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A. Casson [1] defined an integer valued invariant $x(M)$ for an oriented
homology 3-sphere $M$.

In [4] J. Hoste gave a formula to calculate $x(M)$ from a special framed
link description of $M$. He required the framed link to satisfy the condition
that linking numbers of any two components of the link are zero.

In this note, we give a sum formula to calculate Casson’s $\lambda$-invariant
for an oriented homology 3-sphere which is constructed by gluing two
knot exteriors in homology 3-spheres with some diffeomorphism between
their boundaries. Our result is just the $\lambda$-invariant version of C. Gordon’s
theorem [2, Theorem 2] for $\mu$-invariant.

\S 1. Preliminaries.

Casson proved the following theorem.

THEOREM 1 (Casson). Let $M$ be an oriented homology 3-sphere. There
exists an integer valued invariant $x(M)$ with the following properties.

(1) If $\pi_{1}(M)=1$ , then $\lambda(M)=0$ .
(2) $x(-M)=-x(M)$ , where $-M$ denotes $M$ with the opposite orien-

tation.
(3) Let $K$ be a knot in $M$ and $(K_{n};M)$ be the oriented homology 3-

sphere obtained by performing $1/n$-Dehn surgery on $M$ along $K,$ $neZ$.
$x(K_{n+1};M)-x(K_{n};M)$ is determined independently of $n$ .

(4) $x(M)$ reduces, mod 2, to the Rohlin invariant $\mu(M)$ .
By the property (3), $x’(K;M)=x(K_{n+1};M)-x(K_{n};M)$ is well defined.

By the induction on $n$ , we have:
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COROLLARY 1.

$x(K_{n};M)=x(M)+nx’(K, M)$ .
As Alexander polynomial of a knot $K$, we consider only normalized

Alexander polynomial $\Delta_{K:r}(t)$ , that is, $\Delta_{K:K}(t)$ has the form $a_{n}t^{-}‘‘+\cdots+$

$a_{1}t^{-1}+a_{0}+a_{1}t+\cdots+a_{n}t$“ and $\Delta_{K:\Pi}(1)=1$ . Casson’s second theorem shows
that the $\lambda$-invariant is related to the Alexander polynomial.

THEOREM 2 (Casson).

$x’(K;M)=\frac{1}{2}\Delta_{K:H}^{\prime}(1)$ ,

where $\Delta_{K:K}^{\prime\prime}(t)$ is the second derivative of the normalized Alexander poly-
nomial of $K$.

We begin with the following trivial lemma.

LEMMA 1. Let $M$ and $M$’ be homology 3-spheres and $K$ be a knot
in M. Let $K_{0}$ be the knot in $M\# M$’ which corresponds to K. Then
$\Delta_{K_{0}:K|r^{\prime}}(t)=\Delta_{Kr}(t)$ .

PROOF. Let $F$ be a Seifert surface of $K$. Then we obtain a Seifert
surface $F_{0}$ of $K_{0}$ which corresponds to $F$. Their Seifert forms are naturally
isomorphic and Lemma 1 follows.

LEMMA 2. Let $K^{*}$ be $a$ O-parallel knot of $K$ in M. Let $K_{N}^{*}$ be the
knot in $N=(K.;M)$ which corresponds to $K^{*}$ . Then $\Delta_{K_{N}^{*}:N}(t)=\Delta_{K;r}(t)$ .

PROOF. Let $N(K)$ be a tubular neighbourhood of $K$ in $M$, and $E=$

$\overline{M-N(K)}$ . We consider $K^{*}$ as a O-parallel knot of $K$ which lies on $\partial N(K)$ .
$N$ is represented as $N=E\bigcup_{h}V$ with a solid torus $V$ and a diffeomorphism
$h:\partial E\rightarrow\partial V$. Since $K^{*}\subset E$, we can consider a knot $K_{N}^{*}$ in $N$ which cor-
responds to $K^{*}$ . Let $F$ be a Seifert surface of $K^{*}$ . We can assume that
$F\subset E$. Hence we obtain a Seifert surface $F_{N}$ of $R_{N}^{*}$ which corresponds
to $F$. Since the homomorphism $H_{1}(F)\rightarrow H_{1}(E)$ induced from inclusion is
zero map, for any l-cycle $z$ on $F$, there is a 2-chain $c$ which lies on $E$

