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Introduction.

Let X be a Banach space. We denote by B(X) the set of all bounded
linear operators from X into itself.

Let C be an injective operator in B(X). We do not assume that
the range R(C) is dense in X. A family {S(t): t=0} in B(X) is called an
exponentially bounded C-semigroup on X, if

(0.1) S(t+s8)C=8S(t)S(s) for ¢, s=0 and S(0)=C,
0.2) S(-)x: [0, o) — X is continuous for ze X,
(0.3) there are M =0 and a € R=(— oo, «) such that

I1S(t) || < Me* for t=0.
Let us define L, e B(X) for n>a by

sz=re‘“S(t)wdt for zeX.

Similarly as in the case of R(C)=X (see [4]), we see that L, is injective
for »>a and the closed linear operator Z defined by

{D(Z) ={x € X: Cx € R(L,)}

0.4) Zx=0—L7'C)x  for zeD(Z)

is independent of A>a. The operator Z will be called the generator of
{S(t): t=0}.

Recently, Davies and Pang [4] introduced the notion of an exponen-
tially bounded C-semigroup under the assumption that R(C) is dense in X
and gave a characterization of the generator of an exponentially bounded
C-semigroup. (See [8] also.) Later, the authors [6, 9, 11] gave a char-
acterization of the complete infinitesimal generator of an exponentially
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bounded C-semigroup and then a unified treatment of the generation of
semigroups of class (Cy,) and that of semigroups of growth order a.

Let % be a positive integer. A family {U(¢): t=0} in B(X) is called
an n-times integrated semigroup on X (see [1]), if

(0.5) U(-)x: [0, o) — X is continuous for xe X,

0.6) UDUGH =_(q-%—_1_1-)-!—(82”(s+t—r)"-1 Uradr
—S:(s—i—t—'r)"'1 U(r)xdr) for xe€ X and s, t=0, and
Uo)=o0,
0.7 Ut)x=0 for all t>0 implies =0,
0.8) there are M=0 and w < R such that [|U(?)||<Me** for {=0 .

For convenience we call a semigroup of class (C,) on X also 0-times -
tegrated semigroup on X.

It is known that if {U(t): t=0} is an n-times integrated semigroup,
then there exists a unique closed linear operator A such that (w, «)c0(4)
(the resolvent set of A) and

0.9) RO A)x(E(h—A)“lx)=Sm7\,"e‘“ Utyrdt for zeX and \>w .
0

The operator A is called the generator of {U(t): t=0}.

In §1 we derive some results on the generator of an exponentially
bounded C-semigroup. Among others, we obtain that the generator VA
has the following properties ([Proposition 1.4]):

@a) r—Z is injective for n>a ;

(a,) D((L—Z)"™)DR(C) for A>a and m=1;

(a,) In—2)"Cls—M __  for a>a and m=1;
—a)"

(a,) Cxe D(Z) and ZCx=CZx for xeD(Z).

In §2 we shall construct an exponentially bounded C-semigroup under
the above conditions (a)-(a,). Our Theorem 2.1 (the first main result)
shows that if A is a closed linear operator satisfying (a)-(a,) with Z
replaced by A, then there exists an exponeritially bounded C,-semigroup
on D(A) with generator C*A,C,, where C,=C|s; and A, is the part of
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A in D(A). This generalizes results in [4, 6] and will be applied to establish
Theorem 3.1 (the second main result) in §8 which clarifies the relations
between exponentially bounded C-semigroups and integrated semigroups.
Theorem 3.1 generalizes a result in [10].

S§1. Exponentially bounded C-semigroups.

For simplicity, by a C-semigroup on X we mean an exponentially

bounded C-semigroup on X.
Let {S(t): t=0} be a C-semigroup on X with generator Z. Let us

define linear operators G and ¥ by

D(G)= {x ¢ R(C): lim QZLS(%)””_‘-& exists}
t—

1.1) _

Gz=lim E_ﬂ?_m"_x_ for x¢DG)

t—0+

and

D) = {x eX: lim _Sﬁ%.—_@z_ e R(C)}
1.2)

Az =C-*1im .-Sﬁ)—ﬁlci for zeDE),

t—0+

respectively. (¥ is the infinitesimal generator of {S(¢): t{=0} in the sense
of Da Prato [3].)
The relations among G, A and Z are as follows.

