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§ 1. Introduction and results.

Let (2, &, P) be a probability space and B:= {B(t), t =0} =
{(B'(t), B*(¢), -+, B'(t)), t=0} an r-dimensional standard Brownian motion
on it (r=1). We consider a stochastic differential equation (abbreviated
by SDE) for a d-dimensional continuous process X: ={X(¢), 0=t<1} (d=1):

1.1) dX()=0o(t, X(t))dB(t)+b(t, X(t))dt ,

with X(0)=X,, where o(t, x)={0i(t, ), 1<i<», 1<j =d} is a Borel measur-
able function (¢, x) € [0, 1] X R?— R*®R" and b(t, x)={bi(t, ), 1<j<d} is a
Borel measurable function (¢, ) € [0, 1] x R? — R®. Suppose that o(-, -) and
b(-, -) satisfy the following Lipschitz conditions: For any z, y € R™ and

t, s €[0, 1] there exists a positive constant L, independent of x, y, s and ¢
such that

(1.2) lo(t, ©)—a(s, ¥)F+[b(¢, @) —b(s, YP<Li(lz—yP+|t—sp) ,

where

lf:=3 3 laif  for aeR'QR

d

i=1 j=1
and [-| denotes the Euclidean norm. Then there exists a unique solution
of the SDE (1.1) (see, for example, Ikeda-Watanabe [8]). Approximate
solutions for (1.1) were constructed by Maruyama [9], and its rate of
convergence was studied by Gihman-Skorokhod [2] and Shimizu [17] (see
also Greenside-Helfand [4], Jankovié [5], Janssen [6], Milshtein [10], Platen
[11], [12], Rao-Borwanker-Ramkrishna [14], Riimelin [15], Wright [18]).
In [2] and [17] on the rate of convergence, approximate solutions are
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constructed from normally distributed random variables (namely, incre-
ments of a Brownian motion). In this paper we shall use approximate
solutions of (1.1) defined by i.i.d. random variables with a general distri-
bution and investigate the rate of convergence in terms of two probability
metries 1,(+, -) and (-, -) defined below. Our result (Theorem 2) is in a
sense a generalization of Borovkov [1] and Gorodetskii [3] (see Remark to
Theorem 2). The advantage of defining approximate solutions by i.i.d.
random variables, not by normally distributed random variables, is known
for instance, in simulation on a digital computer (cf. [6]).

Let W¢:= C([0, 1]— R?) be the space of continuous functions with the
uniform norm |||, <#(W*%) the topological o-field of W* and F(W?) the
space of all probability measures on (W¢ <Z(W?%). For any 0<p<e
define a metric 1,(-, -) on FA(W?) by

1/5
L, @i=[ int §,  Io—wiPudede)

=  inf QE[uY—zu»]vi,‘ P, Qe FA(W?),

LY)=P,£(Z)=
where

G ={e FWX W) ; AXWH)=P(4),
p(Wéx A)=Q(A) for all Ae (W},

Y and Z are Wévalued random variables, .~°(-) denotes the law of - and
% := max(l, p). It follows from Theorem 1 of [13] that, for P,, Pe F(W?)

satisfying
| Jwlrp@w<e and | jwl-Paw)<e
the convergence l,(P,, P)—0 as n— o is equivalent to that
P,=P and | [wl?(P,—PXdw)—0, asn—co,

where “—=” means the weak convergence in (W¢, <Z(W*%). Another metric
we consider here is the Lévy-Prokhorov metric n(-, ) defined by,
2(P, Q): = inf(e>0; P(A)<e+Q(G*(A)) for all Ae B(WH},

where G'(A) :={we W% ||lv—w| <e, ve A} A relationship between (-, +)
and n(-, -) is that for all Q, Re RA(W?), '

(1.3) (@, R)=1,(Q, R)¥»+»
for any posititive p< oo, (Rachev [13]).
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We next define approximate solutions of the SDE (1.1). Let {&,k=1}=
{(&, &+ -+, &), k=1} be i.i.d. r-dimensional random variables with zero mean
and finite (246)-th absolute moment for some §>0. We suppose that the
covariance matrix has non-zero determinant and then it is the identity
without loss of generality. Define random variables Y,?,---, Y. by

Prim Xt 5 0G=D/n By 08 | & HG=Dim, ;)

n' n

and 17’0:=X0. Let Y,:={Y,(t); 0=t<1} be a continuous polygonal line
defined by :