and $\partial c=z$ . The corresponding fact holds for $F_{N}$ . Hence $K^{*}$ and $K_{N}^{*}$ have
isomorphic Seifert forms. This implies $\Delta_{K;F}(t)=\Delta_{K_{\dot{N}};N}(t)$ . Since $K^{*}$ is iso-
topic to $K$ in $M,$ $\Delta_{KjX}(t)=\Delta_{K;r}(t)$ . We obtain the lemma.

LEMMA 3. Let $M$ and $M^{j}$ be oriented homology 3-spheres. Then
$\lambda(M\# M^{\prime})=x(M)+x(M’)$ .
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PROOF. Suppose that $M$ is obtained by Dehn surgery on a framed
link $L=\{K_{1}, K_{2}, \cdots, K_{n}\}$ . We can assume that the linking number $1k(K_{i}, K_{j})=$

$0$ for every pair $K_{i},$ $K_{j}(i\neq j)$ of components of $L$ and (the framing of $K_{i}$) $=$

$\epsilon_{i}=\pm 1(i=1, \cdots, n)$ . Let $N_{\dot{f}}$ be the manifold obtained by the Dehn sur-
gery on the framed link $\{K_{1}, \cdots, K_{\dot{f}}\}$ . We can regard $K_{j+1},$ $\cdots,$

$K_{n}$ as
knots in $N_{j}$ .

First we see that the framings of $K_{j+1},$ $\cdots,$
$K_{n}$ in $N_{j}$ is the same as

those of $K_{J+\iota},$ $\cdots,$
$K_{n}$ in $S^{s}$ . Since the linking number of any pair of

components of $L$ is zero, for any component $K_{k}$ , there exists a Seifert
surface $F_{k}$ such that $F_{k}\cap K_{i}=\emptyset(i\neq k)$ . Hence $F_{k}$ can be also regarded
as a Seifert surface of surgered manifold $N_{j}$ . This means that the 0-
framings of $K_{k}$ in $M$ and $N_{j}$ coincide $(j<k)$ . Hence the framing of $K_{k}$

in $N_{j}$ is $\epsilon_{k}=\pm 1$ .
Thus we obtain that $N_{j+1}=((K_{j+1})_{e_{j+1}};N_{j})$ is also a homology 3-sphere.

By the induction on $j$ , we obtain

(1) $x(M)=\sum_{j=1}^{n}8;\frac{1}{2}\Delta_{K_{j};N_{j-1}}^{\prime\prime}(1)$ .
Next we regard the framed link $L$ as the framed link in $S^{8}\# M’$ , which

we will denote by $L^{*}=\{K_{1}^{*}, \cdots, K_{n}^{*}\}$ . Similarly we regard $K_{\dot{g}+1}$ as a knot
in $N_{\dot{f}}\# M’$ , which we will denote by $K_{\dot{g}+1}^{*}$ . By Lemma 1, we have

(2) $\Delta_{K;;N_{j}}+1(t)=\Delta_{K_{\dot{g}+1;N_{f}*H^{\prime}}^{l}}(t)$ .
Since $M\# M$’ can be obtained from $S^{3}\# M$ by the sequence of surgeries on
$K_{1}^{*},$ $K_{2}^{*},$

$\cdots,$
$K_{n}^{*}$ , we obtain

$x(M\# M)=\sum_{j=1}^{n}\epsilon_{f}\frac{1}{2}\Delta_{x^{l};NlH^{\prime}}^{\prime}g\dot{g}-1(1)+x(M’)$

$=\sum_{\dot{g}=1}^{n}\epsilon_{l}\frac{1}{2}\Delta_{K_{j};N_{j-1}}^{\prime\prime}(1)+x(M’)$ (from (2))

$=x(M)+x(M’)$ (from (1)).

