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Introduction

Let M be a positive square-free integer and Q(1VM) be a real
quadratic field with discriminant D. Denote by A(M) and ¢, the class
number and the fundamental unit of Q(1/M) respectively. After the
works of Ankeny-Chowla-Hasse [1] and Hasse [5], there appeared several
results about the lower bound of A(M) with some conditions when ¢, =
(t+u1"D)/2 is small (see Lang [6], Takeuchi [7] and Yokoi [9], [10], [11]).
They used the basic result that the Diophantine equation z*— Dy*= +4m has
no solutions in Z for m <(t—2)/u? if Ney,=1, and for m<t/u® if Ne,=—1.
As a special case, we have h(M)>(log(D—1)/log4)—1 for M=(4C)*+1
(C>1) from it. In this note, we also consider the same problem using
continued fractions. We will get A(M)>(log D/log 4)—1 for M=(C*+
L(C*—N))+4\C* with s>t=1, A, g==+1 if C is even and is not a power
of 2. For these types of M with t=1, Bernstein [3], [4] gave the con-
tinued fractional expansion (c.f.e.) of VM and the explicit representation
of ¢,. The special case of them was mentioned in Yamamoto [8]. We also
give ¢, explicitly for the above types of M and the lower bound of ¢, for
another types of M from the c.f.e. of w,=(M,+1v"M)/2 (M,<V M<M,+2,
M,=1 (mod 2)). The lower bounds of ¢, were also given in [8] for suf-
ficiently large M with several conditions. Then we investigate A(M) for
the above types of M and give the lower bounds with some conditions
as mentioned above as a special case.

§1. Preliminaries.

In this section, we describe some basic properties of quadratic irra-
tionals and ideals in real quadratic fields, which we will need in later
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sections. We employ some symbols and fundamental terminologies without
definitions which we already mentioned in [2]. Let M=a*+b be a positive
square-free integer with 0<b=<2a, and D=D(M) be the discriminant of
a quadratic field Qv M). We first note the following lemma about the
c.f.e. of quadratic irrationals from [2].

LEMMA 1. Let a=a,=(a—7r,+V M)/c, (¢,>0) be a quadratic irrational
with discrimainant D, and let

a,=k+1/a., , k=[a] (2=0)

be the c.f.e. of @ with a,=(a—r,+Vv' M)/c,. Then the integers c,, k, and
r, are given by the following recurrence formula:

(*) 2a—r;=ck,+7 , Cit1=Coy + (T — 1)k,
where 0=r,,<c, and c_,=(b+2ar,—r?)/c,.

It is easily verified that the integers ¢, and », are both even if a=1
(mod 2) and b=0 (mod4). So we set a,=(a—2r,+1"M)/2¢, in this case.
Then (), is equivalent to the following:

(%), a—r=Ccl;+ 7y, Cop1=Ciy T (T — Tk,

where 0<7,.,<c, and c_,=(b+4ar,—4r})/4c,. The c.f.e. of a reduced
quadratic irrational is purely periodic.

LEMMA 2. Let o be a reduced quadratic 1rrational with discriminant
D. If the period of a s n, then we have

Ex =00 *** Op_, with Ne,=(—-1)".

For a proof of this lemma, see [8]. Let a=(B+1"D)/24 be a
quadratic irrational with diseriminant D. Then A(a)=[A, (B+1"D)/2] is
an ideal of QM) with N(¥)=A. We call %(a) the ideal corresponding
to a quadratic irrational «. In particular, when a is a reduced quadratic
irrational with A=N(a))>1, we say that A(a) is a reduced ideal.

LEMMA 3. Let % be an integral ideal of Q(V'M) which is prime to
its conjugate ideal A'. If NA)<V'D /2, then A is a reduced ideal.

PROOF. Let A=[A, (B+1'D)/2], a=(B+1v"D)/2A and set k=[—a'].
Then it follows from 0< —a'—k<1 that —1<k+a'<0. Since a—a'=
VD/A>2, we get k+a>1. Thus k+a is a reduced quadratic irrational
and A=[A, 2Ak+B+1v"D)/2]. Hence we get our assertion.