Y. () : =Y+t —k) (s — ),

for k/n=t=(k+1)/n, k=0,1, -++, n—1. Maruyama (Theorem 2 in [9])
showed that

1.4) P»— p¥ | (n— o),

where P¥», P¥e¢ c»(W?% are the probability measures of Y, and X, re-
spectively. (1.4) includes classical Donsker’s invariance principle as a
trivial case where o(-, -) is the identical matrix and b(-, -) is the zero
vector. Our main result on the rate of convergence in (1.4) is as follows:

THEOREM 1. Let {g,, k=1)} be i.i.d. r-dimensional random variables
with zero mean, regular covariance matriz and with El2 <o for
some 0<0=<1l. Assume that o(-, -) and b(-, ) satisfy (1.2) and are
bounded, namely,

(1.5) lo(¢, @) +1b(s, y)P<L§,

where L, is a positive constant independent of =, y,‘s and t. Under
these assumptions we have for any 2<p<2-+/, ‘
(1) of d=r=1, then for any e>p/2,

(1.6) L, (P™», P¥)=0(n=%*2*9(log n)) , (n—o0),

(ii)) 4f r>1 and & has a bounded or square integrable density, then
(1.6) also holds.

From the statement of Theorem 1 for p=2+§ and (1.8) we have the
following result.

THEOREM 2. Under the same assumptions as in Theorem 1, we have
(1) +f d=r=1, then for any e>(2+0)%/2(84+9),
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v(1-7 ) T(P?», PX)=0(n""*¢*"(log n)") , (n— o),

(i) 4f r>1 and & has a bounded or square integrable density, then
(1.7) also holds.

REMARK TO THEOREM 2. The weak convergence of the sequence of
approximate solutions Y,’s constructed by i.i.d. random variables with a
general distribution generalized the well known Donsker’s invariance
principle, where o(-, -)=1 and b(-, -)=0. In case that o(-, -)=1 and
b(-, -)=0, Borovkov [1] and Gorodetskii [3] obtained

(1.8) x(P?», PY)=0(n""*¢*?), (n— o).

In our case, the power of » is the same as their result (1.8), but the
convergence is decelerated by the rate (log n).. However, Theorem 2 is
the best possible in the sense that the power of m cannot be improved
by a better one, since the estimate (1.8) is known in [16] to be the best
possible.

§2. Preliminaries.

Define new random variables &, &, + -+, {x which are sums of blocks
of &,/ s as follows;

ck:'——-(c}u C?c’ ) Ci)—_—

{kqt An Ez

1<k=M,

H
t=li—ne+1 N2

where g=[n¥®*"], M=[n/q]l+1~n"**?, [a] being the integral part of a,
and a Ab means min(a, b). Let {t, ¥=0,1, ---, M} be a partition of the
interval [0, 1] which is defined by t,=Fk4 for 0<k=M-1 and t,=1, where
4:= q/n~n"¥e*d, Moreover define increments of the Brownian motion
by 7%=k N -+, N =BEt)—B(t,_), 1sk=M. We approximate X and
Y, by the following processes X, and Y,: Let (X, k=0,1, ---, M} and
(¥, k=0, 1, ---, M} be random variables defined by

- k B k -
X, = Xt ?‘:1 oty X )i+ ,Z‘=1 b(ti_y, Xi)Ei—ti0) »

- k ~ k ~
Yk = Xo+ Zl a(tj—v Y:i—1)C:i+ Z b(tj—u Y.’i—l)(t:i_t:i—l) ’
j=1 =1

for each 1<k=<M and X,=Y,=X,. Define D([0, 1] — R%)-valued processes
X, :={X.(t), 0=t=<1} and ¥, :={7.(t), 0=t=1} by X@:=X,_,and Y,(¢):=
¥, . for t,_,<t<t, 1=k<M, and X,(1):= X, and ¥,(1):=Y, for t=1,
respectively.
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One of the main techniques of the proof of Theorem 1 is the following
reconstruction of all random variables on a common probability space.

LEMMA 1. Without changing distributions of {&, 1=k=n} and {{,
1=k=M}, we can redefine them on a richer probability space with a
Brownian motion {B(t), t=0} and its increments {n,, 1<k<M} such that
the following properties hold:

(i) If d=r=1, then for any 0<e<2+4 and for each 1<k M,
(2.1) ElC—0ul =040 , (n— o).