PROPOSITION 1.1. We obtain the following (1.3) and (1.4):
(1.3) GcGcU=2Z, where G denotes the closure of G ;
(1.4) C'GC=C"'GC=C"ZC=Z.
PrOOF. To show ACZ, let x € D) and A>a, where a is a constant

in (0.3). By dS(t)Cx/dt=S(t)CAx for t=0, we have

CL,(n— W= L;C(?\, —AMx=N\L;Cx— Swe—zt dsgzcx 7

=C% , i.e.,
L, —Wx=Cx for e DA) and A >a.
This implies ACZ. Next, to show Zc¥, let x€ D(Z) and take ye X

such that Cx=L,y, where x>a. Noting C'S(h)u=S*h)Cu for u e R(C)
and 2>0,
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h=(S(h)x—Cx)=h"*(C~*S(h) Ly — L;y)
=h'1(e”'—-1)s e'“S(t)ydt—h‘lshe'“S(t)ydt

h
—ALy—Cy=COx—y) € R(C) as h—0+ .

This shows that x € D) and Vr=1x—y=2Zx. Therefore Z ¥ and hence
A=Z. Since GCA and A (=2) is closed, G is closable and GCA. So we
have (1.3).

To prove (1.4), let xe D) first. Then lim,., (C'S(t)Cx—Cx)/t=
lim,_,.(S(t)x — Cx)/t=CUx, and hence Cx € D(G) and GCx=CUx. Therefore
ACC'GC. Now, we want to show that C'ZCcZ. To this end, let
xe D(CZC), i.e., Cxe D(Z) and ZCx € R(C). Then

L An—C*ZC)x=L,C*\\—Z)Cx=C"'L,(\z—Z)Cx=Cx ,

and hence ¢ € D(Z) and Zx=(O\—L;'C)x=C"'ZCx. Consequently, C*ZCCZ.
Combining these with (1.3), we obtain (1.4). Q.E.D.

G is called the complete infinitesimal generator (e.d.g.) of {S(¢): t=0}.
The following example shows that “G=2Z" does not hold in general.

ExAMPLE. Let X=C]J0, 1], and define Ce B(X) by
(Cx)(t)=§’x(s)ds, 0<t<1, for zeClo,1].
0

Then C is injective and R(C)={x € C'[0, 1]: x(0)=0} (and hence R(C) is not
dense in X). Consider the C-semigroup {S(t): t=0} defined by S(t)=C for
all £=0. In this case, D(Z)=X and Zzx=0 for € X, but D(G)cR(C)
and hence D(G)cR(C)=X. This shows G+#Z.

PRrROPOSITION 1.2. We have the following (1.5)-(1.7):

{(N—Z)le=Cx Jor xzeX and An>a
L, —Z)x=Cx for xe€D(Z) and N>a ,

where a 18 a constant in (0.3);

1.5)

1.6) St)x e D(Z) and ZS({t)x=S(t)Zx for xzeD(Z) and t=0;

1.7) S:S(s)xds e D(Z) and St)z—Cr= ZS :S(s)xds
for xze€X and t=0.

Proor. (1.5) and (1.6) follow from the definition of Z. It is easily
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t
seen that SOS(s)xdseD@I) and S(t)x—-Cx=QIStS(s)mds for x€e X and ¢t=0.
By Z=%, we obtain (1.7). Q.E.D.

COROLLARY 1.3. For every xeC(D(Z)), ult)=C'S{t)x is a wunique
C'(continuously differentiable)-solution of the Cauchy problem

(CP) _d_’o‘l%t)_=2u(t), t=0, and wu(0)=z.

Moreover, the u(t) satisfies ||u(t)||<Me*||C x|, where M and a are con-
stants in (0.3).

