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§1. Imntroduction.
We consider the equation
s(1*+ 2%+ « o« +2¥) +r=0y" (1)

where b, s, r, and k are integer constants and investigate the conditions
under which we can assert that the equation has only finitely many
solutions in integers >0, y=2, and z2=2.

This was proved by K. Gyory, R. Tijdeman and M. Voorhoeve [4]
in the case b%0, k>0, s=1, and r arbitrary, provided that k¢ (1, 3, 5}.
They also stated the same condition when s is a certain squarefree odd
integer.

B. Brindza [2] proved the assertion in the case when s is squarefree
and z2¢{1, 2, 8, 4, 6} or if s is odd and k¢ {1, 2, 3, 5}.

In this paper, we obtain new conditions on k, 7, and s which allow
us to show that (1) has only finitely many solutions in integers x>0,
ly|=2, and 2=2.

§2. Results.

For an integer »+#0 and a prime p, there exists an integer m=0
for which p™||n. Then we put v,(n)=m and define, for a nonzero rational
number a=m/n with m, ne Z,

vo(a) =v,(m)—v,(n)

which depends only on a. Also we write num a¢=m and den a=n for
a rational number a=m/n with m, ne€e Z, n>0, and (m, n)=1, where
(m, n) denotes the greatest common divisor of m and n.

THEOREM. For given integers b+0, r+0, s+0, and k>0, the equation
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(1) has only finitely many solutions in integers x>0, y with |y|=2, and
z=2, provided that k, r, and s satisfy one of the following conditions;
I) k=0 (mod?2), v,(s/r)=0,
II) k=0 (mod 2), y,(s/r)=2,
III) k=2" (he N), v,(s/r)=1,
IV) k=38 (mod4), v,(s/(r(k+1)))+*k+1.

REMARK 1. Each condition in Theorem is equivalent to the following
statement: If (s, r)=1,

I) k is even and s is odd,

II) k is even and s=4 (mod 8),

II) k is a power of 2 and s=2 (mod 4),

IV) k=3 (mod 4) and num(s/(k+1))#2*" (mod 2¢+2).
If (s, r)+1, s should be replaced by s/(s, 7).

REMARK 2. In Theorem we assumed r++0. If r=0, one can deduce
from Theorem 2 in [4] that the equation (1) has only finitely many
solutions in integers x>0, y with |y|=2, and z=2 provided that k¢
{1, 8, 5}.

COROLLARY 1. Let b#0, r, 80, and k>0 be given integers. If s
18 odd and k¢ {1, 3, 5}, the equation (1) has only finitely many solutions
wm integers x>0, y with |y|=2, and z=2.

REMARK 3. If s is odd but ke({l, 3, 5}, the equation (1) may have
infinitely many solutions in integers >0, y=2, and 2z=2, under some
conditions for b and 7; for instance when s=1, ke({l, 8,5}, b=1, and
r=0 (cf. [5)).

COROLLARY 2. For given integers a, b+0, k>0, r, and 8+#0, each
of the equations

sfa*+(@+1)+ .- +a*}+r=by (x=a, [y|=2, 222) (2)
and
s{a*+(x+1)*+ .- - +a*}+r=by (x=a, [y|=2, 2=2) (3)

has only finitely many solutions in integers z, y, and z, provided that
k and s satisfy one of the following conditions;

V) k=0 (mod2), s=1 (mod 2),

V) k>38, k=8 (mod 4), s*0 (mod 2¢3),
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§3. Lemmas.
The left-hand side of (1) can be written as

T B+ D= Bk,

where B, is the Bernoulli number defined by

2 _< Bz
e—1 i= 1)

and B,(x) is the Bernoulli polynomial given by
B,,(w)=t§:% (%)Btw"“ .
We remark that B,=1, B,=—1/2, B,=0 for odd 2>1, and
B(1—z)=(—1)"By(x) , (4)
B, (x)=kB,_,(x) . (5)
LEMMA 1 (von Stadt-Clausen’s theorem).

denB,,= [ » (r=1) .

p—1|2¢
In particular, den B,, is squarefree and 2 | den B,,.

LEmMmA 2 (K. Gyory, R. Tijdeman, and M. Voorhoeve [4] Lemma 1
and Lemma 2). Let P(x)€Q[x] be a polynomial having at least three
simple zeros, and let b#0 be an integer. Then the equation

P(x)=by*
has only finitely many solutions in integers x>0, y with |y|=2, and
z=2. .
§4. Proofs.

