An Example of a Normal Isolated Singularity with Constant Plurigenera δ_{m} Greater than 1

Hiroyasu TSUCHIHASHI
Tohoku Gakuin University
(Communicated by N. Iwahori)

Introduction. The plurigenera $\delta_{m}(X, x)$ of normal isolated singularities (X, x) were defined by Watanabe [4], as analogies of plurigenera P_{m} of complex manifolds. Thus δ_{m} have the properties similar to P_{m}. For instance, if P_{m} are bounded, then P_{m} are not greater than 1. The plurigenera of two-dimensional normal isolated singularities behave in the same way [1, Corollary 3.2]. However, higher dimensional normal isolated singularities may have the plurigenera δ_{m} greater than 1, although δ_{m} are bounded. The purpose of this paper is to give an example of such a normal isolated singularity.

Let $f:(\tilde{X}, E) \rightarrow(X, x)$ be a good resolution of an isolated singularity (X, x). Namely, each irreducible component E_{i} of the exceptional set $E=E_{1}+E_{2}+\cdots+E_{s}$ is a non-singular divisor on \widetilde{X} and E has only normal crossings as the singularities. We denote by C_{i} the divisor $\sum_{j \neq i} D_{i j}$ ($=E_{i} \cdot\left(E-E_{i}\right)$) on E_{i}, where $D_{i j}$ is the intersection $E_{i} \cdot E_{j}$ of E_{i} and E_{j}.

Definition [4, 5].

$$
\delta_{m}(X, x)=\operatorname{dim}\left\{H^{\circ}\left(X \backslash\{x\}, \mathcal{O}_{X}\left(m K_{X}\right)\right) / H^{0}\left(\tilde{X}, O_{\tilde{X}}\left(m K_{\tilde{X}}+(m-1) E\right)\right)\right\}
$$

Here we note that the above definition does not depend on the choice of resolutions $(\tilde{X}, E) \rightarrow(X, x)$ by [2, Theorem 2.1].

THEOREM. $\quad \delta_{m}=s$ for each positive integer m, if

$$
\operatorname{dim} H^{0}\left(E_{i}, \mathcal{O}\left(m K_{E_{i}}+(k-m)\left[E_{i}\right]_{I_{E_{i}}}+k C_{i}\right)\right)=\left\{\begin{array}{lll}
0 & \text { for } & k>m>0 \\
1 & \text { for } & k=m>0
\end{array}\right.
$$

for each E_{i} and if

$$
H^{0}\left(D_{i j}, O_{D_{i j}}\left(K_{D_{i j}}+\left[E-E_{i}-E_{j}\right]_{D_{i j}}\right)\right)=0
$$

for each $(i, j) \in I=\left\{(i, j) \mid 1 \leqq i<j \leqq s, E_{i} \cap E_{j} \neq \varnothing\right\}$.
Proof. Let $\mathscr{F}(m, k)=\mathcal{O}_{\tilde{x}}\left(m K_{\tilde{x}}+k E\right)$ and let $\mathscr{F}_{z}(m, k)=\mathscr{F}(m, k) \otimes \mathcal{O}_{z}$ for a subvariety Z of \widetilde{X}. Then we have the following two exact sequences of sheaves:

$$
\begin{aligned}
& 0 \longrightarrow \mathscr{F}(m, k-1) \longrightarrow \mathscr{F}^{\longrightarrow}(m, k) \longrightarrow \mathscr{F}_{E}(m, k) \longrightarrow 0, \\
& 0 \longrightarrow \mathscr{F}_{E}(m, k) \longrightarrow \bigoplus_{1 \leq i \leq:} \mathscr{F}_{E_{i}}(m, k) \longrightarrow \bigoplus_{(i, j) \in I} \mathscr{F}_{D_{i j}}(m, k) \longrightarrow \cdots .
\end{aligned}
$$