PROOF. Let xeC(D(Z)) and put wu(t)=C-*S(t)x for t=0. By (1.6)
and (1.7) we have that Zu(t)=ZS{t)y=S{t)Zy and

u(t)—xr= StZu(s)ds for t=0,

where y is an element in D(Z) such that x=Cy. Therefore u(t) is a
C*-solution of (CP), and |lu(®)||=||S®t)y||=Me*|y||=Me*||C *¢||. To show

~ the uniqueness, let »(t) be a C'-solution of (CP) and s>0 be arbitrarily

given. Then
—%—S(s—t)v(t)=S(s——t)Zv(t)—ZS(s—t)v(t)=0

for 0=<t<s. Integrating this over [0, s], we obtain Cuv(s)=S(s)x, i.e.,
v(8)=C"'S(s)x=u(s) for every s>0. Q.E.D.

PROPOSITION 1.4. Z satisfies the following (a,)-(a,):

(a) AN—Z 18 injective for n>a;

(@) D((A—Z)™DR(C) for x>a and m=1;

(@) [|[W—2)™C||=M/n—a)™ for A>a and m=1, where M and a are
constants in (0.3);

(a,) CxeD(Z) and ZCx=CZx for x < D(Z).

PrOOF. (a,) and (a,) follow from (1.5) and (1.6), respectively. Next,

using induction with respect to m, we obtain (a,) and

AN—2Z)"Cx= S“ .o Sme—1(t1+---+tm>S(tl+ coe+t)xdt, - - - dt,

0 0

for x€ X, »>a and m=1. Combining this with (0.83) we get (a,).
' Q.E.D.
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§2. Construction of C-semigroups.

Throughout this section A denotes a closed linear operator in X
satisfying the following conditions (which correspond to (a,)-(a,) in Prop-
osition 1.4):

(A, there exists an a € R such that A —A is injective for A >a;

(A,) D((An—A)"™DR(C) for »>a and m=1;

(A,) there exists an M=0 such that ||(—A4)"C|=M/(n—a)" for
A>a and m=1;

(A) CxeD(A) and ACx=CAx for x € D(A).

It is easily seen that (A,) is equivalent to the following (Aj):

(AD) (AW—A)Cx=C(—A) 'z for n»>a and x € D((A—A)™).

The purpose of this section is to construct a C-semigroup on D(A)
under these conditions. Our idea for construction is based on that of
[7].

Our theorem is the following which generalizes [4, Theorem 11] and
[6, Theorem 2].

THEOREM 2.1. Let A be a closed linear operator satisfying (A,)-(A,).
Then for every x € D(A), the limit

Sl(t)m—_—:lim< -—%)_an

n—roo

exists uniformly on every bounded subset of [0, «). The family
{S,(t): t=0} has the following properties:

2.1) S,(8): D(A)— D(4) ;

(2.2) S,(t+8)Cx=S8,#)S,(s)x and S,(0)x=Cx for xc D(A) and ¢, 8=0 ;
(2.3) I1S,O)x|| < Me*||x|] for xecD(A) and t=0;

(2.4) 1S,(B)x — S,(s)x|| < Me'*' === || Ax|| |[t—s| for x<€ D(A) and t, 8=0,
and hence S,(-)x: [0, «)— D(A) is continuous for x € D(A) ;

(2.5) St)x—Cx= AS:Sl(s)xds for xeD(A) and t=0;

(2.6) A—A)Cx= S:e‘“Sl(t)xdt for =xze€ D(A) and A>a .

Therefore, setting C,=Clsz, {8.(t): t=0} 18 a C,-semigroup on the Banach
space D(A).
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Moreover, C71A,C, 1s the generator of the Ci-semigroup {S.(t):t=0},
where A, denotes the part of A wn D(A).

Before proving this theorem we prepare two lemmas. We define a
linear subset ¥ of X and a function N(:) on ¥ by

F={ze N_D(—A)™): sup [[A—a)"(\—A4) x| <}
A>a,m20 2>a,mz0

and

N(x)=1>§1}£o!I(X-—a)"'(x—A)""wll for zef.