(ii) If r>1 and & has a bounded or square integrable density, then
Jor any 0<e<2+3 and each 1=k<M,

(2.2) ElIC—7:/'1=0(4"*"2"n"""*(log n)**) , (n— o).
(iii) For each 1=<k=M-1,

(2.8) €0 & ooy oy Wy Moy =+, M} 18 imdependent of
{Covrs Chrz =%y Caty Dty Diotas ** %5 Nt}

ProoOr. Before proving the lemma we give several notation according
to [3]. Let z=(a', 2% ---,2")eR". For each 1<k<M and 1=:<7r, let
¢i(+) be the propability measure of ((¢, —t,_.) 2, (&, —t,_ ) 23, «--,
(te—t_) L) and Fi(-|a ---, ') be the right continuous conditional
distribution function defined by, for any bounded Borel function «,

Sw Sw y(at, - -, ) Fi(det| *, - - -2 D7 (dat, - - -, datTY)

- 00

={" - 7w, oo s, -, de).

-—00

Define the inverse function of Fi(-|«t, ---, ') by

(Fi)™ulaYy «--, "=, sup v .

Fr(v| xl,ees, zi—1ly<u

Let &(:) be the one dimensional standard normal distribution functlon;
Furthermore define transformations A, h,: R"— R' by

f@)i=(a, -0, 27 (FRH Q@) |2ty o ooy 2870, 28, ooy 2,
and h,:= hjohj 'o---ohi. Then we have

(2'4) g{h (t—l/2771)r hz((tz—tﬁ‘uzvz), tt hM((tM_tM-—1)_1/27]M)}
~—=€”{t1‘”251, (tz"‘t1)—1/2C2, ct (tM—‘tM—1)_1/2CM} .
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Now, applying (2.4), we redefine processes {&.}, {{.} and {B(-)} such that
(2.1)-(2.3) are satisfied as follows: Suppose that there is a Brownian

motion B:={B(t), t=0} on another probability space @, s , P). Define
(2-5) {51; 22’ *t % au} = {ti/2h1(t1—1/2ﬁ1)r (t2_t1)1/2h2((t2ft1)‘1/27]2) ’
°t %y (tu"tM—1)1/2hM((tu_tu—x)_wﬁu)} ’

where %, :-+, iy are increments of B and ), 1sksM}={z,,
1<k<M}. Then, from (2.4), Z{C, 1Ssk=M}={C, 1=k=M}. We
next construct {¢,} by the following method. Define probability measures
U and V by, for any A4, € Z(R"QR"), A, ¢ ZF(R"QR¥) and A, Z (W),

UlA, X Ap):=P{(&, -+, &) €A, Gy »-+, Cu) € AL},
V(4,xA):=P{¢C, ---, 8 e A, BeAy)}.
Put
Uy (A) :=U(A X A), Vu(4):=V(A4,x4,),
H(A;) 1= U(R"QR* x A,)= V(A,x W) .

Since U,(-) is absolute continuous with respect to H(-), there exists a
Z(R"QR")-measurable function p,(-) such that

Ua(4)=\, po)Hdy) .

Furthermore there also exists a < (R"Q@R¥)-measurable function q,(-)
such that :

Valad=\ a.@H@) .

Define a probability measure @ on (R"QR") X (R"QRY)x W* by

QA x A% A= po@)0@HE) |

Finally define a new probability space (2, &', P') by 2':=(R"QR") X
(R"QR¥*)x W, where &’ is the completion of the topological o-field
F(R2') by Q and P':= Q. Keeping the relation (2.5) in mind, we can
redefine {&,}, {{,} and {B(:)} without changing their distributions on the
common probability space (2, &', P') by putting for each w=
(w0, 0y, @) €2,

&y e, )@=, & *w:=w, and B(:, w):=w;.
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Now, from (2.5), the relation (2.3) in Lemma 1 can be easily shown.
Moreover (2.1) and (2.2) are proved by Borovkov (Lemma 1 in [1]) and
Gorodetskii (Lemma 2 in [3]), respectively. |

Finally we need the following three lemmas. In what follows, as a
positive constant independent of n, we use a K which may be different
in the different equations and L := max(L,, L,).