This completes the proof.

\S 2. Homology spheres constructed from knot exteriors.

We will study oriented homology 3-spheres which are constructed by
C. Gordon [2].

For $i=1,2$ , let $K$ be an oriented knot in an oriented homology 3-sphere
$M_{i}$ with the exterior $X_{i}$ . We always identify $\partial X_{i}$ with $S^{1}\times\partial D^{2}$ and
parametrize $\partial X_{i}$ by an angular coordinate $(\theta, \phi)$ . If $A=(\gamma\alpha\delta\beta)$ is a $2\times 2$
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integral matrix with det $A=-1$ , then $A$ determines an orientation re-
versing diffeomorphism $h:\partial X_{1}\rightarrow\partial X_{2}$ by $h(\theta, \phi)=(\alpha\theta+\beta\phi, \gamma\theta+\delta\phi)$ . We de-
note the naturally oriented closed 3-manifold obtained by gluing two knot
exteriors with $h,$ $X_{1}\bigcup_{h}X_{2}$ by $M(K_{1}, K_{2};A)$ or $M(K_{1}, K_{2};\alpha, \beta, \gamma, \delta)$ . By the
explicit computation of the first homology group of $M(K_{1}, K_{2};\alpha, \beta, \gamma, \delta)$ ,
it is known that $M(K_{1}, K_{2};\alpha, \beta, \gamma, \delta)$ becomes a homology 3-sphere if and
only if $|\gamma|=1$ .

In the following section, we always assume $|\gamma|=1$ . Since det $A=$

$\alpha\delta-\beta\gamma=\alpha\delta-\pm\beta=-1,$ $\beta=\pm(\alpha\delta+1)$ is determined by $\alpha,$
$\delta$ and $\epsilon=(the$ sign

of $\gamma$). $\downarrow:The$ oriented homology 3-sphere $M(K_{1}, K_{2};\alpha, \pm(\alpha\delta+1), \gamma, \delta)$ will
be denoted by $M^{\epsilon}(K_{1}, K_{2};\alpha, \delta)$ .

\S 3. Calculation of Casson’s $\lambda$-invariant.

Let $M_{i}$ be an oriented homology 3-sphere and $K_{i}$ be an oriented knot
in $M(i=1,2)$ . In the sense of the normalized Alexander polynomial, the
following equation holds:

LEMMA 4.

$\Delta_{K_{1}8K_{2}:H_{1}0H_{2}}(t)=\Delta_{K_{1}:r_{1}}(t)\cdot\Delta_{K_{2}:H_{2}}(t)$ .
PROOF. Let $F_{i}$ be an oriented Seifert surface of $K_{i}$ in $M_{i}$ with genus

$h_{i}$ for $i=1,2$ . Then $F=F_{1}HF_{2}$ is a Seifert surface of genus $h_{1}+h_{2}$ of
$K_{1}\# K_{2}$ in $M_{1}\# M_{2}$ . The normalized Alexander polynomial of $K_{1}\# K_{2}$ in $M_{1}\# M_{2}$

is given as follows:

$\Delta_{K_{1}lK_{2}:r_{1}|r_{2}}(t)=t^{-(h_{1}+\iota_{2})}\det(V-tV^{T})$ ,

where $V$ is a Seifert matrix of $F$. Since $V=(V_{1}0V_{l}O)$ for Seifert matrix
$V_{i}$ of $K_{i},$ $i=1,2$ , we have $\Delta_{K_{1}’ K_{2};H_{1}:r_{2}}(t)=t^{-(h_{1}+h_{2})}\det(V-tV^{T})=t^{(-h_{1})}\det(V_{1}-$

$tV_{1}^{T})\cdot t^{(-h_{2})}\det(V_{2}-tV_{2}^{T})=\Delta_{K_{1};r_{1}}(t)\cdot\Delta_{K_{2};r_{2}}(t)$ . This completes the proof.