PrROOF OF THEOREM. By Lemma 2 we have only to prove that the
equation in =z,

kj—l {Bi+1(x+1)— By} +7=0,

has at least three simple roots. Since the number of the roots as well
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as their multiplicity of an algebraic equation is not varied by replacing
2 by a linear polynomial, we have

S{By+,(®)— B,,} +R=0, (6)

where S=s/g, R=r(k+1)/g with g=(s, r(k+1)), so that (S, R)=1. Fur-
thermore, denoting by d the least common multiple of the denominators
of the coefficients appearing in the polynomial on the left-hand side of
(6), we have
P(x) :=d(k+1)g7'[s{1*+2*+ - - - +(@—1)*}+7]
=d8{B,;,(x) — By} +dR

—dS z:, (" 1Bt +dR

=dS{x"“ k+1w +§(k+1 B%xk+l—2i} +dR=0. ()

Here P(x)c Z[x] is a primitive polynomial, because of the choice of d
and (S, R)=1. We note that d is squarefree, (d, S)=1, d is odd when
S is even, and d is even when S is odd and %k is even. We also remark
that v,(S/R)=yv,(s/(r(k+1))) and that »,(S/R)=y,(s/r) when k is even.
Hence in Theorem we may replace v, (s/r) and wv,(s/(r(k+1))) by v.(S/R).
In what follows, we shall prove that P(x)=0 has at least three simple
roots. The proof will be divided into four cases I), II), III), and IV).

Case I). k is even and v,(S/R)<0. The last inequality implies that
S is odd, since (S, R)=1. It follows from (7) that

P(x)+2P' (@) =dS- (f+2)x*+ — -1-ds- e+ 1)t

+z ds(k+1)B (42— 20)at 2+ dR . (8)
Here 2| d, and ds(k;;;l)BzieZ, and so

dS-(k+2)=0 (mod 2) , ——;-dS-(k+1)2sl (mod 2)
dS(kgi1>Bﬂ-(k+2—2i)EO (mod2), dR=0 (mod2).

Therefore we have

P(x)+xP'(x)=2* (mod 2) . (9)
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Since deg P(x)=k+1=3, we have only to prove that P(x)=0 has no
multiple root. Suppose that P(x)=0 has a multiple root. Then there
exists a non-constant polynomial Q(x) € Z[x] such that

Q@Y Px), Q)|P'(x) (10)
and so
Q) | P(x)+xP'(x) .
Hence we have by (9) and (10) _
Q(x)=2™ (mod 2) , P'(x)=2™R(x) (mod 2) (11)
for some integer m=0 and some polynomial R(x) e Z[x]. Here we find
P'(0)=1 (mod?2),

since P'(0)=dS-(k+1)B, with 2| d, S odd, k even, and den B, is even;
so that (11) implies m=0. Hence we have Q(x)=1 (mod 2), and so we
may write

Q(x)=2S(x)+1 , S(x) € Z|[x] .

Noticing‘ that neither Q(z) nor S(x) is a constant and that {2S(x)+1)?| P(x)

by (10), the leading coefficient dS of P(x) is divisible by 4, which is a
contradiction.

Case II). k is even and y,(S/R)=2. The last equality implies that
R and d are odd, since (S, R)=1. We also note that dS(k;.H)BiEO
(mod 2), since 2| den B, by Lemma 1. Hence we have by (7),

Px)=1 (mod?2). (12)

Since deg P(x)=8, we have only to prove that P(x)=0 has no multiple
root. Suppose that P(x)=0 has a multiple root. Then there exist a

non-constant polynomial Q(x) € Z[x] and a polynomial R(x) € Z[x] such
that

P(x) ={Q(x))*R(x) .

Since deg P(x) is odd, deg R(z) is odd, and so R(x) is not a constant.
Noticing that Q(z), R(z)| P(x), we have by (12)

Qx)=1 (mod 2) , R(x)=1 (mod 2) ,

and so we may write




446 HIROYUKI KANO

Qx)=2S(x)+1, R(x)=2T(x)+1 ,
where S(x), T(x) € Z[x]. Hence we get
P(x)={2S(x)+1}}{2T(x)+1} ,

where neither S(z) nor T(x) is a constant. Therefore the leading coef-
ficient dS of P(z) is divisible by 8, which is a contradiction.