FUNDAMENTAL UNITS AND CLASS NUMBERS 261

This lemma was also mentioned in [8]. Let w,=(D,+1"D)/2 be the
reduced quadratic irrational with D,<yv'D <D,+2, D,=D (mod2). The
following lemma is well-known.

LEMMA 4. Let Ala) be an ideal corresponding to a quadratic irra-
tional . Then WU(a) is principal if a 18 equivalent to w,.

§2. Continued fractions and fundamental units.

Let M= T?*+4)\B be a positive square-free integer where T=AB™-+
#(B—N), A=1, B=1, AB™*>B and \, yu==+1. We assume that [V M|=T
or T—1 according as A=1 or —1. We first consider the c.f.e. of a re-
duced quadratic irrational w,=(T+x—1+1"M)/2 with discriminant D=M.
We put Q,=1 and Q,=B if A=1. When A>1, we define Q, successively

as follows:
1) Q1=1r
2) if Q, is defined and AQ,|B or B|AQ,|B?, then
AQ{ if AQ;gB (?:20) .

=1, Q‘“:{AQJB if AQ>B =

Q, is a divisor of B. We set o =(T+OMW—-1P,+1V H)/ZP,__ with
P,=B/Q,. We have w,=w{" for n=1 from w,=1/(w,— T)=(T+1V"M)/2B.
When a=—1, it follows from [V M]=T—1 that 2T—1>4B. Then we
have

@, =1/(w,— T+2)=(T—2+vV'M)/2(T—B-1), [w]=1,
w,=1/(w,—1)=(T—2B+1"M)/2B=wf .

Suppose that Q,,, is defined. We notice that w® =w, if A=1 and w{+’=
w, if A>1 and AQ,=B. Let

=k +1/0f, , ki=[wf] (Gz0)

be the c.f.e. of w®. We set wf’=(a—2r;+1"M)/2¢; if A=1, and w{'=
(a—r;+V'M)je; if A=—1. We put
m—1 if A=1,
m'=m'(t)={m if A>1 and AQ,<B,
m-+1 if A>1 and AQ,>B.

PROPOSITION. Suppose that @Q,., is defined and let the notations be
as above. We have w® =w{*® where m"' =m"(1)=38m', 3m'—1, 2m’'+1 or
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4m’ according as (\, #)=(1,1), 41, —1), (—-1,1) or (-1, —1). And w}”
are given as follows:
(i) of \ =Q,1), then

rey_,=PB"1—1, Cs_=AB™— AQ,B™*—P,B* '+ B+1,
Ty =AQB™—1, Cs_1=AQB™™,
ry =B, ¢,=PB (1=53v—2,3v—1,3v<3m’'—1);
Ts_o=1, . =AQB™™ ,
e =AQB™*—B, Cw_=AB™—AQ,B™*—P,B*+B+1 ,
r,=PB*—B, ¢, =PB (1=3v—2, 3v—1,3v=3m’'—2);
(iii) if (7\'7 ﬂ)=('—1, 1)7 then
"'2::—1:1 ’ 02,_1=2AQ¢BM—” ’
r,=2B—1, ¢, =2P,B* (1=2v—1, 2v=2m'—1),
Tom =2Q1,—1 , Com=2(AB™—P;,— Q1. +B+1) ;
iv) if O\, v)=(—1, —1), then
Ty_s=2P,B**—3 , €y s=2(AB™— AQ,B™~*—P,B'—B+1) ,
T4v—2=2AQiBm_y—3 ’ c4u—2=2AQth—u ’
To_=24QB"*—2B—1, c¢,_,=2(AB™"—AQ,B~*—P,B'+B—1),
T4y=2P‘Bv'—'2B—1 ’ C4y=2P‘Bv
(1<54v-3,4v—2, 401, 4p<4m’'—-2) ,
Tim'—1=2Qi1,—1, Cim'—1=2(AB™—P,,,—Q;.,—B—1) .