For a knot $K$ in a homology 3-sphere $M$ and its normalized Alexander
polynomial $\Delta_{K:K}(t)$ , it holds that $\Delta_{K:K}^{\prime}(1)=0$ . Computing second derivatives
of the equation of Lemma 4, we have:

LEMMA 5.
$x^{\prime}(K_{1}\# K_{2};M_{1}\# M_{2})=x^{\prime}(K_{1};M_{1})+x’(K_{2};M_{2})$ .

By Corollary 1, $x((K_{1}\# K_{2})_{n};M_{1}\# M_{2})=x(M_{1}\# M_{2})+nx^{\prime}(K_{1}\# K_{2};M_{1}\# M_{2})$ . Using
Lemma 3 and Lemma 5, we obtain:



CASSON’S $\lambda$,-INVARIANT 285

COROLLARY 2.

$x((K_{1}\# K_{2})_{n};M_{1}\# M_{2})=x((K_{1})_{n};M_{1})+x((K_{2})_{n};M_{2})$ .
Our result is as follows:

THEOREA 3. Let $K_{i}$ be an oriented knot in an oriented homology 3-
$s$phere $M_{i},$ $i=1,2$ . Then

$x(M^{e}(K_{1}, K_{2};\alpha, \delta))=x(M_{1})+x(M_{2})-\epsilon\delta x^{\prime}(K_{1};M_{1})+\epsilon\alpha x’(K_{2};M_{2})$ .
REMARK. It is known that $x^{\prime}(K;M)=(1/2)\Delta_{K;H}^{\prime\prime}(1)$ reduces, mod 2, to

the Arf invariant $c(K;M)$ . The theorem above is $\lambda$-invariant version of
Gordon’s formula [2, Theorem 2] for $\mu$-invariant of the oriented homology
3-sphere $M^{\text{\’{e}}}(K_{1}, K_{2};\alpha, \delta)$ .

In the proof of Theorem 3, we need the following lemma.

LEMMA 6. Under the same assumption as in Theorem 3,

$((K_{1}\# K_{2})_{\mp 1};M_{1}\# M_{2})\cong M(K_{1}, K_{2};-1,0, \pm 1,1)$ .
REMARK. Gordon [3] noted that the same conclusion holds in the case

of a knot in $S^{3}$ . The following proof is essentially due to Gordon.

PROOF. Let $X$ be the exterior of $K=K_{1}\# K_{2}$ in $M=M_{1}\# M_{2}$ . Then there
exists an annulus $A$ in $\partial X$ such that $A$ is a meridional annulus in $\partial X_{i}$

and that $X\cong X_{1}\bigcup_{A}X_{2}$ . Let $x_{i},$ $\mu_{i}eH_{1}(\partial X_{i})$ (resp. $x,$ $\mu\in H_{1}(\partial X)$ ) be a longitude-
meridian pair of $K_{i},$ $i=1,2$ (resp. $K$), $U$ be a solid torus and $\lambda_{0},$ $\mu_{0}\in H_{1}(\partial U)$

be a longitude-meridian pair of $U$.
$(K_{\mp 1};M)$ is the oriented homology 3-sphere $X\bigcup_{f}U$, where $f:\partial U\rightarrow\partial X$

is an orientation preserving diffeomorphism which satisfies $f_{*}(\mu_{0})=\mp\mu+x$ ,
$ f_{*}(x_{0})=-\mu$ . Since $f_{*}^{-1}(\mu)=-x_{0}$ , and $f_{*}^{-1}(x)=\mu_{0}\mp x_{0},$ $ X\bigcup_{f}U\cong(X_{1}\bigcup_{A}X_{2})\bigcup_{f}U\cong$

