On Automorphisms of Irrational Rotation Algebras

Kazunori KODAKA

Keio University
(Communicated by Y. Ito)

Abstract. Let A_{θ} be an irrational rotation algebra and B_{θ} be the AF-algebra defined by Effros and Shen. Then we have monomorphisms of A_{θ} into B_{θ} . In the present paper we will show that there are automorphisms of A_{θ} which can not be extended to any automorphism of B_{θ} for any monomorphism of A_{θ} into B_{θ} .

§ 1. Preliminaries.

Let C(T) be the C^* -algebra of all complex valued continuous functions on the one dimensional torus T and θ be an irrational number in R. Let $C(T)\times_{\sigma} Z$ be the crossed product for an action σ of the integer group Z on C(T) by angle $2\pi\theta$. We denote $C(T)\times_{\sigma} Z$ by A_{θ} and call it the *irrational rotation algebra by* θ . We identify C(T) with the C^* -algebra $\{f \in C([0, 1]) \mid f(0) = f(1)\}$. Let u and v be the unitary elements in A_{θ} defined by

$$u(n, t) = \begin{cases} e^{2\pi i t} & \text{if} \quad n = 0 \\ 0 & \text{if} \quad n \neq 0 \end{cases}$$

and

$$v(n, t) = \begin{cases} 1 & \text{if } n=1 \\ 0 & \text{if } n\neq 1. \end{cases}$$

Then clearly A_{θ} is generated by u and v and $uv = e^{2\pi i \theta}vu$. Let p be a Rieffel projection in A_{θ} with $\tau(p) = \theta$. It is well known that $K_{0}(A_{\theta}) = \mathbb{Z}[1] \oplus \mathbb{Z}[p]$ and $K_{1}(A_{\theta}) = \mathbb{Z}[u] \oplus \mathbb{Z}[v]$.

Let B_{θ} be the AF-algebra defined in Effros and Shen [2]. Then Pimsner and Voiculescu [6] showed that there exist a monomorphism ρ of A_{θ} into B_{θ} and the unique tracial state τ_1 on B_{θ} such that $\tau = \tau_1 \circ \rho$. Furthermore they showed that $K_0(B_{\theta}) \cong \mathbb{Z}^2$ and $\tau_{1*}(K_0(B_{\theta})) = \mathbb{Z} + \mathbb{Z}\theta$.

LEMMA 1. Let ϕ be an arbitrary monomorphism of A_{θ} into B_{θ} and let $p \in A_{\theta}$ be the Rieffel projection defined in the above. Then $\tau = \tau_1 \circ \phi$ and [1], $[\phi(p)]$ are generators of $K_0(B_{\theta})$.

PROOF. Let $\tau' = \tau_1 \circ \phi$. Then τ' is a tracial state on A_{θ} . Thus by the uniqueness of the tracial state on A_{θ} we obtain that $\tau = \tau' = \tau_1 \circ \phi$. Now let $[e_j] - [f_j]$, j = 1, 2, be the generators of $K_0(B_{\theta})$ such that $\tau_{1*}([e_1] - [f_1]) = 1$ and $\tau_{1*}([e_2] - [f_2]) = \theta$ where e_j and f_j are projections in some matrix algebra $M_n(B_{\theta})$ over B_{θ} . Then there are l, m in Z such that

$$[1] = l([e_1] - [f_1]) + m([e_2] - [f_2])$$
.

Hence

$$1 = \tau_{1*}([1]) = l + m\theta$$
.

Thus l=1 and m=0. Therefore $[1]=[e_1]-[f_1]$. Similarly $[\phi(p)]=[e_2]-[f_2]$. Q.E.D.

§ 2. Automorphisms of B_{θ} .

Let ρ be the monomorphism of A_{θ} into B_{θ} defined in Pimsner and Voiculescu [6]. Then [1] and $[\rho(p)]$ are generators of $K_0(B_0)$ by Lemma 1. For any C^* -algebra A, $\operatorname{Aut}(A)$ denotes the group of all automorphisms of A.