Obviously, [jz||<N(x) for xe ¥ and N(-) defines a norm on 5. Our as-
sumptions (A,) and (4;) imply

2.7 R(C)cS and N@)<M|C 2| for xzeR(C).

LEMMA 2.2. The fol’lowing~conditions (b~1)—(b3) (which are stated in
[7, §4]) are satisfied with Y=2% and |||-|||=N(-):

(b,) Y is a mormed space under a certain norm |||-||| whickh is
stronger than the original norm ||| of X;

(b,) there exists a real w such that for \n>w, R(n—A) contains Y,
RO)=(0—A)"! exists, and such that Y is invariant under R(\);
(b,) there exists a constant M =0 such that

IRO)™x|| = MO —w)™™|||x]]] for zeY, A>w and m=0.
Moreover we have
(2.8) NMOo—a)ROR)=N@w)  for xef and a>a.

‘PROOF. (b,) i§ obvious. To prove (b,) and (b,), we first note that
clearly R(n—A)D2Y and RO\)=(O\—A)" exists for A»>a, and the following
equality holds:

(2.9) ROR(Eye= 31 (Cors(t—N)' " HR(H) "z

=m—

for xe 3, p>1>a, m=1 and n=0.

Indeed, since

Cas(p= )R S O i(G=20) T (=) R for we 5,

the series of the right side in (2.9) is absolutely convergent with respect
to the norm ||-||. Let z€3. Then
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(n—A) é’, (#_x)lR(#)l+n+1x =R(y¢)"x— (‘u__)\')k+1R(#)k+n+lx
and

e=nrrRG el S (L22) - N@ —0 a8 ko,

which imply that (2.9) holds for m=1. The conclusion follows from the
induction with respect to m.
Next, setting =0 in (2.9), we obtain

R(p)"‘x=l i Cms(N— )™M R(\) 2 for zef, A>p>a and m=1.

=m—1
Since R(\) is closed, for x €3, A>p#>a, m=1 and n=0

(2.10) R()‘)nR(#)mw___l i K Ov— )R RO)

=M —

Now, let u>a and z€3. Then, by (2.9), for A with g#>\>a we
have

v —a)"RO)™ (¢t —a)"R(¢) ||

é( A—a )”'tz sz—1(1— A—a )l_m+1”(#_a)l+'n+1R(#)l+'n+1x”

p—a / 1wt -
S(EY £ 0 (1-228) R0

In the same way, by (2.10), for A >p
|, —a)"RO\)"(t—a)"R(¢)™x|| < N(x)
Consequently, for n=1 and g#>a,
lv—a)"RO)™(¢t—a)"R()"z|| < N@&)  for a>a, m=1 and xef .
Hence for every g#>a and n=1,
(t—a)yR() e S and N(g—a)"R()"x)<Nx) for zel.

In particular, 5 is Ninvariant under R(\) for A>a and [[RQ)™x| =
Ov—a)"N(x) for xc3 (.e., (b) and (by) hold with Y=25, |||-|||=N(-),
w=a and M=1), and (2.8) holds. Q.E.D.

In view of Lemma 2.2, we may employ the results given in [7, §4].
Also, by using the argument due to [2] and [5], (2.8) implies the following




C-SEMIGROUPS 107

LEMMA 2.3 ([5]). For n, £>0 with \a|<1/2, pla|<1/2 and n, m=0,
N(JTpx—Jrw) <[exp(2lal(mn +n)](mrn—n: +ma: +n )2 N(Azx)
for xel ={xel: Axc 5}, where J,=(1—r1A4)"".

PROOF OF THEOREM 2.1. First, let # € D(A). Since Cxe D(A)N S and
ACr=CAx e ¥ (and hence Cxec C(D(A)cS) by (A) and (2.7), it follows
from Lemma 2.3 and (2.7) that

|T5C — T/ Cs|| = Met* (O + 92 + £ (h 4 1)) As|

for ¢t=0. Therefore the limit lim,,.. J{¥*Cx exists uniformly on every
bounded subset of [0, ). This remains true for every x € D(A), because
|J5/4C|| are uniformly bounded on every bounded subset of [0, ) as
A—0+.

Define S,(t) for t=0 by

S, (Oe=lim JI¥Cx (=1im(1—£‘1-)'"0x) for xeD(A).
A—0+ n—oo n

Clearly (2.1) and (2.8) hold, and it follows from (2.3), (2.7) and [7, Theorem
4.6] that (2.4) and (2.6) hold. By Lemma 2.3 again, for x € D(A)

”JE(H")“]C . Cx — JEt/Z]C . JE'“]C%”
— “Jg(th)/z]czw__Jgt/z]+[a/z]czx” (by (AD)
<etlelra (4524 9 (t+8)) 2 N(AC*x) — 0 as A—0+,

which implies
S, +8)Cx=S8S,(t)S,(s)x for xe€D(A) and ¢, s=0.