$(X_{1}\bigcup_{A^{\prime}}U)UX_{2}$ , where $A$ ‘ is the annulus $\partial X_{1}$ –int $A$ in $\partial X_{1}$ and longitudinal
annulus in $\partial U$. Hence $X_{1}\bigcup_{A^{\prime}}U\cong X_{1}$ . Moreover the computation yields
that the gluing diffeomorphism $h:\partial X_{1}\rightarrow\partial X_{2}$ is given by $h_{*}(\lambda_{1})=-x_{2}\pm\mu_{2}$

and $h_{*}(\mu_{1})=\mu_{2}$ . It follows that $((K_{1}\# K_{2})_{\mp 1};M_{1}\# M_{2})\cong X_{1}U_{h}X_{2}\cong M(K_{1},$ $K_{2}$;
$-1,0,$ $\pm 1,1$).

PPOOF OF THEOREM 3. Let $A=\left(\begin{array}{lll}\alpha & \pm(\alpha\delta & +1)\\\pm 1 & \delta & \end{array}\right)$ be a $2\times 2$ integral

matrix, $K_{i}$ be a knot in an oriented homology 3-sphere $M_{i}$ and $K_{i}^{*}$ be a
O-parallel knot of $K_{i},$ $i=1,2$ . Then $K_{i}^{*}$ can be considered as a knot in
$N_{i}=((K_{i})_{n_{i}};M_{i})$ , where $n_{1}=\pm(1-\delta)$ and $n_{2}=\pm(\alpha+1)$ . Let $M=((K_{1}^{*}\# K_{2}^{*})_{\mp 1}$ ;
$N_{1}\# N_{2})$ . By Lemma 6, $M\cong M(K_{1}^{*}, K_{2}^{*}; -1,0, \pm 1,1)\cong X_{1}^{*}\bigcup_{h}X_{2}^{*}$ , where $X_{i}^{l}$
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is the exterior of $K_{i}^{*}$ in $N$ for $i=1,2$ .
Next we examine the exterior $X^{*}$ as follows. We choose regular

neighbourhoods $N(K_{l})$ and $N(K^{*})$ so that $N(K_{i})\subset N(K^{*})$ and $ N(K)\cap K^{*}=\emptyset$ .
Let $Y=\overline{N(K^{*})-N(K)}$ , then $Y\cong S^{1}\times\partial D^{2}\times I$ and $Y\supset K^{*}$ . By $X$ (resp. $X^{s}$ )
we denote the exterior of $K$ (resp. $K^{*}$ ) in $M$ (resp. $N_{i}$). Then $X=$
$\tilde{X}_{i}^{*}\bigcup_{id}Y_{i}$ , where id: $\partial N(K_{i}^{*})$ ( $=the$ outer boundary of $Y$ ) $\rightarrow\partial\tilde{X}_{i}^{*}$ . Note that
$X_{i}\cong\tilde{X}_{i}^{*}$ , since $K^{*}$ is a O-parallel knot of $K_{i}$ .

We consider $N=((K_{i})_{n_{i}};M_{i})$ as follows. For a solid torus $V$ and an
orientation preserving diffeomorphism $h:\partial V\rightarrow\partial X=\partial N(K)(=the$ inner
boundary of Y) given by $\left(\begin{array}{ll}1 & n\\O & 1\end{array}\right),$ $N=X\bigcup_{h}$ , $V=X*\bigcup_{1d}(Y\bigcup_{h}, V)$ . Since
$K^{*}\subset Y$ , we choose a small regular neighbourhood $N^{\prime}(K^{*})$ of $K^{*}$ such that
$N^{\prime}(K_{i}^{*})\subset Y_{i}$ . Let $Y^{*}=(Y\bigcup_{h_{i}}V)-N(K_{l}^{*})$ and $x_{1},$ $\mu_{1}$ (resp. $x,$ $\mu_{l}$ and $\lambda^{*},$ $\mu^{*}$ )
be a longitude-meridian pair of $\partial N(K^{*})$ (resp. $\partial N(K)$ and $\partial N(K^{*})$). By
the definition of $h,$ $h$ maps a longitude $l$ of $V_{i}$ to $\lambda_{i}$ , and $l$ is isotopic
to $\lambda_{1}$ and $\lambda_{\hslash}^{*}$ in Y. Moreover in $Y_{l}\bigcup_{h_{i}}V,$ $\mu^{\prime}=\mu_{1}+n\lambda_{1}$ bounds a disk
which is obtained by attaching a meridian disk in $V$ to an annulus con-
sisting of parallel curves in $Y$ by $h$ . Thus we parametrize $Y\bigcup_{h}$ , $ V\cong$

