e

where {As., |lwe W, he H} (CHomKG(KG*i;, %)) 1s as im Proposition 4.3.

Proor. (i) Since A|U=1,; and
18={f:G—K | f(ug)=f(g) for any we U and g€ G} and
indé n={f € K[G] | f(bg)=n(b)f(g) for any be B and g G}
where K[G] is the coordinate ring of G, 1% contains ind$ )\ as submodule.
(ii) Notice f|BwB=0 if w¢ W,w,. Since

(3 MBS (@) Abey) L) uoh ™)

weW wg,he

=N f(w.,) = f(uhw,u' )
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where w e Ww, and whw,u' '€ Uhw,U, and

(2 MSf (@0) A1, )1 BwB=0  if we Ww,

weW,wg,ke

from Proposition 4.8, we have

[1]
(2]
[3]
[4]

[5]
[6]

[7]
[8]

(9]
[10]

f=C 3 MbSf(@)Aw) o) . Q.E.D.

weW,wg,he
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