Here we note that

$$
\left.\mathscr{F}_{E_{i}}(m, k) \cong \mathcal{O}_{E_{i}}\left(m K_{E_{i}}+(k-m)\left[E_{i}\right]_{\mid E_{i}}+k C_{i}\right)\right)
$$

by the adjunction formula. Hence by the first condition of the theorem, $H^{0}\left(E, \mathscr{F}_{E}(m, k)\right)=0$, if $m<k$. Therefore,

$$
H^{0}(\widetilde{X}, \mathscr{F}(m, m))=H^{0}(\tilde{X}, \mathscr{F}(m, m+1))=\cdots=H^{0}\left(\tilde{X} \backslash E, \mathcal{O}_{\tilde{x}}\left(m K_{\tilde{X}}\right)\right)
$$

Thus we have

$$
\begin{aligned}
& \delta_{m}=\operatorname{dim} H^{0}(\widetilde{X}, \mathscr{T}(m, m)) / H^{0}(\tilde{X}, \mathscr{F}(m, m-1)) \\
& \leqq \operatorname{dim} H^{0}\left(E, \mathscr{F}_{E}(m, m)\right) \leqq \sum_{i=1}^{\dot{j}} \operatorname{dim} H^{0}\left(E_{i}, \mathscr{O}_{E_{i}}\left(m K_{E_{i}}+m C_{i}\right)\right)=s
\end{aligned}
$$

Next, we consider the case of $m=k=1$. Note that

$$
\mathscr{F}_{D_{i j}}(1,1) \cong \mathcal{O}_{D_{i j}}\left(K_{D_{i j}}+\left[E-E_{i}-E_{j}\right]_{\mid D_{i j}}\right)
$$

Hence by the second condition of the theorem, we have the isomorphism

$$
H^{0}\left(E, \mathscr{F}_{E}(1,1)\right) \cong \bigoplus_{1 \leq i \leq s} H^{0}\left(E_{i}, \mathscr{F}_{E_{i}}(1,1)\right)
$$

Therefore, for each i, we can take an element s_{i} of $H^{0}\left(E, \mathscr{F}_{E}(1,1)\right)$ so that s_{i} vanishes on E_{j} if $j \neq i$ and that s_{i} does not vanish on E_{i}. By Grauert-Riemenschneider's vanishing theorem, $H^{1}(\widetilde{X}, \mathscr{F}(1,0))=0$. Hence the $\operatorname{map} H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}+E\right)\right) \rightarrow H^{0}\left(E, \mathscr{F}_{E}(1,1)\right)$ is surjective. Let ω_{i} be an element of $H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{x}}\left(K_{\tilde{X}}+E\right)\right)$ whose image under the above map is s_{i}. Then ω_{i} has poles only along E_{i}. Hence the images of $\omega_{1}^{m}, \omega_{2}^{m}, \cdots$ and ω_{s}^{m} under the projection $H^{0}(\widetilde{X}, \mathscr{F}(m, m)) \rightarrow H^{0}(\widetilde{X}, \mathscr{F}(m, m)) / H^{0}(\widetilde{X}, \mathscr{F}(m, m-1))$ are linearly independent. Therefore $\delta_{m}=s$.
q.e.d.

In the following, we construct an example of a normal isolated singularity with a resolution satisfying the conditions of the theorem,
using torus embeddings. See [3], for the notation. Let N be a free Z-module of rank 3 and let $\left\{n_{1}, n_{2}, n_{3}\right\}$ be a basis of N. Let $\Sigma=\{$ faces of $\sigma_{i} \mid i=1$ through 6\}, where