LEMMA 2. For any $\beta \in \operatorname{Aut}(B_{\theta})$, $\beta_* = \operatorname{id}$ on $K_0(B_{\theta})$. Then by Blackadar [1, Theorem 3.1], β is approximately inner.

PROOF. Clearly $\beta_*([1]) = [1]$. Since $\beta_*([\rho(p)]) \in K_0(B_\theta)$, there are $l, m \in \mathbb{Z}$ such that

$$\beta_*([\rho(p)]) = l[1] + m[\rho(p)]$$
.

Hence we obtain by Lemma 1 that

$$\tau_{1*}(\beta_*([\rho(p)])) = l + m\theta$$
.

On the other hand

$$\tau_{1*}(\beta_*([\rho(p)])) = [(\tau_1 \circ \beta \circ \rho)(p)].$$

By the uniqueness of τ_1 we obtain that

$$\tau_{1*}(\beta_*([\rho(p)])) = (\tau_1 \circ \rho)(p) = \tau(p) = \theta$$
.

Thus l=1 and m=0. Hence $\beta_*=\mathrm{id}$ on $K_0(B_\theta)$. Q.E.D.

For any $\beta \in \operatorname{Aut}(B_{\theta})$ let $\tilde{\tau}_1$ be a trace on $B_{\theta} \times_{\beta} \mathbb{Z}$ defined by $\tilde{\tau}_1(f) = \tau_1(f(0))$ for any $f \in l^1(\mathbb{Z}, B_{\theta})$. Since τ_1 is the unique tracial state on B_{θ} , $\tilde{\tau}_1$ is well defined.

COROLLARY 3. For any $\beta \in \operatorname{Aut}(B_{\theta})$, $\tilde{\tau}_{1*}(K_0(B_{\theta} \times_{\beta} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$.

PROOF. By Lemma 2, $\beta_* = \mathrm{id}$ on $K_0(B_\theta)$. Therefore by the Pimsner-Voiculescu six terms exact sequence we obtain that

$$0 \longrightarrow K_0(B_\theta) \xrightarrow{i_*} K_0(B_\theta \times_{\beta} \mathbf{Z}) \longrightarrow 0$$

where i_* is the homomorphism induced by the inclusion map i of B_{θ} into $B_{\theta} \times_{\beta} \mathbf{Z}$. Hence $i_*([1])$ and $i_*([p])$ are generators of $K_0(B_{\theta} \times_{\beta} \mathbf{Z}) \cong \mathbf{Z}^2$. Since $\tilde{\tau}_{1*}(i_*([1])) = 1$ and $\tilde{\tau}_{1*}(i_*([p])) = \theta$, we obtain that $\tilde{\tau}_{1*}(K_0(B_{\theta} \times_{\beta} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$. Q.E.D.

§3. Automorphisms of A_{θ} .

For any $\alpha \in \operatorname{Aut}(A_{\theta})$ let $\tilde{\tau}$ be a trace on $A_{\theta} \times_{\alpha} \mathbb{Z}$ defined by $\tilde{\tau}(f) = \tau(f(0))$ for any $f \in l^{1}(\mathbb{Z}, A_{\theta})$.

DEFINITION. We say that an automorphism α of A_{θ} can be extended to $\beta \in \operatorname{Aut}(B_{\theta})$ for some monomorphism ϕ of A_{θ} into B_{θ} if $\phi(\alpha(x)) = \beta(\phi(x))$ for any $x \in A_{\theta}$.

