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Introduction. The plurigenera $\delta_{m}(X, x)$ of normal isolated singulari-
ties (X, x) were defined by Watanabe [4], as analogies of plurigenera $P_{n}$

of complex manifolds. Thus $\delta_{m}$ have the properties similar to $P_{m}$ . For
instance, if $P_{m}$ are bounded, then $P_{m}$ are not greater than 1. The
plurigenera of two-dimensional normal isolated singularities behave in
the same way [1, Corollary 3.2]. However, higher dimensional normal
isolated singularities may have the plurigenera $\delta_{m}$ greater than 1, although
$\delta_{m}$ are bounded. The purpose of this paper is to give an example of such
a normal isolated singularity.

Let $f:(\tilde{X}, E)\rightarrow(*, x)$ be a good resolution of an isolated singularity
(X, $x$). Namely, each irreducible component $E_{i}$ of the exceptional set
$E=E_{1}+E_{2}+\cdots+E$. is a non-singular divisor on $\tilde{X}$ and $E$ has only normal
crossings as the singularities. We denote by $C_{i}$ the divisor $\sum_{j\neq i}D_{i;}$

$(=E_{i}\cdot(E-E_{i}))$ on $E_{i}$ , where $D_{\iota j}$ is the intersection $E_{i}\cdot E_{j}$ of $E_{i}$ and $E_{j}$ .
DEFINITION $[4, 5]$ .
$\delta_{m}(X, x)=\dim\{H^{0}(X\backslash \{x\}, P_{X}(mK_{X}))/H^{0}(\tilde{X}, P_{\tilde{X}}(mK_{\tilde{X}}+(m-1)E))\}$ .

Here we note that the above definition does not depend on the choice
of resolutions $(\tilde{X}, E)\rightarrow(X, x)$ by [2, Theorem 2.1].

THEOREM. $\delta_{m}=s$ for each pogitive integer $m$ , if

dim $H^{0}(E_{a}P(mK_{E_{i}}+(k-m)[E_{i}]_{1B_{i}}+kC_{i}))=\left\{\begin{array}{ll}0 & for k>m>0\\1 & for k=m>0,\end{array}\right.$

for $e$ach $E_{i}$ and if
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$H^{0}(D_{\dot{f}}, P_{D_{ij}}(K_{D_{ij}}+[E-E-E_{\dot{l}}]_{1D_{i\dot{J}}}))=0$

for each $(i, j)eI=\{(i, j)|1\leqq i<j\leqq s, E_{i}\cap E_{j}\neq\emptyset\}$ .
PROOF. Let $\pi(m, k)=P_{\tilde{X}}(mK_{\tilde{X}}+kE)$ and let $\mathscr{G}_{Z}^{-}(m, k)=\mathscr{G}^{-}(m, k)\otimes p_{Z}$

for a 8ubvariety $Z$ of $X$. Then we have the following two exact sequences
of $8heaves$ :

$0\rightarrow.Z(m, k-1)\rightarrow \mathscr{G}^{-}(m, k)\rightarrow \mathscr{G}_{B}^{-}(m, k)\rightarrow 0$ ,
$ 0\rightarrow_{-}\mathscr{F}_{B}(m, k)\rightarrow\bigoplus_{1Si\leq}\backslash \pi_{B_{i}}(m, k)\rightarrow\bigoplus_{\{i,j)et}\mathscr{G}_{D_{ij}}^{-}(m, k)\rightarrow\cdots$ .

Here we note that

$\mathscr{G}_{B}^{-}(m, k)\cong P_{B_{i}}(mK_{B}, +(k-m)[E_{i}]_{1B},+kC_{\ell}$)),

by the adjunction formula. Hence by the first condition of the theorem,
$H^{0}(E, \mathscr{G}_{B}^{-}(m, k))=0$ , if $m<k$ . Therefore,

$H^{0}(X, \vee\pi(m, m))=H^{0}(X, -\mathscr{F}(m, m+1))=\cdots=H^{0}(X\backslash E, p_{\tilde{X}}(mK_{\tilde{X}}))$ .
Thus we have

$\delta_{n}=\dim H^{0}(X, \mathscr{G}^{-}(m, m))/H^{0}(X, \mathscr{G}^{-}(m, m-1))$

$\leqq\dim H^{0}(E, \mathscr{F}_{B}(m, m))\leqq\sum_{i=1}^{\cdot}$ dim $H^{0}(E_{i}, \rho_{B_{i}}(mK_{B}+mC_{i}))=s$ .
Next, we consider the case of $m=k=1$ . Note that

$L\mathscr{F}_{D_{j}}(1,1)\cong P_{D_{ij}}(K_{D_{ij}}+[E-E_{i}-E_{j}]_{1D_{i\dot{f}}})$ .
Hence by the second condition of the theorem, we have the isomorphism

$H^{0}(E, \mathscr{G}_{B}^{-}(1,1))\cong\bigoplus_{1\leqq\leqq}H^{0}(E_{i}, \mathscr{G}_{B}^{-}(1,1))$ .
Therefore, for each $i$ , we can take an element $s_{i}$ of $H^{0}(E, LZ_{B}(1,1))$ so
that $s_{i}$ vanishes on $E_{j}$ if $j\neq i$ and that $s_{i}$ doe8 not vanish on $E_{i}$ . By
Grauert-Riemenschneider’s vanishing theorem, $H^{1}(\tilde{X}, \mathscr{G}^{-}(1,0))=0$ . Hence
the map $H^{0}(\tilde{X}, P_{\tilde{X}}(K_{\tilde{X}}+E))\rightarrow H^{0}(E, \mathscr{G}_{E}^{-}(1,1))$ is surjective. Let $\omega$ be an
element of $H^{0}(X, \rho_{\tilde{X}}(K_{\tilde{X}}+E))$ whose ima$ge$ under the above map is $s$ .
Then $\omega_{i}$ has poles only along $E_{i}$ . Hence the images of $\omega_{1}^{n},$ $\omega_{2}^{n},$ $\cdots$ and $\omega_{l}^{*}$

under the projection $H^{0}(X, \mathscr{G}^{-}(m, m))\rightarrow H^{0}(X, \mathscr{G}^{-}(m, m))/H^{0}(X, \mathscr{G}^{-}(m, m-1))$

are linearly independent. Therefore $\delta_{n}=s$ . q.e.d.

In the following, we construct an example of a normal isolated
singularity with a resolution satisfying the conditions of the theorem,
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using torus embeddings. See [3], for the notation. Let $N$ be a free
Z-module of rank 3 and let $\{n_{1}, n_{2}, n_{8}\}$ be a basis of $N$. Let $\Sigma=\{faces$

of $\sigma_{i}|i=1$ through 6}, where

$\sigma_{1}=R_{a_{0}\geq 0z\geq 0}n_{1}+Rn+R(2n_{2}-n_{\epsilon})$ ,
$\sigma_{2}=R\geq 0n_{1}+R\geq 0n_{2}+Rn$ ,
$\sigma_{8}=Rn+Rn+R\geq o(-n_{2}+2n_{3})$ ,
$\sigma_{4}=Rn+R_{ao}(2n_{2}-n_{\epsilon})+R\geq 0(-n_{1}+n_{z}+n_{\epsilon})$ ,
$\sigma_{\iota\geq 0}=Rn_{2}+Rn+R\geq 0(-n_{1}+n_{2}+n_{\epsilon})$ and
$\sigma_{\epsilon a\geq 0}=Rn+R(-n_{1}+n_{2}+n_{a})+R\geq 0(-n_{2}+2n_{\epsilon})$ .

Let $B,$ $F_{1}$ and $F_{2}$ be the closures in $T_{N}emb(\Sigma)$ of orb$(Rn+Rn)$ ,
orb $(R_{\geq 0}n_{2})$ and orb$(Rn)$ , respectively. Then $F_{1}$ and $F_{2}$ are compact
submanifolds in the complex manifold $T_{N}emb(\Sigma)$ intersecting along $B$.
Let

$\Lambda=\{faces$ of $x=R_{a0}n_{1}+R\geq 0(-n_{2}+2n_{s})$

$+R\geq o(-n_{1}+n_{2}+n_{6})+R\geq o(2n_{2}-n_{8})\}$ .
Then $T_{N}emb(\Lambda)$ has the isolated singularity orb $(x)$ and $(N, \Sigma)$ is a sub-
division of $(N, \Lambda)$ . Hence we have the holomorphic map $ h:T_{N}emb(\Sigma)\rightarrow$

$T_{N}emb(\Lambda)$ . Here we note that $h$ is a resolution of the singularity orb $(\lambda)$

and $h^{-1}(orb(x))=F_{1}+F_{2}$ . Let $L_{1}=T_{N}emb$($\{faces$ of $\sigma_{1},$ $\sigma_{2},$ $\sigma_{4}$ and $\sigma_{b}\}$ ) and
let $L_{2}=T_{N}emb$({faces of $\sigma_{2},$ $\sigma_{3},$ $\sigma_{b}$ and $\sigma_{6}\}$). Then $L_{1}$ (resp. $L_{2}$) is an open
set of $T_{N}emb(\Sigma)$ and has the structure of the total space of a line
bundle such that $F_{1}$ (resp. $F_{2}$) is the O-section and that $F_{2}\cap L_{1}$ (resp.
$F_{1}\cap L_{2})$ consists of fibers over $B$. Hence we can take open neighborhoods
$W_{1}$ and $W_{2}$ of $F_{1}$ and $F_{2}$ , respectively, and the holomorphic smooth pro-
iections $p_{i}:W_{i}\rightarrow F_{i}$ so that $p_{1p_{l}}=Id$ and that $p_{1}(F_{2}\cap W_{1})=p_{2}(F_{1}\cap W_{2})=B$.
Here we may assume that $W_{1}\cap W_{2}$ is connected and simply connected,
because $B$ is a non singular rational curve. Since $F_{1}$ and $F_{2}$ are Hirzebruch
surfaces of degree 1 with $(B_{1F_{i}})^{2}=-1$ , we have a birational holomorphic
map $q_{i}:F_{i}\rightarrow P^{2}$ to a projective plane, contracting $B$ to a point $z_{i}$ . Take
a non-singular curve $C_{i}$ of degree 6 in $P^{2}$ which does not pass through
$z_{i}$ . Then the double covering $E_{i}$ of $F_{i}$ ramifying along $q^{-1}(C_{i})$ is birational
to a $K3$ surface. Here we may assume that

$(p_{1}^{-1}\circ q_{1}^{-1})(C_{1})\cap W_{2}=(p_{2}^{-1}\circ q_{2}^{-1})(C_{2})\cap W_{1}=\emptyset$ ,

taking $W_{1}$ and $W_{2}$ small enough. Let $\tilde{X}_{i}=W_{i}\times_{p_{i}}E_{i}$ . Then $X_{i}$ is a com-
plex manifold containing the compact submanifold $E_{i}$ and the projection
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$f_{i}:\tilde{X}_{i}\rightarrow W_{i}$ is the double covering map ramifying along $(p_{i}^{-1}\circ q_{i}^{-1})(C)$ .
Moreover, $f^{-1}(W_{1}\cap W_{2})$ consists of two connected components $R_{i}$ and $T$

each of which is isomorphic to $W_{1}\cap W_{2}$ . We obtain a complex manifold
$\tilde{X}$ patching up $X_{1}$ and $X_{2}$ as follows: We identify the points $x_{1}eR_{\iota}$

(resp. $T_{1}$) and $x_{2}eR_{2}$ (resp. $T_{2}$) if and only if $f_{1}(x_{1})=f_{2}(x_{2})$ . Then we
have a finite proper holomorphic map $f:\tilde{X}\rightarrow W=W_{1}\cup W_{2}$ of degree 2
such that $f(x)=f_{i}(x)$ , if $xe\tilde{X}_{i}$ . Since $F=F_{\iota}+F_{2}$ is contractible to a
point, $E:=f^{-1}(F)(=E_{1}+E_{2})$ is also contractible to a point. It is easy
to verify that $(\tilde{X}, E)$ satisfies the condition of the theorem. Therefore,
we obtain an isolated singularity (X, x) with $\delta_{m}=2$ , for each positive
integer $m$ . Moreover, for any positive integer $r$ , we can obtain an
isolated singularity with $\delta_{n}=2r$ for each positive integer $m$ , taking an
r-sheeted unramified covering of $X$ and then contracting the inverse
image of $E$.
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