Case III). k=2 (he N) and v,(S/R)=1. The last equality implies
that R and d are odd since (S, R)=1. As in the Case I), we have (8).

Noticing that k is even, 2||S, and dS(ké‘;l)BﬂeZ, we find
dS-(k+2)=0 (mod 2) , ——%dS-(k+1)2zl (mod 2) ,
dS(kg;:l)Bu-(k+2—2i)EO (mod2), dR=1 (mod2).

Therefore it follows from (8) with k=2" that
P(x)+xP'(x)=2*+1=(x+1)* (mod?2). (18)

We will show that P(x)=0 has no multiple root. Suppose that P(x)=0
has a multiple root. Then there exists a non-constant polynomial

Q(x) € Z[x] such that

Q@)Y | Px), Q= |P(x),
and so

Q) | P(x)+zP'(%) .
Hence it follows from (13) that
Q(x)=(x+1)* (mod 2) , P(x)=(x+1)R(x) (mod 2) 14)

for some integer m=0 and polynomial R(z) € Z[x]. But we have by (7)

P@3)=d(k+1)S-1+2%+dR,
so that

P(8)=1 (mod 2)

since d and R are odd and S is even. On the other hand, we have by
(14)

P3)=4"R(3) (mod2).
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Thus we get m=0, and hence (14) gives Q(x)=1 (mod2). Therefore,
as in the Case I), we find 4 |dS, which is a contradiction.

Case IV). k=38 (mod4) and (d, S)=(S, R)=1. It follows from (5)
and (8) that

P'(x)=dS-(k+1)B\(2) .

Since k is odd, we can show, by the same way as in the proof of
Theorem 2 in [4], that the equation B,(x)=0 as well as P’'(x)=0 has no
multiple root. Hence the multiplicity of a root of P(x)=0 is at most 2.
Thus we can write

P(x)={Q@)}'R(=) , (15)

where Q(z), R(x) € Z[x] have only simple zeros and no common zeros. It
is enough to prove that

deg R(x)=38 .

For this we prove first that
1
P<E>¢0 . (16)

If S is odd, it is easily seen that 2**'P(1/2) is odd for odd d and 2*P(1/2)
is odd for even d; and hence (16) holds for odd S. If S is even, then
d and R are odd. We put S=,(S)S’, where S’ is odd, so that

248" (¥ T1)B.c 2. We note that w(S/R)=n(S)#k+1 by IV). If n(S)<
k+1,

2-a0 P(L)=ds'— (k+1as'+23, 248 (F T 1) Ba 2 odR

is odd. Similarly P(1/2) is odd when y,(s)>k-+1. Hence (16) holds also
for even S.
Now it follows from (4) and (7) with odd k£ that

PQl—x)=P(x) .

Hence the roots of P(x)=0 are located symmetrically about x=1/2, and
the multiplicity of the corresponding roots are equal. The same is true
for the roots of Q(x)=0. By (16) we get deg Q(x)=0 (mod 2), so that
deg{Q(x)}*=0 (mod 4). Hence we find by (15)

deg R(x)=deg P(x)=k+1=0 (mod4).
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Thus it is sufficient to prove that R(x) is not a constant. Suppose that
R(x) is a constant, say ¢#£0. Then we may write

P(r)=c{Q@))’ 17)

where deg Q(x)=(k+1)/2. Recalling that every term of P(z) of odd
degree not greater than (k+1)/2 is zero and P(0)+0, we can prove by
comparing the coefficients of the both sides of (17), that every term of
odd degree of Q(x) and also that of P(x) is zero, which contradicts the
fact that the coefficient of z* of P(x), where k is odd, is different from
zero. The proof of our Theorem is now complete.

PROOF OF COROLLARY 1. By the result of B. Brindza [2] mentioned
in the introduction, we have only to prove the statement when k=2.
Thus if r+0, Corollary 1 follows from Case I) in Theorem. The case of
r=0 is already discussed in Remark 2.

PROOF OF COROLLARY 2. The conditions V) and VI) are special cases
of I) and IV) in Theorem respectively. Equation (2) has a specific form
of (1) with suitable modified . (8) is reduced to (2) by multiplying the
both sides by (—1)%.

I would like to express my thanks to Professor Iekata Shiokawa for
his valuable advice concerning the paper.
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