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Introduction.

In Oshima and Sekiguchi [OS1], a class of (non-Riemannian) symmetric spaces
called those of “K,-type” or “f,-type” were introduced and analysis on such symmetric
spaces were developed. It is an interesting problem to obtain a geometric characterization
of symmetric spaces of f,-type. On the other hand, B.-Y. Chen and T. Nagano [CN]
studied totally geodesic submanifolds of compact symmetric spaces by using the
(M ,(p), M _(p))-method. There is a similarity between the classification in [OS1,
Appendix, Table 2] and [CN, p. 415, Tables I-III]. The motivation of our study is to
clarify this similarity.

We are going to explain the results of this paper briefly. In this paper, a symmetric
space means a coset space G/G°, where G is a connected semisimple Lie group, o is an
involution of G and G°={ge G ; a(g)=g}. And G and G’ are not necessarily compact.
Then, due to Berger [B], there is a Cartan involution 6 of G commuting with o.
Moreover, X =G/G” is regarded as a vector bundle over M=G?%/G%° (G*°=G° n G°).
For an involution 7 of X, Y denotes the fixed point set of 7 in X and N denotes the
fixed point set of ‘th in M. Then Y is a symmetric space, N is a compact symmetric
space and Y is a vector bundle over N. For thé involution 7 of X, we can choose an
involution of G commuting with o. We note here that studying N in Y is regarded as
a generalization of the (M ,(p), M _(p))-method of Chen-Nagano [CN]. There arises
naturally a pair of involutions of G from the symmetric space X and its symmetric
subspace Y. Conversing this argument, we shall study the relations among the symmetric
spaces X, Y, M, N defined from a pair of involutions of G.

In this paper, we restrict our attention to studying a commuting pair of involutions
of G in the following two cases: (1) the case where X=G/G? is a complexification of
M=G®/G®° (then X ~ TM, the tangent bundle to M as G°-space) and (2) the case where
X=~T*M, the cotangent bundle to M (then M is called a symmetric R-space which
was studied in Nagano [N]). As a corollary of the case (1), we can give a geometric
characterization of symmetric pairs of f-type. As the main result of the study of the
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case (2), we get an analogue of Borel embedding for a certain class of symmetric spaces
(Theorem 4). A result similar to Theorem 4 was obtained by B. O. Makarevi¢ [M].

§1. Let G be a connected real semisimple Lie group with finite center and let g
be its Lie algebra. In this paper, we denote an involution of G and the induced involution
of g by the same letter for the sake of simplicity.

Let 6,0,7 be involutions of G commuting with each other. Denote g**
={xeg; a(x)=xx} for ae{h, 0,1}, denote g***f=g**ng*f for a, fc{0,o0,}
and denote g******=g*% ~ g*7 ~ g**. In the group case, denote G*={xeG ; a(x)=
+x} for ae{h,s,1}, denote G**=G* G* for a, fc{0, 0,1} and denote G***=
G°nG° NG :

, For an involution o of g, (g, g°) is a symmetric pair. M. Berger [B] introduced the
associated pair and the dual pair of (g, g°). In this paper, following the notation in
[OS2, §1(1.2)«(1.4)], (g, 8°)* and (g, g°)* are the associated pair and the dual pair of
(8, g%), respectively. Moreover, we use the notation (g, g%, (g, g%, (g, g°)*
(=(g, g°)**) as in [0S2].

In the subsequent discussion, we frequently assume the existence of a Cartan
involution commuting with given commuting involutions. This assumption is a
consequence of the next lemma.

LEMMA 1. If o, T are involutions of ¢ commuting with each other, there is a Cartan
involution 6 of G commuting with both a, 1.

After establishing this lemma, we are pointed out by T. Kobayashi that Lemma 1
is a special case of a more genral statement (cf. [H]).

§2. Let 7 be an involution of G and let 8 be a Cartan involution of G commuting
with 7. Assume that G* is not compact. Then, due to [B], G/G® is regarded as a vector
bundle over G®/G%*. We explain this fact for later use. First introduce an equivalence
relation “~” on G% x g =% ~* as follows:

(k, x)~(k’, x") 1if and only if k(expx)G*'=k'(expx)G*.