$$
\begin{aligned}
& \sigma_{1}=\boldsymbol{R}_{\mathbf{z 0}} n_{1}+\boldsymbol{R}_{\mathbf{z} 0} n_{2}+\boldsymbol{R}_{\mathbf{z 0}}\left(2 n_{2}-n_{3}\right), \\
& \sigma_{2}=\boldsymbol{R}_{\mathbf{z} 0} n_{1}+\boldsymbol{R}_{\mathbf{z} 0} n_{2}+\boldsymbol{R}_{\mathbf{z} 0} n_{3}, \\
& \sigma_{\mathrm{s}}=\boldsymbol{R}_{\mathrm{z}_{0}} n_{1}+\boldsymbol{R}_{\mathrm{z} 0} n_{\mathrm{s}}+\boldsymbol{R}_{\mathrm{zo}}\left(-n_{2}+2 n_{3}\right) \text {, } \\
& \sigma_{4}=\boldsymbol{R}_{\mathbf{z o}_{0}} n_{2}+\boldsymbol{R}_{\mathbf{z o}_{0}}\left(2 n_{2}-n_{3}\right)+\boldsymbol{R}_{\mathbf{2 0}}\left(-n_{1}+n_{2}+n_{3}\right) \text {, } \\
& \sigma_{\mathrm{s}}=\boldsymbol{R}_{\mathbf{2 0}} n_{2}+\boldsymbol{R}_{\mathbf{z} 0} n_{\mathrm{s}}+\boldsymbol{R}_{\mathbf{2 0}}\left(-n_{1}+n_{2}+n_{\mathrm{z}}\right) \text { and } \\
& \sigma_{6}=\boldsymbol{R}_{20} n_{3}+\boldsymbol{R}_{20}\left(-n_{1}+n_{2}+n_{3}\right)+\boldsymbol{R}_{20}\left(-n_{2}+2 n_{\mathrm{s}}\right) \text {. }
\end{aligned}
$$

Let B, F_{1} and F_{2} be the closures in $T_{N} \operatorname{emb}(\Sigma)$ of $\operatorname{orb}\left(\boldsymbol{R}_{\mathbf{2 0}} n_{2}+\boldsymbol{R}_{20} n_{\mathrm{s}}\right)$, $\operatorname{orb}\left(\boldsymbol{R}_{20} n_{2}\right)$ and $\operatorname{orb}\left(\boldsymbol{R}_{20} n_{3}\right)$, respectively. Then F_{1} and F_{2} are compact submanifolds in the complex manifold $T_{N} \operatorname{emb}(\Sigma)$ intersecting along B. Let

$$
\begin{aligned}
\Lambda=\{\text { faces of } \lambda= & \boldsymbol{R}_{\geq 0} n_{1}+\boldsymbol{R}_{\mathrm{z} 0}\left(-n_{2}+2 n_{3}\right) \\
& \left.+\boldsymbol{R}_{\mathrm{z} 0}\left(-n_{1}+n_{2}+n_{3}\right)+\boldsymbol{R}_{\mathbf{2} 0}\left(2 n_{2}-n_{3}\right)\right\} .
\end{aligned}
$$

Then $T_{N} \mathrm{emb}(\Lambda)$ has the isolated singularity $\operatorname{orb}(\lambda)$ and (N, Σ) is a subdivision of (N, Λ). Hence we have the holomorphic map $h: T_{N} \operatorname{emb}(\Sigma) \rightarrow$ $T_{N} \operatorname{emb}(\Lambda)$. Here we note that h is a resolution of the singularity $\operatorname{orb}(\lambda)$ and $h^{-1}(\operatorname{orb}(\lambda))=F_{1}+F_{2}$. Let $L_{1}=T_{N} \mathrm{emb}\left(\right.$ (faces of $\sigma_{1}, \sigma_{2}, \sigma_{4}$ and $\left.\left.\sigma_{5}\right\}\right)$ and let $L_{2}=T_{N}$ emb (\{faces of $\sigma_{2}, \sigma_{3}, \sigma_{5}$ and $\left.\sigma_{8}\right\}$). Then L_{1} (resp. L_{2}) is an open set of $T_{N} \mathrm{emb}(\Sigma)$ and has the structure of the total space of a line bundle such that F_{1} (resp. F_{2}) is the 0 -section and that $F_{2} \cap L_{1}$ (resp. $F_{1} \cap L_{2}$) consists of fibers over B. Hence we can take open neighborhoods W_{1} and W_{2} of F_{1} and F_{2}, respectively, and the holomorphic smooth projections $p_{i}: W_{i} \rightarrow F_{i}$ so that $p_{i \mid F_{i}}=\mathrm{id}$ and that $p_{1}\left(F_{2} \cap W_{1}\right)=p_{2}\left(F_{1} \cap W_{2}\right)=B$. Here we may assume that $W_{1} \cap W_{2}$ is connected and simply connected, because B is a non singular rational curve. Since F_{1} and F_{2} are Hirzebruch surfaces of degree 1 with $\left(B_{\mid F_{i}}\right)^{2}=-1$, we have a birational holomorphic map $q_{i}: F_{i} \rightarrow \boldsymbol{P}^{2}$ to a projective plane, contracting B to a point z_{i}. Take a non-singular curve C_{i} of degree 6 in P^{2} which does not pass through z_{i}. Then the double covering E_{i} of F_{i} ramifying along $q_{i}^{-1}\left(C_{i}\right)$ is birational to a $K 3$ surface. Here we may assume that