By the above definition if $\alpha \in \operatorname{Aut}(A_{\theta})$ can be extended to $\beta \in \operatorname{Aut}(B_{\theta})$ there exists a monomorphism $\widetilde{\phi}$ of $A_{\theta} \times_{\alpha} Z$ into $B_{\theta} \times_{\beta} Z$ such that $\widetilde{\tau}(f) = \widetilde{\tau}_1(\widetilde{\phi}(f))$ for any $f \in A_{\theta} \times_{\alpha} Z$. Thus we obtain that $\widetilde{\tau}_*(K_0(A_{\theta} \times_{\alpha} Z)) \subset \widetilde{\tau}_{1*}(K_0(B_{\theta} \times_{\beta} Z))$. Since $\widetilde{\tau}_{1*}(K_0(B_{\theta} \times_{\beta} Z)) = Z + Z\theta$, $\widetilde{\tau}_*(K_0(A_{\theta} \times_{\alpha} Z)) \subset Z + Z\theta$.

LEMMA 4. For any $\alpha \in \operatorname{Aut}(A_{\theta})$, $\tilde{\tau}_*(K_0(A_{\theta} \times_{\alpha} \mathbf{Z})) \supset \mathbf{Z} + \mathbf{Z}\theta$.

PROOF. Since τ is the unique tracial state on A_{θ} and $K_{0}(A_{\theta}) = \mathbf{Z}[1] \oplus \mathbf{Z}[p]$, $\alpha_{*} = \mathrm{id}$ on $K_{0}(A_{\theta})$ for any $\alpha \in \mathrm{Aut}(A_{\theta})$. Hence by the Pimsner-Voiculescu six terms exact sequence $\widetilde{\tau}_{*}(K_{0}(A_{\theta} \times_{\alpha} \mathbf{Z})) \supset \tau_{*}(K_{0}(A_{\theta})) = \mathbf{Z} + \mathbf{Z}\theta$. Q.E.D.

COROLLARY 5. If $\alpha \in \operatorname{Aut}(A_{\theta})$ can be extended to $\beta \in \operatorname{Aut}(B_{\theta})$, $\widetilde{\tau}_*(K_0(A_{\theta} \times_{\alpha} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$.

Next we will compute $\tilde{\tau}_*(K_0(A_\theta \times_\alpha \mathbf{Z}))$ for some automorphisms $\alpha \in \operatorname{Aut}(A_\theta)$. Let $SL(2,\mathbf{Z})$ be the group of all 2×2 matrices with integer entries and determinant 1. For each $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2,\mathbf{Z})$ we define an automorphism α_g by

$$\alpha_{\mathbf{g}}(u^{\mathbf{m}}v^{\mathbf{n}}) = \exp(-\pi i\theta((am+bn)(cm+dn)-mn))u^{am+bn}v^{cm+dn}$$

for each m and $n \in \mathbb{Z}$. This definition is due to Watatani [9]. For each η_1 and $\eta_2 \in \mathbb{R}$ let $\alpha_{(\eta_1,\eta_2)}$ be the automorphism of A_{θ} defined by $\alpha_{(\eta_1,\eta_2)}(u) = e^{2\pi i \eta_1} u$ and $\alpha_{(\eta_1,\eta_2)}(v) = e^{2\pi i \eta_2} v$. Let α be the automorphism of A_{θ} defined by

$$\alpha = \mathrm{Ad}(w) \circ \alpha_{g} \circ \alpha_{(\eta_{1}, \eta_{2})}$$

where w is a unitary element in A_{θ} . We will consider the crossed products $A_{\theta} \times_{\alpha} \mathbf{Z}$. We can regard A_{θ} as a C^* -subalgebra of $A_{\theta} \times_{\alpha} \mathbf{Z}$. By the Pimsner-Voiculescu six terms exact sequence we can see that

$$K_0(A_ heta imes_lpha oldsymbol{Z}^4 \qquad ext{if} \quad g=I \ oldsymbol{Z}^3 \qquad ext{if} \quad a+d=2 ext{ and } g
eq I \ oldsymbol{Z}^2 \qquad ext{if} \quad a+d=2 \ ,$$

since $\alpha_* = \text{id}$ on $K_0(A_\theta)$ where I is the unit element of the 2×2 matrix algebra M_2 . If $a+d \neq 2$, then [1] and [p] are generators of $K_0(A_\theta \times_\alpha Z)$. Hence $\tilde{\tau}_*(K_0(A_\theta \times_\alpha Z)) = Z + Z\theta$. Furthermore if a+d=2, we can see the following:

- 1) If g = I, $\text{Ker}(\text{id} \alpha_*) = \mathbb{Z}[u] \oplus \mathbb{Z}[v]$.
- 2) If a=1, b=0 and $c\neq 0$, $Ker(id-\alpha_*)=\mathbb{Z}[v]$.
- 3) If a=1, $b\neq 0$ and c=0, $Ker(id-\alpha_*)=\mathbb{Z}[u]$.
- 4) If $a \neq 1$ and $b/(a-1) \in \mathbb{Z}$, $\text{Ker}(\text{id} \alpha_*) = \mathbb{Z}((b/(a-1))[u] [v])$.
- 5) If $a \neq 1$ and $(a-1)/b \in \mathbb{Z}$, $\text{Ker}(\text{id} \alpha_*) = \mathbb{Z}([u] ((a-1)/b)[v])$.
- 6) If $a \neq 1, b/(a-1) \notin \mathbb{Z}$ and $(a-1)/b \notin \mathbb{Z}$, $\operatorname{Ker}(\operatorname{id} \alpha_*) = \mathbb{Z}(b[u] (a-1)[v])$.

PROPOSITION 6. Let w be a unitary element in A_{θ} , $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{Z})$ with a+d=2 and η_1 , $\eta_2 \in \mathbb{R}$. Let α be the automorphism of A_{θ} defined by $\alpha = \mathrm{Ad}(w) \circ \alpha_g \circ \alpha_{(\eta_1, \eta_2)}$. Then the following statements hold:

- 1) If g = I, then $\tilde{\tau}_*(K_0(A_\theta \times_\alpha Z)) = Z + Z\theta + Z\eta_1 + Z\eta_2$.
- 2) If a=1, b=0 and $c\neq 0$, then $\tilde{\tau}_*(K_0(A_\theta\times_\alpha Z))=Z+Z\theta+Z\eta_2$.
- 3) If a=1, $b\neq 0$ and c=0, then $\tilde{\tau}_*(K_0(A_\theta\times_\alpha Z))=Z+Z\theta+Z\eta_1$.
- 4) If $a \neq 1$ and $b/(a-1) \in \mathbb{Z}$, then $\tilde{\tau}_*(K_0(A_\theta \times_\alpha \mathbb{Z})) = \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}((b/(a-1))\eta_1 - \eta_2)$.
- 5) If $a \neq 1$ and $(a-1)/b \in \mathbb{Z}$, then $\tilde{\tau}_*(K_0(A_\theta \times_\alpha \mathbb{Z})) = \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}(\eta_1 - ((a-1)/b)\eta_2)$.
- 6) If $a \neq 1$, $b/(a-1) \notin \mathbb{Z}$ and $(a-1)/b \notin \mathbb{Z}$, then $\tilde{\tau}_*(K_0(A_\theta \times_\alpha \mathbb{Z})) = \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}(b\eta_1 - (a-1)\eta_2)$.

PROOF. 1) $\operatorname{Ker}(\operatorname{id}-\alpha_*) = Z[u] \oplus Z[v]$. $\alpha(u)u^* = e^{2\pi i \eta_1} wuw^*u^*$. Let ξ_1 be the continuously differentiable path on [0, 1] from $\alpha(u)u^*$ to wuw^*u^*

defined by $\xi_1(t) = e^{2\pi i (1-t)\eta_1} wuw^* u^*$ for $t \in [0, 1]$. Let ξ_2 be the continuously differentiable path on [1, 2] from $\begin{bmatrix} wuw^*u^* & 0 \\ 0 & 1 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ defined by

$$\xi_2(t) = \begin{bmatrix} w & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sin \pi t/2 & -\cos \pi t/2 \\ \cos \pi t/2 & \sin \pi t/2 \end{bmatrix} \begin{bmatrix} u & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sin \pi t/2 & \cos \pi t/2 \\ -\cos \pi t/2 & \sin \pi t/2 \end{bmatrix}$$

$$\times \begin{bmatrix} w^* & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sin \pi t/2 & -\cos \pi t/2 \\ \cos \pi t/2 & \sin \pi t/2 \end{bmatrix} \begin{bmatrix} u^* & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sin \pi t/2 & \cos \pi t/2 \\ -\cos \pi t/2 & \sin \pi t/2 \end{bmatrix}.$$