From the definition, we find that (k, x) ~(k’, x’) if and only if there is m e G°®* such that
k'=km, x' = Ad(m~')x. Then the relation “ ~ > actually becomes an equivalence relation
and (G° x g7 ~%)/ ~ =~ G/G". Now write [k, x] for the equivalence class of (k, x). Defining
n([k, x])=kG®", we find that = is a projection from G/G* to G°/G®* and in this way,
G/G* is a vector bundle over G°/G®*. From the definition, 7 is G°-equivariant.

Now let 6, o, T be involutions of G commuting with each other. Assume that 6 is
a Cartan involution of G. Then we have the following diagram of inclusions and
projections:
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o o,T /’—\
G° /GB s W G/Gr 3GUT/GU’1 Gﬂat/Gﬂa,r

NS | NS

Go,a/Ge,a,z C GG/GG,t ) GG,at/GG,a,r

w N | N

Gea/GGa,Ot i/ca,—ﬂt—’/: G/Go: u :)Gar/G%',(% GOat/Ga,Ot

DiIAGRAM 1

Remark to the above diagram: GY is a maximal compact subgroup of G. The
symmetric space G/G" is a vector bundle over G?/G%" as explained before. The symmetric
spaces G/G* and G/G®* are mutually associated (cf. [B], [OS2, p. 437]). Both G%/G%*
and G°/G°" are regarded as closed subspaces of G/G* and G*?/G%°" is regarded as a
closed subspace of G°/G®*. Moreover G%/G%* and G°/G°" are vector bundles over
GO,G’/GG,O’,‘E.

In the sequel, we shall treat the case where G has a complex structure and both

7 are holomorphic involutions of G in §3 and the case where G%/G?" is a symmetric
R-space in §4.

§3. In this section, we always assume that g is a complex semisimple Lie algebra
and G is a corresponding connected complex semisimple Lie group. The purpose of
this section is to obtain a geometric characterization of a symmetric space of f,-type
introduced in [OS1].

If 0 is a Cartan involution of G, G° is a maximal compact subgroup of G and g°
is a compact real form of g.

In the sequel of this section, g, T are C-linear 1nvolut10ns of g such that 6, o, t
commute with each other. Then all the involutions 8¢, 07, 6gt are R-linear involutions
of g but not C-linear involutions. This implies that g%, g%, g%" are real forms of g.
On the other hand, it follows from the assumption that

g=g’°®g™?, g = -1¢°.

Moreover, it follows from the definition that (g"“; g%°) and (g?%, ¢%%) are mutually
associated.

PROPOSITION 2. Let g be a complex semisimple Lie algebra, let 0 be its Cartan
involution and let 6,1 be C-linear involutions of g. Assume that 0, 6, © are mutually
commutative. Then we have the following diagram.
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associated dual
(gac, go:,o) (g0t’ gﬂr,Oa) (g()ar’ 900,1)
dual I : associated I
0 0a, , ,
(8%, %) ———— (8%, g**) — s (g%, g°*9)
associated dual
DIAGRAM 2

Proor. First show that (g%, g®*%) is a dual of (g, **°). Since
gﬂr = g0t,o',t @ g0t,a, -1 @ g0z, -0o,t @ gﬂt, -0o,—t

- is a direct sum decomposition, we find from the definition of a dual symmetric pair

that the dual of (g%, g%9) is

(get,d’,t® / __ ] g9t,d,—t® / __ 1 gﬂt,—a',t @ get,—d,-t’ g01:,a,t @ /__ lg(h,—a,t)
=(goa’ g00‘,t) .
Other cases are shown by a similar argument.

REMARK. (i) Among the six symmetric pairs appearing in Diagram 2, four
symmetric pairs appear in Diagram 1. Changing the roles of t and ¢ in Diagram 1,
different four symmetric pairs of Diagram 2 appear in Diagram 1.

(i) In general, any symmetric pair is expressed in the form (g°, g%°) for some
complex semisimple Lie algebra g and its involutions 6, 7, ¢ with the conditions of this
section. We will explain this more precisely. Any symmetric pair has the form (go, g3),
where g, is a real semisimple Lie algebra and o is its involution. Take a Cartan involution
0 of go commuting with ¢ and denote by g the compexification of g,. Extend o to g as
a C-linear involution. Then gu=gg®\/_—_fgg % is a compact real form of g and 6
coincides with the restriction to g, of the conjugation of g with respect to g,. Noting
this, denote by 6 the conjugation of g. Then clearly ¢ and 8§ commute with each other.
Since the conjugation of g with respect to g, commutes with both 6, o, there is a C-linear
involution 7 of g such that 6z is the conjugation of g with respect to g,. It is obvious
that © commutes with both 8, ¢. Then (g,, g3)=(g%, g°"°).