LEMMA 2 (Fuk [T]). Let {v,, 1<k=<mn} be a square integrable martin-
gale difference sequence with respect to a reference family of o-fields
{7, 0=k=n} such that E(y,| _)=0 a.s. for each k. Suppose there
exist sequences of positive mumbers {g,, 1<k=n} and {h,, L<k=n} such
that ‘

EGWi| A =9, and E(v || )she  as.

for some 6>0 and each k. Then for any positive v

P{niax 5

isksn

1”‘| gu}é é’P{Ivklzv}

i=

“aess{-pur e 7)) v (2.

where a=2/(4+5), B=1—a, G=g,4++++g, and H=h,++-- +h,.
LEMMA 3. For any 25p<2+9,
ogrinn g((F—1)/m, ¥ )e;

j=(k—1)g+1 n?

El:max max p] = O(AP/Z(log n)rﬂ) , (rn —> 0O ) .

1SkSM 1sis¢

ProOOF. Put

t=1gdtinn (5 -1)/n, ?j_l)&' ?

i=(k—1)g+1 nt’?

A := max max
1sksSM 15is¢

By integration by parts, we have, for any A\>0,

(2.6) E[A] =_,§ AdP+S AdP

{4<247/2(logn)P/2} {A>24P/2(logn)P/2}

<nd*"(log m)*"+ S AdP

{A>24P/2(logn)P/2}

(=]

P{A>x}dx .

149/2(log n) P/8

=224°"*(log n)**+ S

Putting 4*”?y=2, we have
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(2.7) S°° P{A>x}da= A"’zr P{AY? > 4y VY dy

24P/2(logn)P/2 A(logn)P/2

édms EMI. P{max l:zd\‘ (i “"‘lf‘”"" on((3—1)/n, Yj—l)é:li)z 1/2> y"”}dy
i

A(logn)P/2 k=1 1sisg Lm=1\I=1 j=(k"De+1 ,n1/(2+a)

A”’zr iP{max

2(logn)P/2k=1 15159

r

<3

m=11l=1

e (=i B 8 gy

§=(k=1)g+1 nY/ @+

Let 4 :=0o{8, +++, &)} and v :=gh((G—1)/n, ¥, _1)5,/')1,1/‘”"’ for each k,
and m. Let us agree to write v,, a(-, -) and &, for vi*, okL(-, -) and ¢&i.
Since, from (1.5),

EGt| 7 )= o((4—1)/n, Yi— YE[&] <Kn-¥etd g3,

nZ/(2+8)

E(ly,|** | o7 )= lo((7—=1)/n, ?;‘L—x)lzﬂE[lEile] <Kn™ a.s.,

we can take G=Kqn ¥**¥ =K and H=qKn'=Kn~¥**®, Furthermore we
put u=y"?/rd and v=cy"? for some ¢>0 and apply Lemma 2 as follows;

He—0ariinn 5((§—1)/n, Y, _1)51 yY/? }

@8) P{:lnsliasjqc 3—(lcz—‘i)q+1 ,n1/(2+a> > rd
(kg1 An o((G—=1)/n, ¥;_)e; w}

—:'=(k—21')q+1 “ Ve >cy

(2+43)/p p1+3,, 3/(2+38)
+exp|:— B log( By~ e m )—i—l:l
crd

Krd
—_ /
+2 exp(__gzllz_i_)

2e*Krid?
{kgq}An nl/(2+3)y1/p }
T i= (1§1‘)q+1P{ l&l > L
2,,2/D
Ky beta/erpdy —psjorde+d | 9 ( —ay .
TRy " exp 2e“L'r2d2)
We can easily see that
. /2 < K A? /2
2.9) M4 Sumgmm ( o )dy_KA (log n)
for sufficiently large »>0, and
(2. 10) Mdpﬂs * y-—ﬁ (2+8)/orpdn—58/crd(2+a)dy
A(logn)P/2

< K4**(log n)**
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for sufficiently small ¢>0. Furthermore,

=) ] k n
2.11) A””E S8 P> nverry Lidy
2(logn)P/2 k=1 j=(k—1)g+1

<nae|"Pllg,+> Kny)dy
<@ )| Pllaf>alde
=(4*"/K)E[|&,[*] .
Hence we finish the proof from (2.6)-(2.11). O
LEMMA 4. For any positive T,

(2.12) E[max max lB(t) — B(8)|?]=0(47"*(log n)*"*) , (m— o).