Let

$$egin{aligned} ar{\xi}(t) = egin{cases} egin{bmatrix} ar{\xi}_1(t) & 0 \ 0 & 1 \end{bmatrix} & & ext{if} & t \in [0,\ 1) \ ar{\xi}_2(t) & & ext{if} & t \in [1,\ 2] \ . \end{cases} \end{aligned}$$

Then ξ is a piecewise continuously differentiable path on [0,2] from $\begin{bmatrix} \alpha(u)u^* & 0 \\ 0 & 1 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Let Tr be the canonical trace on M_2 . Then

$$egin{aligned} &rac{1}{2\pi i}\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2} (au \otimes \mathrm{Tr}) \Big(\xi(t)^* rac{d}{dt} \xi(t) \Big) dt \ &= rac{1}{2\pi i} \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1} au \Big(\xi_{\scriptscriptstyle 1}(t)^* rac{d}{dt} \xi_{\scriptscriptstyle 1}(t) \Big) dt + rac{1}{2\pi i} \int_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} (au \otimes \mathrm{Tr}) \Big(\xi_{\scriptscriptstyle 2}(t)^* rac{d}{dt} \xi_{\scriptscriptstyle 2}(t) \Big) dt \;. \end{aligned}$$

And

$$\frac{1}{2\pi i} \int_{0}^{1} \tau \left(\xi_{1}(t) * \frac{d}{dt} \xi_{1}(t) \right) dt = \frac{1}{2\pi i} \int_{0}^{1} (-2\pi i \eta_{1}) dt = -\eta_{1}$$

and

$$(\tau \otimes \operatorname{Tr}) \Big(\xi_2(t)^* \frac{d}{dt} \xi_2(t) \Big) = 0.$$

Hence we obtain that

$$-rac{1}{2\pi i}\int_0^z (au\otimes \mathrm{Tr}) \Big(\xi(t)^* rac{d}{dt} \xi(t)\Big) dt = -\eta_1.$$

Similarly there is a piecewise continuously differentiable path ζ on $\begin{bmatrix} 0,2 \end{bmatrix}$ from $\begin{bmatrix} \alpha(v)v^* & 0 \\ 0 & 1 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ such that

$$rac{1}{2\pi i}\int_{0}^{2}(au\otimes \mathrm{Tr})\Big(\zeta(t)^{*}rac{d}{dt}\zeta(t)\Big)dt = -\eta_{2}$$
.

Therefore we obtain by Pimsner [4, Theorem 3] that

$$\widetilde{\tau}_{\star}(K_0(A_{\theta}\times_{\alpha} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta + \mathbf{Z}\eta_1 + \mathbf{Z}\eta_2$$
.

2)-6) Let (l, m) = (1, 0), (0, 1), (b/(a-1), -1), (1, (a-1)/b) or (b, 1-a). Then $\text{Ker}(\text{id} - \alpha_*) = \mathbb{Z}[u^l v^m]$. By trivial computation we can see that $\alpha_g(u^l v^m) = u^l v^m$. Since $\alpha = \text{Ad}(w) \circ \alpha_g \circ \alpha_{(\eta_1, \eta_2)}$, we obtain that

$$\begin{split} \alpha(u^l v^{\it m})(u^l v^{\it m})^* &= (\mathrm{Ad}(w) \circ \alpha_{\it g}(e^{2\pi i \, (l\eta_1 + m\eta_2)} u^l v^{\it m})) v^{-\it m} u^{-\it l} \\ &= e^{2\pi i \, (l\eta_1 + m\eta_2)} w \alpha_{\it g}(u^l v^{\it m}) w^* v^{-\it m} u^{-\it l} \\ &= e^{2\pi i \, (l\eta_1 + m\eta_2)} w u^l v^{\it m} w^* v^{-\it m} u^{-\it l} \;. \end{split}$$

Hence if we repeat the same discussion as 1), we can easily obtain the conclusions. Q.E.D.