$S^{1}\times D^{2}$ so that $K^{*}$ (resp. $\mu^{\prime}$) corresponds to $S^{1}\times O$ (resp. $pt\times\partial D^{2}$). Hence
$Y^{*}\cong S^{1}\times\partial D^{2}\times I$ and the identification $f_{i}$ of the outer boundaries of $Y^{*}$ and
$Y$ is given by $(_{0}^{1}ni)$ . Therefore

$X^{*}=\overline{N-N^{\prime}(K^{*})}$

$=\tilde{X}^{*}U_{ld}\overline{(Y\bigcup_{1d}V_{i})-N’(K^{\sim})}$

$\cong X\bigcup_{f}Y^{*}$ .
Finally $M=X_{1}^{*}\bigcup_{h}X_{2}^{*}\cong(X_{1}\bigcup_{f_{1}}Y_{1}^{*})\bigcup_{h}(Y_{2}^{*}\bigcup_{f_{2}}X_{2})\cong X_{1}\bigcup_{g}X_{2}$ , where $g:\partial X_{1}\rightarrow\partial X_{2}$

is the composition $f_{2}\circ h\circ f_{1}^{-1}$ given by

$\left(\begin{array}{ll}1 & n_{2}\\0 & 1\end{array}\right)\left(\begin{array}{ll}-1 & 0\\\pm 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & -n_{1}\\O & 1\end{array}\right)=\left(\begin{array}{ll}-1\pm n_{2} & n_{\iota}+n_{2}\mp n_{1}n_{a}\\\pm 1 & \mp n_{1}+1\end{array}\right)=\left(\begin{array}{lll}\alpha & \pm(\alpha\delta & +1)\\\pm 1 & \delta & \end{array}\right)=A$ .
That is $M^{l}(K_{1}, K_{2};\alpha, \delta)\cong((K_{1}^{*}\# K_{2}^{*})_{f1};N_{1}\# N_{2})$ . Applying lemmas, we can
compute $x(M^{l}(K_{1}, K_{2};\alpha, \delta))$ as follows:

$x(M(K_{1}, K_{2};\alpha, \delta))=x((K_{1}^{*}\# K_{2}^{*})_{f1};N_{1}\# N_{2})$

$=x(N_{1}\# N_{2})\mp\lambda^{\prime}(K_{1}^{*}\# K_{2}^{*};N_{1}\# N_{2})$

$=x(N_{1})+\lambda(N_{l})\mp\lambda^{\prime}(K_{1}^{*};N_{1})\mp\lambda^{\prime}(K_{2}^{*};N_{2})$

$=x(M_{1})+n_{1}x^{\prime}(K_{1};M_{1})+x(M_{l})+n_{2}\lambda^{\prime}(K_{I};M_{2})$

$\mp x’(K_{1}^{*};N_{1})\mp\lambda^{\prime}(K_{2}^{*};N_{2})$ .
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By Lemma 2 and Theorem 2, $\lambda(K_{i}^{*}; N_{i})=x’(K_{i};M)$ . Hence
$x(M(K_{1}, K_{2};\alpha, \delta))=x(M_{1})+x(M_{2})+(n_{1}\mp 1)x^{\prime}(K_{1};M_{1})+(n_{2}\mp 1)x^{\prime}(K_{2};M_{2})$

$=x(M_{1})+x(M_{2})-\epsilon\delta\lambda(K_{1};M_{1})+\epsilon\alpha\lambda(K_{2};M_{2})$ .
This completes the proof of Theorem 3.
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