05837 sgtss+T
PROOF. Let u,:= Tt, for each k. For any s with w,_,<s=Zwu,
(2.18) ,max | B(t) — B(s)| = max{ max I(B(uz_l)—B(t))—(B(uz_l)—B(S))l ,
max |(B(u,- 1) B(uz))+(B(uz) — B(1)) — (B(u:_,) — B(s))}

uisStss+T4
<max{2 max |B(t)—Bu._,)|,
ul_lstSul
2 max |B(t)—B(w,_,)|+ max |B(t)—Bu,)|}
U1 sStsug UyStSUup4y !
=2 max |B(t)—B(w,_,)|+ max |B(t)—Bu,) .
up_1Stsug UpStSup4y

Let J:= max,q<y max,, <4 |B()—B(u;_,)| and I{-} be the indicator funec-
tion of .. Then the right hand side of (2.13) is bounded by

(2.14) 3E[J"]=3S J*dP+ 35 J*dP

{I>241/2(log n)1/2} {J=241/2(logn)1/2}

§3§JP [u{ max |B(t)—Bu,_)|>24"*(log n)"* ,

I=1 up_;stsu

max |B(t)—B(w_)|zmax max |B(t)— B(u,,_l)l}:ldP

uj—1StSug Up—1StSUg
+647*(log n)**
sszgz{ max |B(t)—B(u,_)|>24"log n)")
up_1sis
X matx IB(t) B(u,_,)|?dP+647*(log n)?? .
up—1Stsuy

Now we can easily see that
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(2.15) SI{ max |B(t)—Bau_)|>24"log m})x max |B(®)—Blu,_)*dP

% 1S8ts% up_1St2ug

_S_2§I{ max (B(£)— Blu,_)>24"*(log n)"%)

Ul 1St3ug
x max {(B(t)—B(u,_,)VO0}*dP
wj_1Stsuy
SKAMS o ®(di) < K4”"n"" .
2(logn)1/2
Hence (2.12) follows from (2.13)-(2.15). O

§3. Proof of Theorem 1.

Note | X— Y,|| || X— X, ||+ | X.— Y./l +|| Y.~ Y.|l. To estimate the left
hand side, we consider three terms on the right hand side, each of which
will be estimated in the following three lemmas.

LEMMA 5. For any 2=p=2+9,
E[|X—X,||?]=0(4"*(log n)**) ,  (n—c0).

- PrROOF. For simplicity, we prove only 'the case r=1. The case r>1
can be treated similarly. For t,=t<t,,, £=0,1, ---, M—1, let o,(t):=
o(te;, Xu-y) and b,(t) := b(t;,—,, Xi~,). Obviously, for ¢, =t<ty.., wWe have

6D X0)-Z0=(06 X©)-0.)dB6)+ | 0.6)dB)
+[ 06, X@)—b.@ds+{ b.e)ds
=\ (o(s, X))~ (s, X.(s)dB)
+{ 06, ZueN—0ue0aBe)+ | ou@1dBG®)
+{bte, Xo) b6, Zu(o)ds
+[ 06, Zuon—duends+{ buioris .
We first estimate the third term of the right hand side of (3.1).

©.2) B max, yrgest, SZ,_WWBM\”]

=F[ max max |B(A(s))—B(A({;,_,))|?]

18lsk+1 t)_1S8<¢t;
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where A(t): S 0.(8)’ds is the quadratic variation process of the martingale
N(@): S 0.(s)dB(s). By assumption (1.5) we have

A)=L*t and A(t+4)—A@R)<L4 a.s.
Thus the right hand side of (3.2) is bounded by
(3.3) E[max max |B(A(t))—B(A(s))|?]

0S8ty sstse+d

=FE[max max |B(t)—B(A(s))|]

OS85ty A StsA(s+d)

<E[max max |BO)—B(@)] .

0se5L2y sstse+L2

Hence, comblmng (3.2), (8.83) with (2.12) of Lemma 4, we have

(3.4) E| max max
1Sisk+l ¢ ySe<i;

S:l_lan(u)dB(u) I?]gKAMzaog n)"

Now from a moment inequality for martingales (see for example
Theorem 3.1 in Ikeda-Watanabe [8], Chapter III), Jensen’s inequality and
condition (1.2), we have

(3.5) E| max \ S;{a(u, X(w)) — a(u, X, (u))}dB(u) Ip]

0ssst

=kE] [low, Xw)—o(u, X, u)fdu]"
< K| Bllo(u, X(u))—o(u, X, (u)¥ldu
< KL#| Bl|X(w) - X,(w))du

< KL#| Elmax |X(w)— X,()/*}ds .

