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Introduction.

In Oshima and Sekiguchi [OS1], a class of (non-Riemannian) symmetric spaces
called those of $K_{\epsilon}$-type” or $f_{\epsilon}$-type” were introduced and analysis on such symmetric
spaces were developed. It is an interesting problem to obtain a geometric characterization
of symmetric spaces of $\mathfrak{k}_{\epsilon}$-type. On the other hand, B.-Y. Chen and T. Nagano [CN]

studied totally geodesic submanifolds of compact symmetric spaces by using the
$(M_{+}(p), M_{-}(p))$-method. There is a similarity between the classification in [OS1,

Appendix, Table 2] and [CN, p. 415, Tables I-III]. The motivation of our study is to

clarify this similarity.
We are going to explain the results of this paper briefly. In this paper, a symmetric

space means a coset space $G/G^{\sigma}$ , where $G$ is a connected semisimple Lie group, $\sigma$ is an
involution of $G$ and $G^{\sigma}=\{g\in G;\sigma(g)=g\}$ . And $G$ and $G^{\sigma}$ are not necessarily compact.
Then, due to Berger [B], there is a Cartan involution $\theta$ of $G$ commuting with $\sigma$ .
Moreover, $X=G/G^{\sigma}$ is regarded as a vector bundle over $M=G^{\theta}/G^{\theta,\sigma}(G^{\theta,\sigma}=G^{\theta}\cap G^{\sigma})$ .
For an involution $\tau$ of $X,$ $Y$ denotes the fixed point set of $\tau$ in $X$ and $N$ denotes the
fixed point set of $\tau|M$ in $M$. Then $Y$ is a symmetric space, $N$ is a compact symmetric
space and $Y$ is a vector bundle over $N$. For the involution $\tau$ of $X$, we can choose an
involution of $G$ commuting with $\sigma$ . We note here that studying $N$ in $Y$ is regarded as
a generalization of the $(M_{+}(p), M_{-}(p))$-method of Chen-Nagano [CN]. There arises
naturally a pair of involutions of $G$ from the symmetric space $X$ and its symmetric
subspace $Y$. Conversing this argument, we shall study the relations among the symmetric
spaces $X,$ $Y,$ $M,$ $N$ defined from a pair of involutions of $G$ .

In this paper, we restrict our attention to studying a commuting pair of involutions
of $G$ in the following two cases: (1) the case where $X=G/G^{\sigma}$ is a complexification of
$M=G^{\theta}/G^{\theta,\sigma}$ (then $X\simeq TM$, the tangent bundle to $M$ as $G^{\theta}$-space) and (2) the case where
$X\simeq T^{*}M$, the cotangent bundle to $M$ (then $M$ is called a symmetric R-space which
was studied in Nagano [N]). As a corollary of the case (1), we can give a geometric
characterization of symmetric pairs of $\mathfrak{k}_{\epsilon}$-type. As the main result of the study of the
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case (2), we get an analogue of Borel embedding for a certain class of symmetric space
(Theorem 4). A result similar to Theorem 4 was obtained by B. O. Makarevi\v{c} [M].

\S 1. Let $G$ be a connected real semisimple Lie group with finite center and let $|$

be its Lie algebra. In this paper, we denote an involution of $G$ and the induced involutio]

ofg by the same letter for the sake of simplicity.
Let $\theta,$

$\sigma,$ $\tau$ be involutions of $G$ commuting with each other. Denote $\mathfrak{g}^{\pm}$

$=\{x\in \mathfrak{g};\alpha(x)=\pm x\}$ for $\alpha\in\{\theta, \sigma, \tau\}$ , denote $\mathfrak{g}^{\pm\alpha.\pm\beta}=\mathfrak{g}^{\pm a}\cap \mathfrak{g}^{\pm\beta}$ for $\alpha,$ $\beta\in\{\theta,$ $\sigma,$ $\tau$

and denote $\mathfrak{g}^{\pm\theta,f\sigma.\pm\tau}=\mathfrak{g}^{\pm\theta}\cap \mathfrak{g}^{\pm\sigma}\cap \mathfrak{g}^{\pm\tau}$ . In the group case, denote $G^{\alpha}=\{x\in G;\cdot\alpha(x)=$

$\pm x\}$ for $\alpha\in\{\theta, \sigma, \tau\}$ , denote $G^{\alpha.\beta}=G^{\alpha}\cap G^{\beta}$ for $\alpha,$ $\beta\in\{\theta, \sigma, \tau\}$ and denote $G^{\theta,\sigma.\tau}=$

$G^{\theta}\cap G^{\sigma}\cap G^{\tau}$ .
For an involution $\sigma$ of $\mathfrak{g},$

$(\mathfrak{g}, \mathfrak{g}^{\sigma})$ is a symmetric pair. M. Berger [B] introduced th $($

associated pair and the dual pair of $(\mathfrak{g}, \mathfrak{g}^{\sigma})$ . In this paper, following the notation in
[OS2, \S 1(1.2)-(1.4)], $(\mathfrak{g}, \mathfrak{g}^{\sigma})^{a}$ and $(\mathfrak{g}, \mathfrak{g}^{\sigma})^{d}$ are the associated pair and the dual pair $0$

$(\mathfrak{g}, \mathfrak{g}^{\sigma})$ , respectively. Moreover, we use the notation $(\mathfrak{g}, \mathfrak{g}^{\sigma})^{ad},$ $(\mathfrak{g}, \mathfrak{g}^{\sigma})^{da},$ $(\mathfrak{g}, \mathfrak{g}^{\sigma})^{ad}$

$(=(\mathfrak{g}, \mathfrak{g}^{\sigma})^{dad})$ as in [OS2].
In the subsequent discussion, we frequently assume the existenoe of a Cartan

involution commuting with given commuting involutions. This assumption is ,

consequence of the next lemma.

LEMMA 1. If $\sigma,$ $\tau$ are involutions of $\mathfrak{g}$ commuting with each other, there is a Cartat
involution $\theta$ of $G$ commuting with both $\sigma,$ $\tau$ .

After establishing this lemma, we are pointed out by T. Kobayashi that Lemma 1
is a special case of a more genral statement (cf. [H]).

\S 2. Let $\tau$ be an involution of $G$ and let $\theta$ be a Cartan involution of $G$ commuting
with $\tau$ . Assume that $G^{\tau}$ is not compact. Then, due to [B], $G/G^{\tau}$ is regarded as a vecto]

bundle over $G^{\theta}/G^{\theta,\tau}$ . We explain this fact for later use. First introduce an equivalenct
relation $‘‘\sim$ on $G^{\theta}\times \mathfrak{g}^{-\theta.-\tau}$ as follows:

$(k, x)\sim(k^{\prime}, x^{\prime})$ if and only if $k(\exp x)G^{\tau}=k^{\prime}(\exp x^{\prime})G^{\tau}$

From the definition, we find that $(k, x)\sim(k^{\prime}, x^{\prime})$ if and only if there is $m\in G^{\theta,\tau}$ such $tha$ )

$k^{\prime}=km,$ $x^{\prime}=Ad(m^{-1})x$ . Then the relation $‘‘\sim$ actually becomes an equivalence relatior
and $(G^{\theta}\times \mathfrak{g}^{-\theta,-\tau})/\sim\simeq G/G^{\tau}$ . Now write $[k, x]$ for the equivalence class of $(k, x)$ . Defining
$\pi([k, x])=kG^{\theta,\tau}$ , we find that $\pi$ is a projection from $G/G^{\tau}$ to $G^{\theta}/G^{\theta,\tau}$ and in this way
$G/G^{\tau}$ is a vector bundle over $G^{\theta}/G^{\theta.\tau}$ . From the definition, $\pi$ is $G^{\theta}$-equivariant.

Now let $\theta,$
$\sigma,$ $\tau$ be involutions of $G$ commuting with each other. Assume that $\theta$ it

a Cartan involution of $G$ . Then we have the following diagram of inclusions anc
projections:
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DIAGRAM 1

Remark to the above diagram: $G^{\theta}$ is a maximal compact subgroup of $G$ . The
symmetric space $G/G^{\tau}$ is a vector bundle over $G^{\theta}/G^{\theta,\tau}$ as explained before. The symmetric
spaces $G/G^{\tau}$ and $G/G^{\theta\tau}$ are mutually associated (cf. [B], [OS2, p. 437]). Both $G^{\theta\sigma}/G^{\theta\sigma,\tau}$

and $G^{\sigma}/G^{\sigma,\tau}$ are regarded as closed subspaces of $G/G^{\tau}$ and $G^{\theta.\sigma}/G^{\theta,\sigma,\tau}$ is regarded as a
closed subspaoe of $G^{\theta}/G^{\theta,\tau}$ . Moreover $G^{\theta\sigma}/G^{\theta\sigma.\tau}$ and $G^{\sigma}/G^{\sigma,\tau}$ are vector bundles over
$G^{\theta,\sigma}/G^{\theta,\sigma,\tau}$ .

In the sequel, we shall treat the case where $G$ has a complex structure and both
$\sigma,$ $\tau$ are holomorphic involutions of $G$ in \S 3 and the case where $G^{\theta}/G^{\theta,\tau}$ is a symmetric
R-space in \S 4.

\S 3. In this section, we always assume that $\mathfrak{g}$ is a complex semisimple Lie algebra
and $G$ is a corresponding connected complex semisimple Lie group. The purpose of
this section is to obtain a geometric characterization of a symmetric space of $f_{\epsilon}$-type
introduced in [OS1].

If $\theta$ is a Cartan involution of $G,$ $G^{\theta}$ is a maximal compact subgroup of $G$ and $\mathfrak{g}^{\theta}$

is a compact real form of $\mathfrak{g}$ .
In the sequel of this section, $\sigma,$ $\tau$ are C-linear involutions of $\mathfrak{g}$ such that $\theta,$

$\sigma,$ $\tau$

commute with each other. Then all the involutions $\theta\sigma,$ $\theta\tau,$ $\theta\sigma\tau$ are R-linear involutions
of $\mathfrak{g}$ but not C-linear involutions. This implies that $\mathfrak{g}^{\theta\sigma},$ $\mathfrak{g}^{\theta\tau},$ $\mathfrak{g}^{\theta\sigma\tau}$ are real forms of $\mathfrak{g}$ .
On the other hand, it follows from the assumption that

$\mathfrak{g}=\mathfrak{g}^{\theta}\oplus \mathfrak{g}^{-\theta}$ , $\mathfrak{g}^{-\theta}=\sqrt{-1}\mathfrak{g}^{\theta}$

Moreover, it follows from the definition that $(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma,\tau})$ and $(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma,\theta\tau})$ are mutually
associated.

PROPOSITION 2. Let $\mathfrak{g}$ be a complex semisimple Lie algebra, let $\theta$ be its Cartan
involution and let $\sigma,$ $\tau$ be C-linear involutions of $\mathfrak{g}$ . Assume that $\theta,$

$\sigma,$ $\tau$ are mutually
commutative. Then we have the following diagram.
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$(\mathfrak{g}^{\theta\tau}, \mathfrak{g}^{\theta\tau,\sigma})(\mathfrak{g}^{\theta\tau}, \mathfrak{g}^{\theta\tau.\theta\sigma})(\mathfrak{g}^{\theta\sigma\tau}, \mathfrak{g}^{\theta\sigma,\tau})\underline{associated}\underline{dual}$

dual $|$ $associated\downarrow$

$(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma,\tau})-(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma,\theta\tau})\leftrightarrow(\mathfrak{g}^{\theta\sigma\tau}, \mathfrak{g}^{\theta\tau,\sigma})$

associated dual

DIAGRAM 2

$PR\infty F$ . First show that $(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma.\tau})$ is a dual of $(\mathfrak{g}^{t\tau}, \mathfrak{g}^{\theta\tau,\sigma})$ . Since
$\mathfrak{g}^{9\tau}=\mathfrak{g}^{\theta\tau,\sigma.\tau}\oplus \mathfrak{g}^{\theta\tau.\sigma.-\tau}\oplus \mathfrak{g}^{\theta\tau.-\sigma.\tau}\oplus \mathfrak{g}^{\theta\tau,-\sigma,-\tau}$

is a direct sum decomposition, we find from the definition of a dual symmetric pair
that the dual of $(\mathfrak{g}^{\theta\tau}, \mathfrak{g}^{\theta\tau,\sigma})$ is

$(\mathfrak{g}^{\theta\tau,\sigma,\tau}\oplus\sqrt{-1}\mathfrak{g}^{\theta\tau,\sigma,-\tau}\oplus\sqrt{-1}\mathfrak{g}^{\theta r,-\sigma,\tau}\oplus \mathfrak{g}^{\theta\tau,-\sigma,-\tau}, \mathfrak{g}^{\theta\tau,\sigma.\tau}\oplus\sqrt{-1}\mathfrak{g}^{\theta\tau,-\sigma.\tau})$

$=(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma,\tau})$ .

Other cases are shown by a similar argument.

REMARK. (i) Among the six symmetric pairs appearing in Diagram 2, four
symmetric pairs appear in Diagram 1. Changing the roles of $\tau$ and $\sigma$ in Diagram 1,
different four symmetric pairs of Diagram 2 appear in Diagram 1.

(ii) In general, any symmetric pair is expressed in the form $(\mathfrak{g}^{\theta\tau}, \mathfrak{g}^{\theta\tau,\sigma})$ for some
complex semisimple Lie algebra $\mathfrak{g}$ and its involutions $\theta,$

$\tau,$ $\sigma$ with the conditions of this
section. We will explain this more precisely. Any symmetric pair has the form $(\mathfrak{g}_{0}, \mathfrak{g}_{0}^{\sigma})$ ,
where $\mathfrak{g}_{0}$ is a real semisimple Lie algebra and $\sigma$ is its involution. Take a Cartan involution
$\theta$ of $\mathfrak{g}_{0}$ commuting with $\sigma$ and denote by $\mathfrak{g}$ the compexification of $\mathfrak{g}_{0}$ . Extend $\sigma$ to $\mathfrak{g}$ as
a C-linear involution. Then $\mathfrak{g}_{u}=\mathfrak{g}_{0}^{\theta}\oplus\sqrt{-1}\mathfrak{g}_{0}^{\theta}$ is a compact real form of $\mathfrak{g}$ and $\theta$

coincides with the restriction to $\mathfrak{g}_{0}$ of the conjugation of $\mathfrak{g}$ with respect to $\mathfrak{g}_{u}$ . Noting
this, denote by $\theta$ the conjugation of $\mathfrak{g}$ . Then clearly $\sigma$ and $\theta$ commute with each other.
Since the conjugation of $\mathfrak{g}$ with respect to $\mathfrak{g}_{0}$ commutes with both $\theta,$ $\sigma$, there is a C-linear
involution $\tau$ of $\mathfrak{g}$ such that $\theta\tau$ is the conjugation of $\mathfrak{g}$ with respect to $\mathfrak{g}_{0}$ . It is obvious
that $\tau$ commutes with both $\theta,$ $\sigma$ . Then $(\mathfrak{g}_{0}, \mathfrak{g}_{0}^{\sigma})=(\mathfrak{g}^{\theta\tau}, \mathfrak{g}^{\theta\tau,\sigma})$ .

In the sequel, we shall explain the $(M_{+}(p), M_{-}(p))$-method due to Chen-Nagano
[CN] which is one of the methods of geometric constructions of pairs of commuting
involutions of $\mathfrak{g}$ . Let $\tau$ be a holomorphic involution of $G$ and let $\theta$ be a Cartan involution
of $G$ commuting with $\tau$ . Then $M=G^{\theta}/G^{\theta.\tau}$ is a compact symmetric space. Take any
point $p$ of $M$. If $p=g_{0}G^{\theta,\tau}$ for some $g_{0}\in G^{\theta}$, the automorphism $s_{p}$ of $M$ defined by
$s_{p}(gG^{\theta,\tau})=g_{0}\tau(g_{0}^{1})\tau(g)G^{\theta,\tau}(\forall g\in G^{\theta})$ is an involutive isometry of $M$ with respect to
$G^{\theta}$-invariant Riemannian metric. This implies that the automorphism $\tau_{p}$ of $G^{\theta}$ defined
by $\tau_{p}(g)=g_{0}\tau(g_{0}^{-1})\tau(g)\tau(g_{0})g_{0}^{1}(\forall g\in G^{\theta})$ is an involution of $G^{\theta}$ and $\tau_{p}(g)s_{p}(q)=s_{p}(gq)$ for
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any $g\in G^{\theta},$ $q\in M$.
Put $0=eG^{\theta,\tau}\in M$ and consider a closed geodesic $(=circle)\mathscr{C}$ passing through $0$ .

Then there is $x_{0}\in \mathfrak{g}^{\theta,-\tau}$ with the conditions (i) $\mathscr{C}(t)=\exp(tx_{0})G^{\theta,\tau}(0\leq t\leq 1),$ $(ii)\mathscr{C}(t)\neq \mathscr{C}(t^{\prime})$

if $0\leq t<t^{\prime}<1$ , (iii) $\mathscr{C}(0)=\mathscr{C}(1)=0$ . For the geodesic $\mathscr{C},p=\mathscr{C}(+)$ is the antipodal point
to $0$ . Put $g_{0}=\exp(+x_{0})$ . Since, by definition, $\tau(g_{0})=\exp(\neq\tau(x_{0}))=\exp(-+x_{0})=g_{0}^{1}$ , we
find that $g_{0}\tau(g_{0})^{-1}=g_{0}^{2}\in G^{\theta,\tau}$ . This implies that $g_{0}^{2}=\tau(g_{0}^{2})=g_{0}^{-2}$ . Therefore $g_{0}^{4}=e$ .

Let $M_{+}(p)=G^{\theta.\tau}p$ be the $G^{\theta,\tau}$-orbit of $p$ in $M$. Since $p$ is the antipodal point to $0$

of the geodesic $\mathscr{C}$ , it follows that $s_{p}s_{o}=s_{o}s_{p}$ . Since both $\tau_{p}\tau$ and $\tau\tau_{p}$ are continuous maps
of $G^{\theta}$ and since $\tau\tau_{p}(e)=\tau_{p}\tau(e)$ , we find that $\tau_{p}\tau(g)=\tau\tau_{p}(g)$ for any $g\in G^{\theta}$ .

THEOREM 3. Let $G,$ $\theta,$
$\tau,$ $M$ be as above. Moreover $\tau_{p}$ is the involution of $G$

corresponding to the antipodalpoint $p=g_{0}G^{\theta,\tau}$ to $0$ with respect to a circle passing through
$o$ . By definition, $\sigma=\tau_{p}=Ad(g_{0}^{2})\circ\tau$ is a holomorphic involution ofG. Then $\theta,$

$\sigma,$ $\tau$ commute
with each other and the symmetric pair $(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma,\tau})$ is of $\mathfrak{k}_{\epsilon}$-type in the sense of [OS2, (1.2)].
In particular, $(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma,\tau})$ is self-dual and $(\mathfrak{g}^{\theta\sigma\tau}, \mathfrak{g}^{\theta\sigma,\tau})$ is self-associated.

$PR\infty F$ . We keep the notation before the theorem. Put $g(t)=\exp(tx_{0})$ . Then
$\mathscr{C}(t)=g(t)G^{\theta}’ {}^{t}g_{0}=g(1/2),$ $g_{0}^{4}=e$ . Since $x_{0}$ is semisimple, there is a maximal abelian sub-
space $\mathfrak{a}$ of $\mathfrak{g}^{\theta,-\tau}$ containing $x_{O}$ . Then $\tau\sigma(x)=x$ for any $x\in \mathfrak{a}$ . This implies that $\mathfrak{a}$ is con-
tained in $\mathfrak{g}^{\theta,-\tau,-\sigma}$ . On the other hand, we have $Ad(g_{0})\mathfrak{g}^{\theta\tau}=\mathfrak{g}^{\theta\sigma},$ $Ad(g_{0})\tau=\sigma Ad(g_{0})$ ,
$Ad(g_{0})\sigma=\tau Ad(g_{0})$ . Therefore, noting that $\sqrt{-1}\mathfrak{g}^{\theta}=\mathfrak{g}^{-\theta}$ , we find that $\sqrt{-1}\mathfrak{a}$ is a maximal
abelian subspace of $\mathfrak{g}^{\theta\sigma,-\sigma}$ and that $\sqrt{-1}\mathfrak{a}$ is contained in $\mathfrak{g}^{\theta\sigma,-\tau,-\sigma}$ . Since
$\mathfrak{g}^{\theta\sigma}=\mathfrak{g}^{\theta\sigma,\sigma}\oplus \mathfrak{g}^{\theta\sigma,-\sigma}$ is a Cartan decomposition of $\mathfrak{g}^{\theta\sigma}$ , the totality of the roots of $\mathfrak{g}^{\theta\sigma}$

with respect to $\sqrt{-1}\mathfrak{a}$ becomes the restricted root system of $\mathfrak{g}^{\theta\sigma}$ which we denote by
$\Sigma$ . Moreover, for any root $\alpha\in\Sigma$ , denote by $\mathfrak{g}^{\theta\sigma}(\sqrt{-1}\mathfrak{a}, \alpha)$ the root space of $\mathfrak{g}^{\theta\sigma}$ belong-
ing to $\alpha$ . Then, for each root $\alpha\in\Sigma$ , there is a real number $\epsilon(\alpha)$ such that $\tau(x)=\epsilon(\alpha)\sigma(x)$

for any $x\in \mathfrak{g}^{\theta\sigma}(\sqrt{-1}\mathfrak{a}, \alpha)$ . From the definition, $\epsilon(\alpha)^{2}=1$ . On the other hand, it is clear
from the definition that for any $x\in \mathfrak{g}^{\theta\sigma}$ such that $[x, \mathfrak{a}]=0,$ $\tau(x)=\sigma(x)$ holds. There-
fore, from [OS2, (1.9.3), (1.12)], we find that $(\mathfrak{g}^{\theta\sigma}, \mathfrak{g}^{\theta\sigma.\tau})$ is asymmetric pair of $\mathfrak{k}_{\epsilon}$-type.
The rest of the statements follow from the properties of symmetric pairs of $\mathfrak{k}_{\epsilon}$-type (cf.
[OS2]).

Now we explain the converse of the theorem.
Let $\sigma$ be a C-linear involution of $\mathfrak{g}$ and let $\theta$ be a Cartan involution of $\mathfrak{g}$ commuting

with $\sigma$ . Then clearly, $\mathfrak{g}^{\theta\sigma}$ is a real form of $\mathfrak{g}$ . Let $\mathfrak{a}$ be a maximal abelian subspace of
$\mathfrak{g}^{\theta\sigma,-\sigma}$ and let $\Sigma$ be the root system of $(\mathfrak{g}^{\theta\sigma}, \mathfrak{a})$ . For a signature $\epsilon;\Sigma\rightarrow\{1, -1\}$ (cf.
[OS2]), define an involution $\tau$ of $\mathfrak{g}$ by

$\tau(x)=\left\{\begin{array}{ll}\sigma(x) & if x\in \mathfrak{g}^{\theta\sigma} , [x, \mathfrak{a}]=0 ,\\\epsilon(\alpha)\sigma(x) & if x\in \mathfrak{g}^{\theta\sigma}(\mathfrak{a}, \alpha), \alpha\in\Sigma,\end{array}\right.$

where $\mathfrak{g}^{\theta\sigma}(\mathfrak{a}, \alpha)$ is the root space of $\mathfrak{g}^{\theta\sigma}$ belonging to $\alpha$ . Then $\tau$ is uniquely extended to
a C-linear involution of $\mathfrak{g}$ . For the involution $\tau$ , we find from [OS1, Lemma 1.3] that
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$thereisx_{0}\in \mathfrak{a}$ such that $\sigma\tau(x)=Ad(\exp(ix_{0})Xx)foranyx\in \mathfrak{g}$ . IfG $=Int\mathfrak{g}$ , then $\theta,$
$\sigma,$ $\tau$ are

lifted to involutions of $G$ . Put $M=G^{\theta}/G^{\theta,\tau}$ . Then $\mathscr{C}(t)=\exp(tix_{0})(t\in R)$ is a circle passing
through $0=eG^{\theta,\tau}$ and if $p$ is the antipodal point to $0$ , it follows that $\sigma|G^{\theta}=\tau_{p}$ .

From the discussions above, a geometric characterization of symmetric spaces of
$\mathfrak{k}_{\epsilon}$-type is obtained at least in Lie algebra case. In particular, it clarifies the relation
between [OS1, Appendix, Table 2] and [CN, p. 415, Tables I-III].

\S 4. In this section, we treat the case where $G^{\theta}/G^{\theta,\tau}$ is a symmetric R-space. To
explain our situation more precisely, let $G$ be a connected real semisimple Lie group
and let $\theta,$ $\tau$ be commuting involutions of $G$ . Assume that $\theta$ is a Cartan involution. In
the sequel, we always assume that there is a parabolic subgroup $P$ of $G$ such that
$P=G^{\tau}N$ is its Levi decomposition for the unique unipotent radical $N$. This assumption
implies that $G/P\simeq G^{\theta}/G^{\theta,\tau}$ . On the other hand, it follows from [$N$ , Th. 4.4] that $G/G^{t}$

is isomorphic to the cotangent bundle to $G^{\theta}/G^{\theta,\tau}$ as G-space. Noting this, we denote
by $\pi_{P}$ the natural projection of $G/G^{t}$ to. $G./P$. In section 2, we already explained that
$G/G^{\tau}$ is a vector bundle over $G^{\theta}/G^{\theta,\tau}$ . There $\pi$ is meant to be the projection of $G/G^{T}$

onto $G^{\theta}/G^{\theta,\tau}$ . We stress here the difference between $\pi$ and $\pi_{P}$ . The latter is G-equivariant
whereas the former is only $G^{\theta}$-equivariant.

Now let us review the results of [N] briefly. Let $\mathfrak{g}$ be the Lie algebra of $G$ . Then
there is a unique element $z$ of $\mathfrak{g}^{-\theta,\tau}$ (up to signature) such that $\mathfrak{g}_{0}=\mathfrak{g}^{\tau},$ $\mathfrak{g}_{-1}\oplus \mathfrak{g}_{1}=\mathfrak{g}^{-\tau}$ ,
where $\mathfrak{g}_{d}=\{x\in \mathfrak{g};[z, x]=dz\}(\forall d\in R)$ . The element $z$ has the following properties:

$[z, [z, x]]=x$ $(\forall x\in \mathfrak{g}^{-\tau})$ ,

$[z, \mathfrak{g}_{\pm 1}]=\mathfrak{g}_{\pm 1}$ ,

$\mathfrak{g}_{\pm 1}=\{x\pm[z, x];x\in \mathfrak{g}^{\theta,-\tau}\}$ .
THEOREM 4. Let $G,$ $\theta,$ $\tau$ be as above and moreover assume that $G/G^{\tau}$ is irreducible.

If $\sigma_{0}$ is an involution of $G^{\theta}$ commuting with $\tau$ , the following hold:
(i) There is a unique involution $\sigma$ of $G$ such that $\sigma|G^{\theta}=\sigma_{0},$ $\sigma(z)=z$ and that $\sigma$

conmutes with both $\theta,$ $\tau$ .
(ii) $G^{\sigma}\cap P$ is a parabolic subgroup of $G^{\sigma}$ and $G^{\sigma}/G^{\sigma,\tau}$ is isomorphic to the cotangent

bundle over $G^{\theta.\sigma}/G^{\theta.\sigma,\tau}\simeq G^{\sigma}/G^{\sigma}\cap P$ as $G^{\sigma}$-space. Similarly, $G^{\sigma\tau}\cap P$ is aparabolic subgroup
of $G^{\sigma\tau}$ and $G^{\sigma\tau}/G^{\sigma,\tau}$ is isomorphic to the cotangent bundle over $G^{\theta,\sigma\tau}/G^{\theta.\sigma,\tau}\simeq G^{\sigma\tau}/G^{\sigma\tau}\cap P$

as $G^{\sigma\tau}$-space.
(iii) Let $\iota$ : $G^{\theta\sigma}/G^{\theta\sigma,\tau}\rightarrow G/G^{\tau}$ and $\iota^{\prime}$ : $G^{\theta\sigma\tau}/G^{\theta\sigma.\tau}\rightarrow G/G^{\tau}$ be natural inclusions. Then

$\pi_{P}\circ\iota$ (resp. $\pi_{P}\circ\iota^{\prime}$) is a bijective $G^{\theta\sigma}$-equivariant (resp. $G^{\theta\sigma\tau}$-equivariant) map and both
${\rm Im}(\pi_{P}\circ\iota)$ and ${\rm Im}(\pi_{P}\circ\iota^{\prime})$ are open subsets of $G^{\theta}/G^{\theta,\tau}$ .