In the sequel, we shall explain the (M ,(p), M _(p))-method due to Chen-Nagano
[CN] which is one of the methods of geometric constructions of pairs of commuting
involutions of g. Let t be a holomorphic involution of G and let § be a Cartan involution
of G commuting with t. Then M=G%/G®* is a compact symmetric space. Take any
point p of M. If p=g,G®* for some g, G?, the automorphism s, of M defined by
5,(9G%)=got(g5 (g)G®* (VgeGP) is an involutive isometry of M with respect to
G'-invariant Riemannian metric. This implies that the automorphism 1, of G? defined
by 7, (9)=9go™(g0o )(9)7(g0)go ' (Vg€ G?) is an involution of G° and t,(g)s,(g)=s,(gq) for
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any geG® ge M.

Put o=eG%*e M and consider a closed geodesic (=circle) € passing through o.
Then there is x, € g% ~* with the conditions (i) €(f) = exp(tx,)G** (0 <t < 1), (ii) € () #€(t')
if 0<t<t' <1, (iii) €(0)=%¥(1)=0. For the geodesic €, p=%(3}) is the antipodal point
to o. Put g, =exp(}x,). Since, by definition, 1(g,)=exp(31(x,)) =exp(—31xo)=go 1 we
find that go7(go) "' =g2 e G®*. This implies that g2 =1(g2)=g, 2. Therefore g§=e.

Let M . (p)=G®%"p be the G®*-orbit of p in M. Since p is the antipodal point to o
of the geodesic %, it follows that s,s,=s,s,. Since both 7,7 and 7, are continuous maps

of G and since 17,(€)=1,17(e), we find that ,1(g9)=77,(g) for any ge G°.

THEOREM 3. Let G, 0, t, M be as above. Moreover 1, is the involution of G
corresponding to the antipodal point p=g,G®* to o with respect to a circle passing through
o. By definition, 6 =t,= Ad(g}) - © is a holomorphic involution of G. Then 0, 6, T commute
with each other and the symmetric pair (g%, §°7) is of ¥,-type in the sense of [0S2, (1.2)].
In particular, (g%, %) is self-dual and (§°7°, g°°*°) is self-associated.

PrROOF. We keep the notation before the theorem. Put g(t)=exp(tx,). Then
€(t)=9()G®", go=g(1/2), g4 =e. Since x, is semisimple, there is a maximal abelian sub-
space a of g%~ containing x,. Then to(x)=x for any x € a. This implies that a is con-
tained in g% ™7°. On the other hand, we have Ad(go)g® =g%, Ad(go)r =0 Ad(g,),
Ad(go)o =1 Ad(g,). Therefore, noting that .,/ — 1g° =g~ %, we find that ./ — 1 a is a maximal
abelian subspace of g?>~° and that ./—1la is contained in g®"~™~° Since
g% =g%"@® g% 7 is a Cartan decomposition of g®, the totality of the roots of g®
with respect to \/——1a becomes the restricted root system of g® which we denote by
2. Moreover, for any root a € X, denote by g"”(Jﬁa, ) the root space of g% belong-
ing to a. Then, for each root a € X, there is a real number g(«) such that 7(x) = &(a)o(x)
for any xeg%(,/—1a, «). From the definition, &a)?=1. On the other hand, it is clear
from the definition that for any xe g% such that [x, a]=0, 7(x)=0a(x) holds. There-
fore, from [0S2, (1.9.3), (1.12)], we find that (g%, g°**%) is a symmetric pair of f,-type.
The rest of the statements follow from the properties of symmetric pairs of f.-type (cf.
[OS2]).

Now we explain the converse of the theorem.