§4. The main theorem.

Now we will state the main theorem.

THEOREM 7. Let $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{Z})$ with a+d=2 and $\eta_1, \eta_2 \in \mathbb{R}$. Let α be an automorphism of A_{θ} with $\alpha = \mathrm{Ad}(w) \circ \alpha_{\sigma} \circ \alpha_{(\eta_1, \eta_2)}$ where w is a unitary element in A_{θ} . Moreover α satisfies one of the following conditions:

- 1) If g=I, then $\eta_1 \notin Z+Z\theta$ or $\eta_2 \notin Z+Z\theta$.
- 2) If a=1, $b\neq 0$ and c=0, then $\eta_2 \notin \mathbb{Z} + \mathbb{Z}\theta$.
- 3) If a=1, b=0 and $c\neq 0$, then $\eta_1 \notin \mathbb{Z} + \mathbb{Z}\theta$.
- 4) If $a \neq 1$ and $b/(a-1) \in \mathbb{Z}$, then, $(b/(a-1))\eta_1 \eta_2 \notin \mathbb{Z} + \mathbb{Z}\theta$.
- 5) If $a \neq 1$ and $(a-1)/b \in \mathbb{Z}$, then $\eta_1 ((a-1)/b)\eta_2 \notin \mathbb{Z} + \mathbb{Z}\theta$.
- 6) If $a \neq 1$, $b/(a-1) \notin \mathbb{Z}$ and $(a-1)/b \notin \mathbb{Z}$, then $b\eta_1 (a-1)\eta_2 \notin \mathbb{Z} + \mathbb{Z}\theta$. Then α can not be extended to any automorphism of B_{θ} for any monomorphism of A_{θ} into B_{θ} .

PROOF. Let α be an automorphism of A_{θ} satisfying the assumptions. We suppose that α can be extended to some automorphism of B_{θ} for some monomorphism of A_{θ} into B_{θ} . Then, by Corollary 5, $\tilde{\tau}_*(K_0(A_{\theta} \times_{\alpha} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$. However this fact contradicts Proposition 6. Q.E.D.

COROLLARY 8. Let α be an automorphism of A_{θ} with $\alpha = \operatorname{Ad}(w) \circ \alpha_{(\eta_1, \eta_2)}$ where η_1 , $\eta_2 \in \mathbf{R}$ and w is a unitary element in A_{θ} . Then α can be extended to some automorphism of B_{θ} if and only if α is inner.

References

- [1] B. BLACKADAR, A simple unital projectionless C*-algebra, J. Operator Theory, 5 (1981), 63-71.
- [2] E. G. Effros and C. L. Shen, Approximately finite C*-algebras and continued fractions,

Indiana Univ. Math. J., 29 (1980), 191-204.

- [3] G.K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, 1979.
- [4] M. V. PIMSNER, Ranges of traces on K_0 of reduced crossed products by free groups, Lecture Notes in Math., 1132 (1983), 374-408, Springer.
- [5] M. V. PIMSNER and D. V. VOICULESCU, Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras, J. Operator Theory, 4 (1980), 93-118.
- [6] ——, Imbedding the irrational rotation algebra into an AF-algebra, J. Operator Theory, 4 (1980), 201-210.
- [7] M. A. RIEFFEL, C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
- [8] J. L. TAYLOR, Banach algebras and topology, Algebra in Analysis, edited by J. H. Williamson, Academic Press, 1975.
- [9] Y. WATATANI, Toral automorphisms on irrational rotation algebras, Math. Japonica, 26 (1981), 479-484.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN