Tokyo J. Math. Vol. 12, No. 2, 1989

An Example of a Normal Isolated Singularity with Constant Plurigenera δ_m Greater than 1

Hiroyasu TSUCHIHASHI

Tohoku Gakuin University (Communicated by N. Iwahori)

Introduction. The plurigenera $\delta_m(X, x)$ of normal isolated singularities (X, x) were defined by Watanabe [4], as analogies of plurigenera P_m of complex manifolds. Thus δ_m have the properties similar to P_m . For instance, if P_m are bounded, then P_m are not greater than 1. The plurigenera of two-dimensional normal isolated singularities behave in the same way [1, Corollary 3.2]. However, higher dimensional normal isolated singularities may have the plurigenera δ_m greater than 1, although δ_m are bounded. The purpose of this paper is to give an example of such a normal isolated singularity.

Let $f: (\tilde{X}, E) \to (X, x)$ be a good resolution of an isolated singularity (X, x). Namely, each irreducible component E_i of the exceptional set $E = E_1 + E_2 + \cdots + E_i$ is a non-singular divisor on \tilde{X} and E has only normal crossings as the singularities. We denote by C_i the divisor $\sum_{j \neq i} D_{ij}$ $(=E_i \cdot (E-E_i))$ on E_i , where D_{ij} is the intersection $E_i \cdot E_j$ of E_i and E_j .

DEFINITION [4, 5].

 $\delta_m(X, x) = \dim\{H^{\circ}(X \setminus \{x\}, \mathcal{O}_X(mK_X))/H^{\circ}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(mK_{\widetilde{X}} + (m-1)E))\}.$

Here we note that the above definition does not depend on the choice of resolutions $(\tilde{X}, E) \rightarrow (X, x)$ by [2, Theorem 2.1].

THEOREM. $\delta_m = s$ for each positive integer m, if

 $\dim H^{0}(E_{i}, \mathcal{O}(mK_{E_{i}}+(k-m)[E_{i}]_{|E_{i}}+kC_{i})) = \begin{cases} 0 & for \quad k > m > 0 \\ 1 & for \quad k = m > 0 \end{cases},$

for each E_i and if

Received September 30, 1988

HIROYASU TSUCHIHASHI

$$H^{0}(D_{ij}, \mathcal{O}_{D_{ij}}(K_{D_{ij}} + [E - E_i - E_j]_{|D_{ij}})) = 0$$

for each $(i, j) \in I = \{(i, j) \mid 1 \leq i < j \leq s, E_i \cap E_j \neq \emptyset\}$.

PROOF. Let $\mathscr{F}(m,k) = \mathscr{O}_{\widetilde{X}}(mK_{\widetilde{X}}+kE)$ and let $\mathscr{F}_{z}(m,k) = \mathscr{F}(m,k) \otimes \mathscr{O}_{z}$ for a subvariety Z of \widetilde{X} . Then we have the following two exact sequences of sheaves:

$$0 \longrightarrow \mathscr{F}(m, k-1) \longrightarrow \mathscr{F}(m, k) \longrightarrow \mathscr{F}_{E}(m, k) \longrightarrow 0,$$

$$0 \longrightarrow \mathscr{F}_{E}(m, k) \longrightarrow \bigoplus_{1 \le i \le e} \mathscr{F}_{E_{i}}(m, k) \longrightarrow \bigoplus_{(i,j) \in I} \mathscr{F}_{D_{ij}}(m, k) \longrightarrow \cdots.$$

Here we note that

$$\mathscr{F}_{E_i}(m, k) \cong \mathscr{O}_{E_i}(mK_{E_i} + (k-m)[E_i]_{|E_i} + kC_i)),$$

by the adjunction formula. Hence by the first condition of the theorem, $H^{0}(E, \mathscr{F}_{E}(m, k))=0$, if m < k. Therefore,

$$H^{0}(\widetilde{X}, \mathscr{F}(m, m)) = H^{0}(\widetilde{X}, \mathscr{F}(m, m+1)) = \cdots = H^{0}(\widetilde{X} \setminus E, \mathscr{O}_{\widetilde{X}}(mK_{\widetilde{X}}))$$

Thus we have

$$\begin{split} \delta_{m} &= \dim H^{0}(\widetilde{X}, \mathscr{F}(m, m))/H^{0}(\widetilde{X}, \mathscr{F}(m, m-1)) \\ &\leq \dim H^{0}(E, \mathscr{F}_{E}(m, m)) \leq \sum_{i=1}^{\bullet} \dim H^{0}(E_{i}, \mathscr{O}_{E_{i}}(mK_{E_{i}}+mC_{i})) = s \; . \end{split}$$

Next, we consider the case of m=k=1. Note that

$$\mathscr{F}_{D_{ij}}(1, 1) \cong \mathscr{O}_{D_{ij}}(K_{D_{ij}} + [E - E_i - E_j]_{|D_{ij}}) .$$

Hence by the second condition of the theorem, we have the isomorphism

$$H^{0}(E, \mathscr{F}_{E}(1, 1)) \cong \bigoplus_{1 \leq i \leq i} H^{0}(E_{i}, \mathscr{F}_{E_{i}}(1, 1))$$
.

Therefore, for each *i*, we can take an element s_i of $H^0(E, \mathscr{F}_E(1, 1))$ so that s_i vanishes on E_j if $j \neq i$ and that s_i does not vanish on E_i . By Grauert-Riemenschneider's vanishing theorem, $H^1(\tilde{X}, \mathscr{F}(1, 0)) = 0$. Hence the map $H^0(\tilde{X}, \mathscr{O}_{\tilde{X}}(K_{\tilde{X}} + E)) \to H^0(E, \mathscr{F}_E(1, 1))$ is surjective. Let ω_i be an element of $H^0(\tilde{X}, \mathscr{O}_{\tilde{X}}(K_{\tilde{X}} + E))$ whose image under the above map is s_i . Then ω_i has poles only along E_i . Hence the images of $\omega_1^m, \omega_2^m, \cdots$ and ω_i^m under the projection $H^0(\tilde{X}, \mathscr{F}(m, m)) \to H^0(\tilde{X}, \mathscr{F}(m, m))/H^0(\tilde{X}, \mathscr{F}(m, m-1))$ are linearly independent. Therefore $\delta_m = s$.

In the following, we construct an example of a normal isolated singularity with a resolution satisfying the conditions of the theorem,

372

using torus embeddings. See [3], for the notation. Let N be a free Z-module of rank 3 and let $\{n_1, n_2, n_3\}$ be a basis of N. Let $\Sigma = \{$ faces of $\sigma_i \mid i=1$ through 6 $\}$, where

 $\sigma_{1} = \mathbf{R}_{\geq 0}n_{1} + \mathbf{R}_{\geq 0}n_{2} + \mathbf{R}_{\geq 0}(2n_{2} - n_{8}) ,$ $\sigma_{2} = \mathbf{R}_{\geq 0}n_{1} + \mathbf{R}_{\geq 0}n_{2} + \mathbf{R}_{\geq 0}n_{3} ,$ $\sigma_{3} = \mathbf{R}_{\geq 0}n_{1} + \mathbf{R}_{\geq 0}n_{3} + \mathbf{R}_{\geq 0}(-n_{2} + 2n_{3}) ,$ $\sigma_{4} = \mathbf{R}_{\geq 0}n_{2} + \mathbf{R}_{\geq 0}(2n_{2} - n_{3}) + \mathbf{R}_{\geq 0}(-n_{1} + n_{2} + n_{8}) ,$ $\sigma_{5} = \mathbf{R}_{\geq 0}n_{2} + \mathbf{R}_{\geq 0}n_{3} + \mathbf{R}_{\geq 0}(-n_{1} + n_{2} + n_{8}) \text{ and}$ $\sigma_{6} = \mathbf{R}_{\geq 0}n_{3} + \mathbf{R}_{\geq 0}(-n_{1} + n_{2} + n_{8}) + \mathbf{R}_{\geq 0}(-n_{2} + 2n_{8}) .$

Let B, F_1 and F_2 be the closures in $T_N \operatorname{emb}(\Sigma)$ of $\operatorname{orb}(\mathbf{R}_{\geq 0}n_2 + \mathbf{R}_{\geq 0}n_3)$, $\operatorname{orb}(\mathbf{R}_{\geq 0}n_2)$ and $\operatorname{orb}(\mathbf{R}_{\geq 0}n_3)$, respectively. Then F_1 and F_2 are compact submanifolds in the complex manifold $T_N \operatorname{emb}(\Sigma)$ intersecting along B. Let

$$\Lambda = \{ \text{faces of } \lambda = \mathbf{R}_{\geq 0} n_1 + \mathbf{R}_{\geq 0} (-n_2 + 2n_3) \\ + \mathbf{R}_{\geq 0} (-n_1 + n_2 + n_3) + \mathbf{R}_{\geq 0} (2n_2 - n_3) \} .$$

Then $T_N \operatorname{emb}(\Lambda)$ has the isolated singularity $\operatorname{orb}(\lambda)$ and (N, Σ) is a subdivision of (N, Λ) . Hence we have the holomorphic map $h: T_N \operatorname{emb}(\Sigma) \to$ $T_N \operatorname{emb}(\Lambda)$. Here we note that h is a resolution of the singularity $\operatorname{orb}(\lambda)$ and $h^{-1}(\operatorname{orb}(\lambda)) = F_1 + F_2$. Let $L_1 = T_N \operatorname{emb}(\{\text{faces of } \sigma_1, \sigma_2, \sigma_4 \text{ and } \sigma_5\})$ and let $L_2 = T_N \operatorname{emb}(\{\text{faces of } \sigma_2, \sigma_3, \sigma_5 \text{ and } \sigma_6\})$. Then L_1 (resp. L_2) is an open set of $T_N \operatorname{emb}(\Sigma)$ and has the structure of the total space of a line bundle such that F_1 (resp. F_2) is the 0-section and that $F_2 \cap L_1$ (resp. $F_1 \cap L_2$ consists of fibers over B. Hence we can take open neighborhoods W_1 and W_2 of F_1 and F_2 , respectively, and the holomorphic smooth projections $p_i: W_i \to F_i$ so that $p_{i|F_i} = \text{id}$ and that $p_1(F_2 \cap W_1) = p_2(F_1 \cap W_2) = B$. Here we may assume that $W_1 \cap W_2$ is connected and simply connected, because B is a non singular rational curve. Since F_1 and F_2 are Hirzebruch surfaces of degree 1 with $(B_{|F_i})^2 = -1$, we have a birational holomorphic map $q_i: F_i \rightarrow P^2$ to a projective plane, contracting B to a point z_i . Take a non-singular curve C_i of degree 6 in P^2 which does not pass through z_i . Then the double covering E_i of F_i ramifying along $q_i^{-1}(C_i)$ is birational to a K3 surface. Here we may assume that

$$(p_1^{-1} \circ q_1^{-1})(C_1) \cap W_2 = (p_2^{-1} \circ q_2^{-1})(C_2) \cap W_1 = \emptyset$$

taking W_1 and W_2 small enough. Let $\tilde{X}_i = W_i \times_{F_i} E_i$. Then \tilde{X}_i is a complex manifold containing the compact submanifold E_i and the projection

HIROYASU TSUCHIHASHI

 $f_i: \widetilde{X}_i \to W_i$ is the double covering map ramifying along $(p_i^{-1} \circ q_i^{-1})(C_i)$. Moreover, $f_i^{-1}(W_1 \cap W_2)$ consists of two connected components R_i and T_i each of which is isomorphic to $W_1 \cap W_2$. We obtain a complex manifold \widetilde{X} patching up \widetilde{X}_1 and \widetilde{X}_2 as follows: We identify the points $x_1 \in R_1$ (resp. T_1) and $x_2 \in R_2$ (resp. T_2) if and only if $f_1(x_1) = f_2(x_2)$. Then we have a finite proper holomorphic map $f: \widetilde{X} \to W = W_1 \cup W_2$ of degree 2 such that $f(x) = f_i(x)$, if $x \in \widetilde{X}_i$. Since $F = F_1 + F_2$ is contractible to a point, $E := f^{-1}(F)$ (= $E_1 + E_2$) is also contractible to a point. It is easy to verify that (\tilde{X}, E) satisfies the condition of the theorem. Therefore, we obtain an isolated singularity (X, x) with $\delta_m = 2$, for each positive integer m. Moreover, for any positive integer r, we can obtain an isolated singularity with $\delta_m = 2r$ for each positive integer m, taking an r-sheeted unramified covering of \widetilde{X} and then contracting the inverse image of E.

References

- [1] S. ISHII, Two dimensional singularities with bounded plurigenera δ_m are **Q**-Gorenstein singularities, to appear in Proc. Iowa City Singularities Conference, Contemporary Mathematics Series of Amer. Math. Soc.
- [2] F. SAKAI, Kodaira dimensions of complements of divisors, Complex Analysis and Algebraic Geometry, a collection of papers dedicated to K. Kodaira, Iwanami-Shoten (1977), 240-257.
- [3] T. ODA, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge · Band 15, Springer-Verlag, 1987.
- [4] K. WATANABE, On plurigenera of normal isolated singularities I, Math. Ann., 250 (1980), 65-94.
- [5] K. WATANABE, On plurigenera of normal isolated singularities II, Complex Analytic Singularities (T. Suwa and P. Wagreigh, eds.), Adv. Studies Pure Math., 8 (1987), Kinokuniya/North-Holland, 671-685.

Present Address: DEPARTMENT OF LIBERAL ARTS, TOHOKU GAKUIN UNIVERSITY SENDAI 981, JAPAN

374