Let o be a C-linear involution of g and let 8 be a Cartan involution of g commuting
with ¢. Then clearly, g% is a real form of g. Let a be a maximal abelian subspace of
g®”~ and let ¥ be the root system of (g%, a). For a signature &: Z—{1, —1} (cf.
[OS2]), define an involution 1 of g by

( )_{a(x) if xeg®, [x,a]=0,
T leoyo(x)  if xeg®(a,a), e,

where g% (a, o) is the root space of g% belonging to «. Then 7 is uniquely extended to
a C-linear involution of g. For the involution 7, we find from [OS1, Lemma 1.3] that
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there is x, € a such that a1(x) = Ad(exp(ix,)x) for any xeg. If G=Int g, then 6, o, T are
lifted to involutions of G. Put M = G®/G®". Then €(f)=exp(tix,) (t€ R) is a circle passing
through 0=eG?%* and if p is the antipodal point to o, it follows that 0|G9=1p.

From the discussions above, a geometric characterization of symmetric spaces of
f.-type is obtained at least in Lie algebra case. In particular, it clarifies the relation
between [OS1, Appendix, Table 2] and [CN, p. 415, Tables I-1II].

§4. In this section, we treat the case where G%/G%* is a symmetric R-space. To
explain our situation more precisely, let G be a connected real semisimple Lie group
and let 0, T be commuting involutions of G. Assume that 6 is a Cartan involution. In
the sequel, we always assume that there is a parabolic subgroup P of G such that
P=G"N is its Levi decomposition for the unique unipotent radical N. This assumption
implies that G/P~G?®/G®*. On the other hand, it follows from [N, Th. 4.4] that G/G*
is isomorphic to the cotangent bundle to G%/G®* as G-space. Noting this, we denote
by mp the natural projection of G/G® to. G/P. In section 2, we already explained that
G/G"® is a vector bundle over G%/G?%*. There = is meant to be the projection of G/G*
onto G®/G®*. We stress here the difference between n and np. The latter is G-equivariant
whereas the former is only G°-equivariant.

Now let us review the results of [IN] briefly. Let g be the Lie algebra of G. Then
there is a unique element z of g~ %° (up to signature) such that go=g°%,g_, Dg; =g "
where g,={xeg; [z, x]=dz} (Vde R). The element z has the following properties:

[z, [z, x]]=x (Vxeg™),
[z,8+1]1=84+1,
gs1={xx[zx]; xeg® " 7}.

THEOREM 4. Let G, 0, © be as above and moreover assume that G/G" is irreducible.
If 6, is an involution of G® commuting with t, the following hold.

(i) There is a unique involution o of G such that 0'|G"=ao, o(z)=z and that o
commutes with both 0, t.

(ii) G° N P is a parabolic subgroup of G° and G°|G®" is isomorphic to the cotangent
bundle over G%°|G%°*~G°/G’ N P as G°-space. Similarly, G°* 1 P is a parabolic subgroup
of G°° and G°'/G°" is isomorphic to the cotangent bundle over G®°*|G***~G"*/G"* N P
as G°*-space.

(i) Let 1: G*/G%*—>G/G* and 1" : G**/|G®*—>G/G" be natural inclusions. Then
Tpo1 (resp. mpot') is a bijective G%-equivariant (resp. G%*-equivariant) map and both
Im(zp o1) and Im(np o 1') ‘are open subsets of G°/G®*.

(iv) Regard G®°/G%*" and G®°*/G®°" as closed subsets of G°/G®*. Then G%/G®~
(resp. G®*/G®") is isomorphic to the cotangent bundle over G®°|G%* (resp. G*°*/|G%°)
as G%-space (resp. G*°*-space).
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Proor. (i) First note that it is sufficient to show the case where the action of G
on G/G" is effective. In fact, suppose that (i) is true for the effective action case. In
general, let G, be the quotient group of G which acts on G/G* effectively. Then (i) is
true for G,. So there is an involution ¢’ of G; with the conditions mentioned in (i). Let
o be the induced involution of g from o¢’. Noting the Cartan decomposition
G =G’ exp(g %, define an involution ¢ of G by a(k - exp x) = o(k) exp o(x) for any ke G¥,
xeg~ % Then o is the required involution on G.

For this reason, we assume that G acts on G/G" effectively for a moment. Define o by

_Joolx) (xeg?)
O'(X)— -9, —
[z, 00([z, xD]  (x€g™™ 7).