Proor. (i) We put M=a’*+b with a=[VM]. It follows from the
assumption that a=AB™+B—1 and b=4B. We get easily our assertion
by the induction from the following calculation using Lemma 1:

a=AB"+B—1, b=4B, ¢,=P,, r,=0, c_,=0Q,,
(%%), AB™+B—1=¢,(AQ,B™~'+Q,—1)+P,—1,
ko':AQth—l"'Qt_l ’ ?’1=P¢—'1 ’
¢,=c_,+(P,—1)(AQB™'+Q,—1)=AB™— AQ,B™'—P,+B+1.
Assume that
03,_3=P¢Bv_1 y 03,,_2=ABM_AQ‘B’”_”—P‘BV_1+B+1 ’ 7'3,_2=P‘Bv—1—1 .

Then we have
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)y  AB"—P.B'+B=c, ,+AQB"—1, k=1,
| To 1 =AQB">—1, ¢, =AQB",
(*¥)ss  AB"—AQ.B"+B=c, ,(P.B"'~1)+B, k, ,=PB'—1,
rw=B, e,=cy,—(AQB"”—B—1)PB*~1)=P,B",
(%), AB™—1=¢,(AQ,B™*'—1)+P,B*—1 ,
k,=AQB™ -1, Pon=PB"—1,
Coy+1=C3_, +(P,B*—B—1)(AQ,B™*"1—1)
=AB"—AQ,B"'—P,B*+B+1 .

This sequence holds as long as 7,_,<c¢,_, that is, 1<8v—2, 3v—1, 3v=
3m’'—2. Consequently, we find that

kay—z':'l ’ ksy_1=Pth—1__1 , k3”=AQiBm—y—1__1
(1=8v—2, 3v—1, 3v=3m'—2).

We notice that AQ,B™ ™' =Q,,, and P,.B™~=AP,, ,B™, so

Com'—2=AB"—Q,— AP, ,B" '+ B+1, Con1=Qi11, Tom—1=@i.—1.
Then we finally obtain
(*%)g sy AB™"+B—Q,,,=Csp_ (AP, ., B* '+ P,.,—1),
ksyw _=AP, ,B" '+ P, —1, r, =0,
Com' =Cam'—y— (Qus1—1)( AP B+ P,,, —1)= P, .

We also get the other cases in the same way as follows:

(ii) a=AB"—B+1, b=4B, ¢,=P, r,=0, ¢,=Q,
() AB"~B+1=c(AQB"*~Q)+1, k=AQB"'~Q,,
rn=1, ¢=AQB™",
Cos=P,B"™", ¢, ,=AQB™, 1,_,=1,
(e  AB"—B=c, (PB'—1)+AQB"—B,
ky_,=P,B'—1, T 1=AQ,B™*—B,
Cos=Cs,_s+ (AQ,B™*— B—1)(P,B**—1)
=AB"—~AQ,B™—P,B*+B+1,
(%), AB™—AQB"*+1=¢,_,+PB*—B,
ky_.,=1, r,=PB—B, ¢,=PB",
(*%)s, AB"—P,B*+1 =c5,(AQB™ ' —1)+1,
 ky=AQB™—1, r,=1,
Csut1 =0y — (P, B~ B~1)(AQ,B"~'—1)= AQ,B"~",
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ky,_.=PB'—1, ky_,=1, ke, = AQth—y—l -1
(1<3v—2, 3v—1, 3v<3m'—3),
 Comrs=AP B, Ciws=Qur s Tew2=1
(**)sm—2 AB™—B=cyn (AP, ,B*'—P,,,) ,
Koo =AP 1 B* =P,y Tom1=0,
Com'—1=Com'—s— (AP ,B* ' — Py )=Pyy, ;

(iii) a=AB™+B, b=24B"—2B+1, ¢,=2P,, r,=2P,—1,
¢c_.,=(2AB™—2B+1+2(AB™+B)(2P,—1)—(2P,— 1)%)/2P,
=2(AB™~—P,—Q,+B+1),