For ¢,<t<#%,,, we have from (1.2) and (1.5),

Ellot, X,(t)—o.PISL?E[(t—t,_, >+ X, — X,_.|7)]
S K4+ KE[|0(t_y, X )0ul?1+ KE[[b(t,_,, X,,_o(t,,-—t,, OI7]
S K42+ K4q7*

Hence, in the same way as in (8.5), we have

(3.6) max

0sest

< k| Ello(u, X,u)—o,wpldus Ka .

[0, Xy - n<u>}dB<u>| ’]
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Furthermore from Jensen’s inequality,

[\, Xa)—bw, Z.awidu|]

0

3.7) E’[max

0ssst

< K12\ Blmax | X(w)— Xw))ds ,

]

= KS.E[lb(u, X, (u)) = b, (w)IPldu< K47" .

3.8) E’l:max

ossst

[, () —b,w)du

0

Moreover, from (1.5),

3.9 E| max max S' bn(u)du‘p]
1SiSk+1 ¢y s8<ty | Jig—y

= E[ max max {S:l_ Ldu}ﬂ]gL”A’ .

15isk+1 t_1S2<t)

Combining (8.1) and (8.4)-(8.9) and using Gronwall’s inequality, we com-
plete the proof of the lemma. |

LEMMA 6. For any 2=p=2+y9,
E[||Y,— Y,|?]=0(4**(log n)**) ,  (n— o).
PrROOF. We prove only the case r=1 again. For ¢, =t<t4y,
max |Y,(s)— ¥.(s)|]= max |¥,— Y,

tpSsst kg<igint]l+l

kg o V. V& & o
< Jz=:l o((J 1,)),,{;'}2, Y; Dé; _g{ oty Yl—1)Cll
‘ .—' A- .
¢ omax | 3 oG=Dim T
kg<tsS{nt]+i | j=kqt+1 n
b b((f—1)m, ¥;) & by, ¥ie
+| MR T 5 Mo 0|
+ max i b((.?'—l)/n, Y:i—1)
ke<is[nt]+1] j=Fa+1 n
< zk“ . i {0((.7'—1)/77" Yi—13/2—'0'(tl—1! Yl—l)}ei |
I=1 j=(-1)qg+1 n
b max | % CG=D/m Pl |
ke<izs[nt]+1| j=kg+1 n
& 1 . A. _ ~
+|3 Z" BG~D/n,Y,; )—blt,, Y, )} I
1=1 j=(1—1)¢+1 n

L g G =1)/n, ¥l

J=kgt+1 n
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Thus, by Doob’s inequality,
(8.10) E[max | Y.(8)— Y. (s)|7]
& fo(=D/n, ¥y ) =0ty Tl

=1 j=(—1)¢+1 n?

Y o= Vi) |

§=("Dg+1 nt?

SKE[

|

+ KFE| max max
15lsk 1sisq

+KE’[ é lzq‘ WG—=D/n,Y; )—=bt,, Y., p:l

121 j=(i"he+1 n

+ KB max max { 5" o= Lm, Y., ]
1slsk 1si=q \ j=(—-1g+1 n

=:D,+D,+D;+D,,

say. Since {(0((j—V/n, ¥;.) —oltiy, ¥i))g;, (1—1g+1=<j=<lg} and
{o((3—1),Y;_)&), 1<j<n} are martingale differences, we have from
Theorem 3.1 in [5], (1.2) and (1.5) that

@11 D=EnH (S 3 Ble(G-Din, T - ot Toorelss )]

=1 j=(—1)g+1

<KE|- g“ |Y.1—1 Yl—1|2+A2 }wz:l

=1 j=("Dg+1 n

< K| Flmax | ¥,() - V.)l?lds + K47 ,

where &; is the ¢-field generated by &, :--, & for each j. Now, using
Lemma 3, we have

(3.12) D, < K4*"*(log n)*" .
Furthermore, from Jensen’s inequality and (1.5), we have
(3.13) D, SKE[ s Y=Y [+4 }”J
1=1 j=(i—1g+1 n
skg § Bl Tulligd & &

F=01—-1)g+1 n =1 j=(1—-1g+1 N

S:E’[grslasx Y () — T.(w)|")du + K47,
(3.14) QgK(—%)p <K4 .