Therefore (2.2) holds. Next, we will prove that (2.5) holds. By virtue
of [7, Lemma 4.5] and the closedness of A, we have

e e (S R ((EE

for x€ 5, t=0 and integer n with n>|a/t. In particular, the following
holds:

(1 —-tné-yan —Cx= AS:( — %)-(HDdes

for x€ D(A), t=0 and integer n with n>|alt. Letting n— <, and noting
that ‘
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[(1=52) " ea(1-57) "]

(a2 oae o221

as n—oo, the closedness of A implies
S‘Sl(s)xdseD(A) and Sl(t)x—Cm=AStSI(s)wds

for x € D(A) and t=0. These remain true for x € D(A) by the closedness

of A and (2.3).

Finally, we will prove that Ci'A,C, is the generator of the C;-
semigroup {S,(t): t=0} on D(A). To this end, let Z, be the generator of
{S,(t): t=0} and let A, be the operator defined by

DL, = {x e DA : lim M e R(C, )}

=0+

W, x=C;'lim _ﬂﬁ%:_ci for xze D)

t—0+
(see (1.2)). Then we have
(2.11) ACZ, .

In fact, let x € D(A4,). Noting \W—A)*CAx=A(MN\—A)*Cx for every k=0
and A>a, it follows that

A(l—t;:l) Cx———( —%)"“CA@

for t=0. Letting n—c, by the closedness of A, we have
S,t)x € D(A) and AS,(t)x=S,(t)A,x € D(A)

and hence S,(t)x € D(A,) and A,S,(t)x=AS,(t)x=S8,(t)A,x for t=0. Combin-
ing this with (2.6), we have

Clx=(>\,—A)S ¢S (t)xdt—s 28 (£)(n— A,)xdt
= Zh—A)x for A>a,

where ,%z=re'“81(t)zdt for ze D(A) and A>a. So, by the definition of
0
generator Z,, we get
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xeD(Z) and Ax=0N—5"Clx=Zx .
This proves (2.11). Next, let x€ D®,). By (2.5)

A(t“lszsl(s)xds) = —’—Sl—@)—%:—%— — C AU x

t
as t—0+. Since lim,,. t‘ls S,(8)xds=C,x and A is closed, we get
0

CaxeD(A) and ACx=CAxe D).

This means that Cx € D(A,) and 4,Cx (=ACx)=Cx, i.e., x € D(CT'A,C)=
{ze D(A): Cze D(A,) and A,Cize€ R(C)} and Ux=C;*A,C,x. Therefore we
obtain

(2.12) A cCrAC, .

But A,=Z,=C*Z,C,oC*A,C, by Proposition 1.1 and (2.11). Combining
this with (2.12), we have that Z,=C*A,C.. Q.E.D.

§38. C-semigroups and integrated semigroups.

The following theorem establishes the relations between C-semigroups
and integrated semigroups.

THEOREM 3.1. Let A be a closed linear operator in X with 0(A)+ @.
Let c€ p(A) and n=0 be an integer. The following (i)-(iii) are mutually
equivalent:

(i) A 1s the generator of an (n+1)-times integrated semigroup
{U@®): t=0} on X satisfying ||Ut+h)— UR)||<K'he*’ ™ for t, h=0, where
K'=20 and o' € R are constants;

(ii) A s the generator of a C-semigroup {St):t=0} on X with
C=R(c: A" satisfying ||St+h)—S®)||=Khe***® for t, h=0, where K=0
and w € R are constants;

(iii) There exist M=0 and a € R such that (a, «)Cp(A) and

IR(\: A)™R(c: A)||SM/(hv—a)™  for A>a and m=1.

In this case, we have for t=0

3.1) U= (c——A)"“S:S‘:l- " S:nS(th)mdtnﬂ co e dt,dt,

Sfor xe X
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(= SOS: .. S:nS(tn+l)(c—A)"+1xdt,,+1 .o dtdt, for we D(A"“)) :

Moreover, 1f A is a closed linear operator in X with P(A)# @
satisfying the equivalent conditions above and A, is the part of A in
D(A), then we obtain the following (c,)-(cs):

(e) A, is the generator of a C-semigroup {S,(t):t=0} on D(A) with
C,=R(c: A)lzw;

(c,) ([1]) A, 7s the genmerator of an mn-times integrated semigroup
{U,(t): t=0} on D(A);

() Ul(t)x=(c—-A1)"§:S:1- : .SZ""SI(t,)xdt,, o« dt,dt, for @ € D(A) and t=0

(=§§‘ o-S:"—ISI(tn)(c—AI)"xdtn--- dtdt, for xe€D(A?) and t;o) .

This is a generalization of [10, Theorem 1] (and [8, Theorem 4.6]).
Indeed Theorem 3.1 leads to

COROLLARY 3.2 ([10, Theorem 1]). Let A be a densely defined closed
linear operator in X with p(A)+* @. Let cep(A) and n=0 be an integer.
The following (i)-(ii") are equivalent:

(i) A s the generator of an n-times integrated semigroup
{U@t): t=0} on X;

(ii') A s the c.i.g. of a C-semigroup {S(t):t=0} on X with C=
R(c: A)™;

(iii") there exist M=0 and a € R such that (a, <)Cp(A4) and

|RO\: A)™R(c: A)"H_S_——A—l-— Sfor A>a and m=1.
A—a)™

In this case, we have for t=0

8.2) ﬁ(t)x=(c—A>nS:S:‘.--X:"“g(t,,)xdt,,--- dtdt, for zeX
(=SS‘ .. S:"“S'(t,,)(c—A)nxdt,, .. dtdt, for we D(A")) :

To derive the corollary from Theorem 3.1 we note the following
which will be easily proved:

(d) If Z is the generator of a C-semigroup {S(f):t=0} on X and
Pe B(X) is an injective operator satisfying S(t)P=PS(t) for t=0, then
{S@®)P:t=0} is a PC-semigroup on X and Z 1is the generator of
{S(@t)P: t=0}.
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(d,) If A is the generator of an mn-times integrated semigroup
{U®): t=0} on X and V(¢), ¢=0, are defined by V(t)x=S:U(s)xds for ze X,
then {V(t):t=0} is an (n+1)-times integrated semigroup on X satisfying
| V(it+h)— V()| <Me***h for t, h=0, where M=0 and w € R are some
constants, and A is the generator of {V(t): t=0}.

PrROOF OF COROLLARY 3.2. In this case, note that the c.i.g. A in
(ii") coincides with the generator of {S(f):t=0} (see [4, Theorem 35]).
Since A,=A and C,=R(c: A)" by D(A)=X, “(iii")=(@{i")” and “(ii")= {")”
follow from Theorem 3.1 (¢,) and (e,), respectively.

To prove “(ii’)=(iii")” let A be the generator of a C-semigroup
{8(t): t=0} on X with C=R(c: A)" and let ||S(t)|<Me* for t=0. Define
S(t), t=0, by St)=S(t)R(c: A). Since S(t)R(c: A)=R(c: A)S(t) for t=0
by (1.6), it follows from (d,) that {S(f):t=0} is a C-semigroup on X
with C=R(c: A)"*™ attnhd A is the generator of {S(¢):¢t=0}. Moreover,
1S(t+ By — S()er|| = HS: S(s)AR(e: A)xdsH (by (1.6) and (1.7)) < M|| AR(c: A)||h X

e x|l for x€ X and ¢, h=0. Therefore A satisfies (ii) in Theorem 8.1,
and hence (iii’) (= (iii) in Theorem 3.1) holds.

To show “(i")= (iii’)”, let us define U(t), ¢=0, by U(t)x:S’ﬁ(s)xds for

xeX. By (d,), A satisfies (i) in Theorem 8.1 and then 0(iii’) holds.
Moreover, by (3.1)

S: U(s)xds= Uty = (c — A)n+1§’§’1- . St"§(tn+1)R(c: Addt,,, - - - dt,dt,
0J0 0
=St[(c-—A)"§“- : -St"§(tn+l)xdtn+l e dtz:ldtl for ze X and t=0,
0 0 0

which implies (8.2). Q.E.D.

REMARKS. 1. Each of the equivalent conditions (i)-(iii) in Theorem
3.1 is equivalent to the following (iv) (see [1, Theorem 4.1]):
(iv) there exist M =0 and a € R such that (a, «)cCp(A) and

! [R(v: AA™ M

7 ST for A>a and £20.

2. In the case of D(A)=X in Theorem 3.1, “generator” in (ii) can
not be replaced by “c.i.g.”. In fact, the operator A of Example 6.4 in
[1] is the generator of a C-semigroup on X (=FE) with C=R(c: A) satisfy-
ing ||S@+h)—S®)||<Ke*"™ for t, h=0, but it is not the c.i.g. of any
C-semigroup on X with C=R(c: A). '



112 NAOKI TANAKA AND ISAO MIYADERA

ProOOF OF THEOREM 3.1. We start by showing “(iii) = (ii)”. By virtue
of Theorem 2.1, there exists a C,-semigroup {S,(f):t=0} on D(A) with
C,=R(c: A)"|5 satisfying the following (3.3)-(3.6):

(3.8) Sl(t)x_—:lim(%"—)mR(m/t: A)"R(c: Ayx  for xeD(A) and t=0;

(8.4) IS, (t)x|| < Me*t||2]] for =z D(A) and t=0;
(3.5) IS, (t +h)x — S, (t)x|| = Me'*' **h|| Ax|| for € D(A) and ¢, h=0;

3.6) RO A)R(: A)"x=S°°e‘“S1(t)xdt for xeD(A) and \>a .
0

Let us define S(t) € B(X), t=0, by
St)x=S,(t)R(c: A)x for zeX.
Clearly, {S(t): t=0} satisfies (3.7)-(3.9):
3.7 ISOI=M|R(: A)lle*  for t=0;
(3.8) SE+h)—S@)|| < M||AR(c: A)|le'*'"*h for t, h=0;
3.9) S(t)S(s)=S(t+s)R(c: A)*** for t, s=0 and S(0)=R(c: A)"*™.

Therefore {S(t): t=0} is a C-semigroup on X with C=R(c: A)"*'. Now,
let Z be the generator of {S(t): t=0}. We want to show

(3.10) AcCZ.
To this end, let x € D(A) and An>a. Then by the closedness of A
LAv=| e S@)Andt = eS,(OR(e: A)Awdt
=" aS®R(: Awdt=A[ S (OR(: Aadt=ALa .
Combining this with
R(c: Ay"t'e=(\—A) S:e‘“Sl(t)R(c: A)wdt=\—A)Lx (by (3.6)),

we have Cx (=R(c: A)*"'x)=L,(,—A4)x (€ R(Ly), i.e.,
xeD(Z) and Zr=(O\—L;'C)x=Ax.

Therefore we obtain (3.10). Since n—Z is injective for n>a (by Prop-
osition 1.4 (a)), (8.10) and (a, )< p(A) imply Z=A.
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Next, to prove “(ii)=(i)” let A be the generator of a C-semigroup
{S®):¢=0} on X with C=R(c: A)*** satisfying |S(t+h)—S(t)||<Ke**+h,
for ¢, h=0. Let us define Vi(®), k=0, by V,(t)=S() and

V,,(t)x=§ S

trty
'0Jo

.»-Stk_IS(tk)xdt,, ... dtdt, for zeX and t=0.
0

Similarly as in [10, Lemma], for k=1, 2,---, n+1 we have the following
(3.11)-(3.13): '

(8.11) Vi.()x € D(A*) and S:(c— AV, _(8)xds € D(A)
for ze€X and £=0;
(3.12) (¢c—A)*V,(V) e BX), lc—A)* V()| = K,e’** and

lle— AV, (t+h)—(c— AV, (b)|| < M e tPp for ¢, h=0,

where K,, M,, a, and b, are nonnegative constants, and hence
(c—AY Vi (:)x: [0, =)— X is continuous for ze X;

(3.13) (= A Vit)=clc— AV V, (&) — (c— AP V,_(2)
tk—l . 1
o C for 120,

Now, define U(t), t=0, by Ut)x=(c—A)**"'V,, ,(t)x for xe€ X. Then, by
(8.12), U)e B(X) and |[Ut+h)—UQ®)||=K'e”**™h for t, h=0, where
K'=M,,, and w'=a,,. Clearly, (0.5), (0.7) and (0.8) are satisfied.
Similarly as in the proof of [10, (ii)= (i) in Theorem 1], we obtain that
(@, )cp(A4) and

R(\: A)x= rx,”“e‘” U(t)xdt for zeX and A >a,

where ||S(?)||=<M'e* for t=0 and a>0. It follows from [1, Theorem 3.1]
that U(t), t=0, satisfy (0.6) with n replaced by n+1. Thus {U(t): =0}
is an (n+1)-times integrated semigroup on X with generator 4. (We
note here that

t0t tn
U= (" | Stude— Ayt . - - dtr,
for x € D(A™") by (1.6).)
Finally, we show “(i)=(iii)”. Let A be the generator of an (n+1)-
times integrated semigroup {U(t): £=0} on X satisfying ||U(t+h)— U®)||<
K'e*"**Mp for t, hz0. We first note that for x € X and z* € X*, (U(t)z, z*>
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is differentiable a.e. t €[0, <) and

(8.14) \ d_ Ui, 2*>

< K'e”"||x]| ||2*|| for a.e.te[0, «).
Now, by the definition of the generator, (o', «<)cp(A) and

ROu: A)x:S:’we-“ Utrdt for zeX and \>a' .

Since
o—a)(|e S Akxdt+§ UM Awdt) =2
for x € D(A™ and A>|w'|, we obtain
R Ao={"e S A"xdt+§ ne—* U(t) Arzdt
for z€ D(A™) and A>|w'|. Therefore for x € D(A"), z* € X* and \>|w’|
(RO Ay, 27y =\ —"z a L ara, aydt+ e -*‘g-t-w(t)Aﬂx, Z*dt .

Differentiating this m —1 times with respect to )\ and using (3.14),
(m—1D1[KRM: A)"R(c: A)"x, x*)|
n—1
=(Tre {5 L 4R Ayl + K e A Ree: Ay} dtlal o]

< (m—-1)! Mllxll Ilw*ll
—a)™

where M=2max{||A*R(c: A)"||, k=0, 1,---, (n—1), K'|A*R(c: A)"||} and a=
max{l, |@'|}. Thus (iii) holds good.

Now, we shall prove (c,)-(¢;). We first note that A, is a closed linear
operator in the Banach space D(A) and

for xe X, z*e€ X*, A»>a and m=1,

(a, =) p(4,)={n: v—A)™ € B(D(A))}
W—A)'=R(\: A)lrm for A>a.

Let {S,(t): t=0} be the C,-semigroup on D(A) defined by (3.3). Since
CrlAC, is the generator of {S,(t): £=0} by Theorem 2.1 and A,cCC;*A,C,
(8.15) implies A,=C*A,C.. This proves (¢,). (c;) and (¢;) can be proved
by the same way as in the proof of [10, (ii)=(i) in Theorem 1]. Q.E.D.

(3.15) {
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Addendum.

After this paper was submitted for publication, the authors received

the following due to R. deLaubenfels:
[d;] C-semigroups and the Cauchy problem, J. Funct. Anal., to

appear.
[d,] Integrated semigroups, C-semigroups and the abstract Cauchy

problem, preprint. .

Theorem 2.4 (b) and Lemma 2.8 in [d,] show that (1.6) and (1.7) hold
true even if {S(¢): £=0} does not satisfy (0.8). Proposition 1.1, (1.5) and
Proposition 1.4 (a,) are also obtained in [d,]. It should be noted that
Proposition 1.4 (a,) does not hold if (0.3) is not assumed. (See [d,,

Example 6.1].)
Let A, ¢ and n be as in Theorem 38.1. It is shown in [d;, Theorem

2.4] that A is the generator of an (n-+1)-times integrated semigroup on
X if and only if A is the generator of a C-semigroup on X with C=
R(c; A)~*.
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