(*) 2AB™+2B—2P,+1=c,(AQB™'+Q;—1)+1,
k,=AQB*'+Q,~1, r=1,
¢,=c_,—2(P,—1)(AQ,B™*+Q,—1)=24Q,B™*,

Co2=2P,B*™", €y = 24Q.B™, Ty,=1,

(* ot 2AB™+2B—1=¢,_,P.B'+2B—1, k,_,=PB"™, 7r,=2B—1,
¢, =0,y _,+2(B—1)P,B*'=2P,B"

(* e 2AB™+1=¢, AQB""'+1, ky= AQB™1, Tyn=1,
Copt1=0Cs 1 —2(B—1)AQ,B™*"'= 24Q,B™~™",
k,,=PB", k,=AQB"' (1=2v—1, 2v=2m'—-2),
Com'—1— 2Qt+1 y Comr = 2(AB™—P,,,— Qi+ B+ 1), Tow= 2@, —1

(% Dom 2AB™+2B—2Q, ., +1=Cyn+2P;1;,—1, k=1,

Tomr 1 =2Pii—1, Coms1=2P1;

@iv) a=AB™*—~B—2, b=2AB™—6B—8, c¢,=2P,, 7r,=2P,—1,
¢_,=(2AB"—6B—8+2(AB™— B—2)(2P,—1)—(2P,—1)")/2P,
=2(AB"~—-P,—Q,—B—-1),

(*)o 2AB™—2B—2P,—3=c,(AQ,B™'—Q,—2)+2P,—3,
k,=AQB™'—Q,—2, r,=2P,—3, |
¢,=c_,—2(AQB"'—Q,—2)=2(AB"— AQ,B~'—P,—B+1),
Cows=2P,B"™", Cus= 2(AB™— AQ.,B™"— PB*—B+1),
Tw-s=2P,B* '3,

(* )ey—s 2AB™—2P,B"'—2B—1=c,,_;+2AQ,B~”—8, k,.,=1,
To_,=24AQB"*—8, ¢,,=24AQB™",

(* )ys 2AB™—2AQ,B**—2B—1=c¢,, (P B *—2)+24AQ,B~"—2B—1,
k, ,=PB™*—2, r,,=24AQB""—-2B-1,
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Co1=Cy_3—2(B—1)(P,B* ' —2)=2(AB™— AQ,B™*—P,B*+ B—1) ,

(* )yt 2AB™—2AQ,B™~'—8=¢,,_,+2P,B*—2B—1, k, ,=1,
r,=2P,B"—2B—1, e¢,=2P,B",

(*)e 2AB™"—2P,B*—3=¢,(AQ,B™ " *—2)+2P,B*—3,
k,=AQB™» -2, ¢, ..=2P,B*—3,
Co+1=Cy_+2(B—1)(AQ,B™ > —2)

=2(AB™— AQ,B™'—P,B*—B+1) ,
k4u—3 =1, k4u—-2 = PiBy—l -2, k4u—1 =1, k,= AQth-”_l —2
(1=4v-3, 4v—2, 4v—1, 4p=<4m'-3),
Cim's=2(AB™"—@Q,,,—AP,,,B"'—B+1) , Cim—2=2Q;,—8 ,
Tim—2=2Q4,—8 ,

(* Dimr—s 24B"—2B—-2Q,,,—1= Cim' o AP\ B™" ' — P, —2)+2Q,,,—1 ,
Fum—2=AP, ,B" ' ~P, ., =2, Tpp_= 2Q.,—1,
Cim'1=Cymr—s+2(AP, B *—P,,,—2)=2(AB™"—P,,,—Q,.,—B—1) ,

C* )amr—s 2AB™"—2B—2Q,;,—8=¢Cyp'_1+2P,;,—1, ky_,=1,

Tim=2P, ,—1, ¢,n=2P,,, .