$$
\left(p_{1}^{-1} \circ q_{1}^{-1}\right)\left(C_{1}\right) \cap W_{2}=\left(p_{2}^{-1} \circ q_{2}^{-1}\right)\left(C_{2}\right) \cap W_{1}=\varnothing,
$$

taking W_{1} and W_{2} small enough. Let $\tilde{X}_{i}=W_{i} \times_{P_{i}} E_{i}$. Then \tilde{X}_{i} is a complex manifold containing the compact submanifold E_{i} and the projection
$f_{i}: \tilde{X}_{i} \rightarrow W_{i}$ is the double covering map ramifying along ($\left.p_{i}^{-1} \circ q_{i}^{-1}\right)\left(C_{i}\right)$. Moreover, $f_{i}^{-1}\left(W_{1} \cap W_{2}\right)$ consists of two connected components R_{i} and T_{i} each of which is isomorphic to $W_{1} \cap W_{2}$. We obtain a complex manifold \widetilde{X} patching up \widetilde{X}_{1} and \widetilde{X}_{2} as follows: We identify the points $x_{1} \in R_{1}$ (resp. T_{1}) and $x_{2} \in R_{2}$ (resp. T_{2}) if and only if $f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)$. Then we have a finite proper holomorphic map $f: \widetilde{X} \rightarrow W=W_{1} \cup W_{2}$ of degree 2 such that $f(x)=f_{i}(x)$, if $x \in \widetilde{X}_{i}$. Since $F=F_{1}+F_{2}$ is contractible to a point, $E:=f^{-1}(F)\left(=E_{1}+E_{2}\right)$ is also contractible to a point. It is easy to verify that ($\widetilde{X}, E)$ satisfies the condition of the theorem. Therefore, we obtain an isolated singularity (X, x) with $\delta_{m}=2$, for each positive integer m. Moreover, for any positive integer r, we can obtain an isolated singularity with $\delta_{m}=2 r$ for each positive integer m, taking an r-sheeted unramified covering of \tilde{X} and then contracting the inverse image of E.

References

[1] S. IsHII, Two dimensional singularities with bounded plurigenera δ_{m} are Q-Gorenstein singularities, to appear in Proc. Iowa City Singularities Conference, Contemporary Mathematics Series of Amer. Math. Soc.
[2] F. Sakar, Kodaira dimensions of complements of divisors, Complex Analysis and Algebraic Geometry, a collection of papers dedicated to K. Kodaira, Iwanami-Shoten (1977), 240-257.
[3] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge • Band 15, Springer-Verlag, 1987.
[4] K. Watanabe, On plurigenera of normal isolated singularities I, Math. Ann., 250 (1980), 65-94.
[5] K. Watanabe, On plurigenera of normal isolated singularities II, Complex Analytic Singularities (T. Suwa and P. Wagreigh, eds.), Adv. Studies Pure Math., 8 (1987), Kinokuniya/North-Holland, 671-685.

Present Address:
Department of Liberal Arts, Tohoru Gakuin University
Sendai 981, Japan