Combining (3.10)-(3.14) and using Gronwall’s inequality, we conclude the
lemma. ]
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LEMMA 7. We can redefine the processes X, and Y, on a richer
probability space such that the following relations hold:
(1) If d=r=1, then for any 2=p=2-+39,

E[|X,— T.P1=0""), (n—co).

(i) If r>1 and & has a bounded or square integrable density, then
Jfor any 25p<2+4,

E[| X,.— 7.lI7]=0(4"(log n)*"*) , (n— o).
PROOF. Let d=r=1. For t,<t<t,,,
(8.15) max |X,(8)— Y.(s)| —max 1X,— 7.
0Zest 135isk

< KEFE| max

1sitsk

i o(t;_y, Xi—z)vi—g o(t;_,, ?1—1)Ci

I=1

]

i 1 ~ ) Pl
+KE max 2 b(tiy X Dti—ti)— >;1 b(t;_y, Y )(t—1;_) ]
éKE[ max z{', {O'(t,'_l, Xj—1) - U(t:i-u Yj—x)}vi "]
18isk{J=1
+KE| max |, ot ¥io)®:—C)) p:'
15isk| 5=1
+ KE| max Z‘} Btiy X)) —bEi_ Y DMEi—t;) p]
1818k | =1

= Il+I2+I3 ’

say. We first deal with I,. Let o.(s8):= o(¢;_, X’,-_l)—a(t,-_l, 17',-_1) for
t5§8<t5+1, j=0; 1, M M-1. Since {0':.(8), s<tk} is 0{7]” Moy * 0y 7]1:-—1}'
measurable because of relation (2.4) of Lemma 1, I, is represented by

I,=KE| max

1515k

S"o;(s)dB(s) H :

0

Thus, from Theorem 3.1 in [5] and condition (1.2),
(3.16) I< KE[ | S:"a;,(s)dB(s) ‘ ”] < KS:kEllo;(s)I”]ds
< K| Blmax | X,w)— 7,(w)lldu .

We next estimate I,. By (2.3),
Elo@t;, ¥i)0—C) 1 565.1=0 as.
for each j, where 5%; is the o-field generated by %, ---, %;, &, +--, {; for
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e:ach 1=j<M. Thus, from Theorem 8.1 in [8] and (1.5), (2.1), we have
. . % - - p/2‘ )
(3.17) L<KE| 3, Bllott;., ¥5.)(0,— ) 5650 |
k ~ /2
<KE| 33lo(t;o, 1 N Eln—¢1 |

k . N p/2
< KL*|3, Blin;— 1)}
éK(kA(2—a)/2n—8/2)p/2§KtAp/Z .

When »>1, we can similarly prove that
k /2
L<KL* {3} Blin,— LA},
=1
and by using (2.2) instead of (2.1), we have

(3.18) ‘ L=K((kd® ?n~log n)**< Kt4**(log n)** .

As for I, letting bL(s):= b(t;_, X; )—b(t;_., ¥;_,) for t;<s<t;,, j=
0,1, ---, M—1, we have from (1.2) that

(3.19) I,=KE| max

0sjisk

| ouods|” | < K| "Elbi(o)71ds

0

gKYE[max X () — T(w) Pl
0 0Suss
Combining (3.15)-(8.19) we have

E[max | X,(s)— V(9] K| Elmax | X,) ¥, — @w)ldu
0ssst 0 osSuse .
{th”z if d=r=1,
Kta**(log n)*”* if »r>1,

for any 0<t<1. Consequently the lemma is proved by Gronwall’s in-
equality. ]

PrOOF OF THEOREM 1. Without changing distributions we can re-
construct W¢-valued processes X and Y, on the common probability space
', &', P') by Lemmas 1 and 4-6 such that the conclusion of Theorem
1 holds, namely, for any ¢>p/2,

l,(P*, P") S E[|| X —Y.|I*]V*< K4**(log n)**=o0(4**(log n)*)

as n—oo. Therefore we finish the proof of Theorem 1. O
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