We notice that ¢,, ,=2(B™—B"*—2B+1)>0in (iv) if A=1and m=2. In

fact, it follows from 27—1=2B*—2B—8>4B that B*—3B+1>0. This

completes the proof.

If A=1 or AQ,=B for some k, then we get the whole c.f.e. of @,
from this Proposition. However, we get some beginning part in the other
cases as long as @, is defined. Then we have the following

THEOREM 1. Let M=T*+4\B and T=AB™+pu(B—2\) be as above,
(i) ¢f A=C*, B=Ct, s=tm+u with C>1, t>u=0, (¢, u)=1, then

%:( T+21;M“>-( T+2xg+l/ﬂ>‘

(i) 4f B=A"'C with 1=1, AYC, C>1, then

Ex> A‘( T+2 ]z/;H )2’"’( T+ 2M; +v )21 .

with Ney=(—1)'\g)¢,

PROOF. (i) We assume that A>1 since our assertion for A=1 and
B=C was already shown in [4]. Setting Q,=C%, we find that

q;+u if q+ust,

=1, = )
& e {q,—{-u—t if q+u>t,
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.=(t—1u (modt), 0<¢q,q,---, ¢.<t, @.=t,

and that ., m'(G)=mt+u—1=s—1 since AQ,>B iff t<q,+u<t+u. It
follows from Proposition that & ., =w{™"=w, and 0{f+*w, if 1=<i<¢,
@, )#=@E, m''(t)). So we may write ey=w,,- -, (if A=1) or w,®.7,"* -7,
(if v=—1) with 7,=TI~," @ from Lemma 2. We note that w{w{,=
ko, +1 from ol =k;+1/wf,. If (\, )=(@, 1), then [0w{_,]=1. Therefore
we get

0¥ 0P =P, +1=(T+2+V ' M)/2¢,,, ,

505,05 =(T+2+ V' M)(T—2B+Vv M)/4c,,_.Cs,

=2T(T—B+1)+2(T—B+1VM)/AAB™"'=(T+V'M)/2B

for 1<y=<m'(7)—1 and
G)ét,),r_gwégr__l = ( T+2+v M)/2Q¢+1 ’ a)éf.’,' = w(()i+1) = (T+ V M)/2P¢+1 .

So,
T+1/M)”"( T+2+1/_)

i i) —
N=olf el - o=

Hence we get

O, T __( T+1/M) (T+2+1/M>

The other cases are shown similarly. If (A, )=, —1), then [w{ ,]=1.
So,

o 0P =w® +1=(T+2B+V M)/2¢,, ,

@8 0P @0 =(T—2+V M) T+2B+V ' M)/4cs,_cs,

=(T+Vv'M)/2B Agsvs=m'(v)—-1),
0@ _,=(T—24+V'M)/2Q.s, , @@ .=(T+V'M)/2P,,, ,
T+vVM\~( T—2+vV'M
(1)

" O = ( 2B ( 2 ) '
If (\, #£)=(—1, 1), then [w{ ,]=P,B"*. So,

— 1) 1)
774—(0{ s -

0¥ 0 =P,B ‘o +1=(T+V'M)[2B (1A=v=m'(1)—1),
@08 =(T—2+V M)/2Q.s:, @OLOE =@ +1=(T+V' M)/2P,,, ,
~( T—H/M ( T—2+1/'M')

2 b

() o (D) (1)
N;7=WW," @y *** Womryy
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@0,0,=w,+1=(T+1v"M)/2B .
If (7\': !’l)=(—17 _1)s then’ [w{,‘,’_3]=[w4‘f,’_1]=1. SO,

@0 0 =@, +1=(T+2+vV"M)/c,_, ,

0w =0 +1=(T+2B+Vv'M)/c,, ,

o 0@ 0w =(T+2+V' M) T+2B+1v M)/4AAB™*
=(T+VM)/2B (A<ism'(d)—1),

0@ =(T+2+VM)/2Qss; , @ wipr=(T+V M)/2P,,, ,

=0l ®f - o= T;gM) <T+2;H/M> ’

0,0, =w,+1=(T+1"M)/2B .

The signature of Neg, follows from
sgn(N(T+vV' M)=—p,  sgn(N(T+2rp+1V"M))=nrtt .

(i) In this case, we find that Q,=A"", m'(4)=m for each ¢ with
1<i<l and that @Q,,, is not defined. Then we get the c.f.e. of @, from
Proposition only up to w, =(T—A'—au(A'—2)+1"M)/2A" where n'=m'"" —1
or m'' —2 according as Ax=1 or —1. We notice that w,=—1/w; and that
if a is a reduced quadratic irrational equivalent to w,, then so is —1/a'.
It follows from Lemma 2 that ¢,>%|7'|™ for =88+ B if By, **, Bs
are reduced quadratic irrationals such that B,=—1/8; for ¢, 7 with
1<4, j<k. Under the same notations as in Lemmas 1 and 2, it is known
that —1l/a=(a—r,+1V M)/e,_, for i=1 if a,=w, and a,=(a—r,+1V " M)/ec,
(see [2], Prop. 2). Then we find easily from Proposition that there are no
relations a=—1/8’ among w,, -+, ®,. in each case. So we set =, -®,.
If ., =(Q1,1), then

@,08 _,0¥_ =(T+V M) T+2+1V M)/4A'B ,
T—H/J_lf)’”’< T+2+1/JI—[>‘
2B 2 )

N=W7, " 7]1—1(01(” s wéi’»q:(

If O\, £)=(1, —1), then
@0,08_,=(T+V M) (T—2+1"M)/4A'B ,
T+1/1Tf)m'( T—2+1/—M_)‘
2B 2 '

N=W7, " 7]l—1w1u) st wég-—z:(

If O\, )=(—1,1), then
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@,0,0%_, =(T+V M)(T—2+V M)/4A'B ,
_( T+1/’_)'~‘< T—2+1/M)

N=w,w,N,7), * 771—1wm cee @i =

If A, =(—1, —1), then

@,@0,08 _ 0 _,=(T+V M) T+2+Vv M)/4A'B ,

w£2_2=< T;gM)"'( T+2;—1/M)

N=W\WN 7y * * ¢ vl—lw{” ce

It follows from

T+VM\"_T+vVM (T+2p+V M\ _ _ m
2B )_ 2 ( 24 )'—(T+2Nﬂ+l/M)/2).ﬂB

that

|7’ |~ = At(T-;gM ’"'(T—I—Z)\.ézl-l/M) ]

Hence we get our assertion. This completes the proof.

§3. Application to class numbers.

Let w, be a reduced quadratic irrational with discriminant D mentioned
in section 1. Denote by PR(M) the set of all the norms of principal
reduced ideals of Q(1M). We can find all the principal reduced ideals
of QW M) if we know the whole c.f.e. of @, Then we get the infor-
mation about the class number from Proposition using Lemmas 3 and 4.

THEOREM 2. Suppose that M=(C*+ p(Ct—\))>+MCi=T*+4\C"* is a
positive square-free integer with [V M]=T or T—1 according as n=1 or
—1 and D>4C* where C>1, s>t=1, (s, t)=1, n, p==+1. Denote by R’
the minimal norm of principal reduced ideals of QM) prime to C and
set R=min{R’, V'D|2}. Then we have

(i) If C is meither prime mor prime power, whose minimal prime
divisor 18 p, then h(M)>(log D—log 4)/2log p,

(i) If in particular C is even and is not a power of 2, then h(M)>
(log D/log 4)—1,

(ii) If C=p" for some prime p, then n|h(M),

(iii) If C=B" for some integer B which is meither prime nor prime
power, and if q is the minimal prime divisor of B such that ¢*> B, then
n|h(M) and h(M)=n[(log D—log 4)/2log ¢+1],
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(iv) If there is a prime p such that p<R, (C/p)=1, (C, p)=1, then
h(M)> (log R)/(log p).