Then we find that ¢ is a linear transformation of the vector space V=g"@® g% "® g %"
We find from the property of z mentioned above that o2 is the identity transformation
of V. Now, using o, define an automorphism ¢’ of G x g=%~* by

@'(k, x)=(00(k), o(x))  (V(k,x)eG’xg™"77).

Since ¢’ preserves the equivalence relation ~ on G x g~ %" (see §2), it follows that
¢’ induces an automorphism ¢ of (G? x 7% "%/~ ~G/G". It is clear from the definition
that ¢? is the identity automorphism of G/G*. Put a(g)=¢ge ! for any ge G. Then
o(g) is an automorphism of G/G*. Therefore both G and o(G) are subgroups of the
automorphism group of G/G*. This combined with Kobayashi-Nomizu [KN] gives
6(G)=G. This implies that ¢ is an involution of G. From the definition, we find that
0|G®=0, and that o commutes with 6, 7. From the choice of z, it follows that a(z) € g o,
moreover, a(z) is contained in the center of g°. Since G/G" is irreducible, the center ¢
of g® is one or two dimensional. In the case where dim ¢=2, g* is complex semisimple
and ¢= Cz. But eigenvalues of ad(s(z)) are 1, — 1. Hence o(z) € Rz. On the other hand,
if dim c=1, then clearly, c= Rz. We have thus found that ¢(z) = cz for some ce R. Since
o2 =1, it follows that c>=1. In the case where c= — 1, we have 0a(z)=z. Therefore, in
this case, we take O¢ instead of 6. Then we can take such a ¢ that o(z)=2z holds. We
have thus proved (i).

(ii) Since zeg?’, g°Ngo=8"" ¢ "=g°Nng_, Dg’ N gy, it follows that G P
is a parabolic subgroup of G°. The rest follows from properties of symmetric R-spaces.

(iii) First show that mpo1 is injective. For this purpose, take ge G% and assume
that n,(:(gG% ") =eP. Since P=G"N, there are he G* and ne N such that g=hn. Let N
be the opposite of N. Since Oa(g)=g, it follows that hn=0c(hn)=00(h)0c(n). Then
8o(h)e G and Oa(n) e N. These imply that h=0o(h), n=e. Hence g=he G* n G and the
injectivity of np o1 follows.

Next we will show that Im(7np o 1) is open. Put 0o =eG". This is regarded as an element
of G%/G® . Moreover we need the identifications

To(GGa/GOa,r) ~ gea/gaa,r ,
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T(G/G")~g/g",
Trpo\G/P)=g/g"Dgy " .
(Here we assumed that Lie(N)=g*® ‘b ~*.) Then
(mtp © 1), (x mod g?7%)

=(7p)y(x mod g%)
1
=7(x—[2, x])modg ®g;".
On the other hand, from the property of z, the maps

: 1
T BT o )

1
9—9,—6,—‘!___,9:‘1*_“, XH?(x_‘[‘% x])

are linear isomorphisms. Noting that
990/g9¢,t ~ go,o‘, -t @ g -0,—0,~t
6/g°®g;"~g 7"®g}"7,
we find that if xeg®> ™%, yeg™% "= 77, then
(mp© 1), (x +ymod g%+

=%{(x—[z, x])+(y—[z y])} modg*®g;".

Then we find that (o 1), T,(G%/G%%) = T, (G/P). Since mpo1 is G*-equivariant, it
follows that the image of mpo1 is an open subset of G/P~G®/G%".
(iv) If M is a C*-manifold, and L is its closed submanifold, then

0—— T!M —— T*M|L—— T*L—0

is an exact sequence. Consider the case where M =G?/G®* and L=G%°/G%". Then it
follows from (ii) that

T*M=~G/G*=(G°xg™* )/~ ,
T*LZ~G°/G"”’=’(G9'° x g—a,—a,_,)/" )
On the other hand, since g7 =g % > *@®g %" "*, we have

T*M=~(G% x g~ %" %)/~ ~G%/GO%",
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Similar argument goes well for the case where L= G%/G%".

ReMARK. (i) Theorem 4, (ii) is regarded as an extension of Theorem 7.2 in [CN]
to the case of symmetric R-spaces.

(ii) Theorem 4, (iii) is regarded as a generalization of “Borel embedding” of a
Hermitian symmetric space of the non-compact type to its compact dual. A result similar
to Theorem 4 was obtained by Makarevi¢ [M].
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