PrOOF. Setting s=tm+u with 0<u<t, our situation is the same as
(i) in Theorem 1 so that PR(M) is completely given by Proposition. We
notice that C is in PR(M) since P,=C for some i and C<V'D/2. Let €
be a principal ideal of Q(1 M) with N(€)=C.

(i) If p is a prime divisor of C, then there is a prime ideal P
dividing € with N()=p. It follows from Proposition that any power
of p is not in PR(M) since C#p* for any integer 7>0. Then we find
that $° is a reduced ideal and is not principal as long as p*<1"D/2 from
Lemmas 3 and 4. Hence we get our assertion. (i) is the special case
of (i).

(ii) By the same notations and argument as in (i), we find that ¢
is not principal for 1<i<n and P"=E€ is principal. This proves our
assertion.

(ili) We get n|h(M) in the same way as in (ii). We take ideals B
and Q with N®B)=B, N(Q)=q so that B"=€, QB and set B=AQ/,
N()=A. Note that neither B* nor Q7 is principal for 7, 7 with 1=i<n,
1<7=<[log(v"D/2)/log q] from (i) and (ii). We show that B‘Q7 is not princi-
pal for the above %, 5. It follows from B =qA that B'Q7 is equivalent
to AQ*~7 or A'Q?~* according as =7 or ¢<j. Then we find easily that
A'Q*i<B*<1'DJ|2 or A‘Q"‘i<qi<1/_j@—/2 from A<q and that every A’q*~7
or A'¢~* is not in PR(M). Hence the above assertion holds. Next we
-show that any two of the ideals B'QJ with 0=i<n, 0<57<n’ are not in
the same ideal class. Suppose that B'Q?/ and B*Q' are equivalent for
(¥, 7)#(k, 1) with j=I. Then B Qi (if 1=k) or B Qi (if i1<k) is
principal, which contradicts the above argument. Hence we have (iii).

(iv) There is a prime ideal P with N(P)=p. Our assertion follows
in the same way as in (i).

This completes the proof of Theorem 2.

REMARK. If M=4C*+1, then we have PR(M)={C}. Hence Theorem
2 also holds for this case. However this may be considered as a special
case since

4C*+1=(C+C—-1)*+4C=(C+C+1)y—4C.

The whole c.f.e. of w, for M=(C™+pu(C—nN)/2)*+N\C with C>1, C=1
(mod 2), m>1, A, #==+1 were given in [3], [4]. Then the similar state-
ments as in Theorem 2 except for (i)’ also holds for these types of square-
free integer M.
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EXAMPLES. We set f,(X,Y)=(X+p#(Y—\))*+4\Y where k=1, 2, 3 or

4 according as (, #)=(1,1), (1, —1), (—1,1) or (—1, —1), and r»(M)=
[(log M/log 4)—1].

[1]
[2]

[3]
[4]

[5]
[6]
(71
[8]
[9]
[10]

[11]

M M) r(M) M R(M)
1705 =£,(6*, 6) 8 4 5073 =F£,(2°, 2% 6
985 =£,(6%, 6) 6 3 3281 =£,(2¢, 2°) 6
817 =f£,(6%, 6) 5 3 5297 =£,(2°, 2°) 3
63145 =£,(6", 6Y) 20 6 2993 =7,(2°, 2°) 6
32905 =£,(6", 62) 16 6 201957 =£,(2°, 2°) 12
63865 =1,(6*, 62) 28 6 491293 =£,(3", 3% 24
31897 =£,(6*, 62) 9 6 78505 =f£,(2°, 2 16
11921 =£,(10¢, 10) 10 5 58145 =£,(2°, 29 16
8321 =7,(10%, 10) 10 5 74465 =1,(2°, 2%) 16
12281 =£,(10%, 10) 11 5 57057 =£,(2°, 29 16
7881 =F£,(107, 10) 12 5 986177=£,2", 2°) 55
812201 =f,(10°, 10°) 44 8 981953=7,(2°, 2" 50
807801 =7,(10%, 10°) 66 8
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