(iv) Regard $G^{9,\sigma}/G^{\theta,\sigma,\tau}$ and $G^{\theta,\sigma\tau}/G^{\theta,\sigma,\tau}$ as closed subsets of $G^{\theta}/G^{\theta,\tau}$ . Then $G^{\theta\sigma}/G^{\theta\sigma,\tau}$

(resp. $G^{\theta\sigma\tau}/G^{\theta\sigma,\tau}$) is isomorphic to the cotangent bundle over $G^{\theta,\sigma}/G^{\theta,\sigma,\tau}$ (resp. $G^{\theta,\sigma\tau}/G^{\theta,\sigma,\tau}$)
as $G^{\theta,\sigma}$-space (resp. $G^{\theta,\sigma\tau}$-space).
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PROOF. (i) First note that it is sufficient to show the case where the action of $G$

on $G/G^{\tau}$ is effective. In fact, suppose that (i) is true for the effective action case. In
general, let $G_{1}$ be the quotient group of $G$ which acts on $G/G^{\tau}$ effectively. Then (i) is
true for $G_{1}$ . So there is an involution $\sigma^{\prime}$ of $G_{1}$ with the conditions mentioned in (i). Let
$\sigma$ be the induced involution of $\mathfrak{g}$ from $\sigma^{\prime}$ . Noting the Cartan decomposition
$G=G^{\theta}\exp(\mathfrak{g}^{-\theta})$ , define an involution $\sigma$ of $G$ by $\sigma$($ k\cdot$ exp $x$) $=\sigma(k)$ exp $\sigma(x)$ for any $k\in G^{\theta}$ ,
$x\in \mathfrak{g}^{-\theta}$ . Then $\sigma$ is the required involution on $G$ .

For this reason, we assume that $G$ acts on $G/G^{\tau}$ effectively for a moment. Define $\sigma$ by

$\sigma(x)=\left\{\begin{array}{ll}\sigma_{0}(x) & (x\in \mathfrak{g}^{\theta})\\[z, \sigma_{0}([z, x])] & (x\in \mathfrak{g}^{-\theta,-\tau}).\end{array}\right.$

Then we find that $\sigma$ is alinear transformation ofthe vector space $V=\mathfrak{g}^{\theta,\tau}\oplus \mathfrak{g}^{\theta,-\tau}\oplus \mathfrak{g}^{-\theta,-\tau}$ .
We find from the property of $z$ mentioned above that $\sigma^{2}$ is the identity transformation
of $V$. Now, using $\sigma$ , define an automorphism $\varphi^{\prime}$ of $G^{\theta}\times \mathfrak{g}^{-\theta,-\tau}$ by

$\varphi^{\prime}(k, x)=(\sigma_{0}(k), \sigma(x))$ $(\forall(k, x)\in G^{\theta}\times \mathfrak{g}^{-\theta,-\tau})$ .

Since $\varphi^{\prime}$ preserves the equivalence relation $\sim$ on $G^{\theta}\times \mathfrak{g}^{-\theta,-\tau}$ (see \S 2), it follows that
$\varphi^{\prime}$ induces an automorphism $\varphi$ of $(G^{\theta}\times \mathfrak{g}^{-\theta,-\tau})/\sim\simeq G/G^{\tau}$ . It is clear from the definition
that $\varphi^{2}$ is the identity automorphism of $G/G^{\tau}$ . Put $\sigma(g)=\varphi g\varphi^{-1}$ for any $g\in G$ . Then
$\sigma(g)$ is an automorphism of $G/G^{\tau}$ . Therefore both $G$ and $\sigma(G)$ are subgroups of the
automorphism group of $G/G^{\tau}$ . This combined with Kobayashi-Nomizu [KN] gives
$\sigma(G)=G$ . This implies that $\sigma$ is an involution of $G$ . From the definition, we find that
$\sigma|G^{\theta}=\sigma_{0}$ and that $\sigma$ commutes with $\theta,$ $\tau$ . From the choice of $z$ , it follows that $\sigma(z)\in \mathfrak{g}^{-\theta,\tau}$ ,
moreover, $\sigma(z)$ is contained in the center of $\mathfrak{g}^{\tau}$ . Since $G/G^{\tau}$ is irreducible, the center $c$

of $\mathfrak{g}^{\tau}$ is one or two dimensional. In the case where dim $\mathfrak{c}=2,$ $\mathfrak{g}^{\tau}$ is complex semisimple
and $c=Cz$ . But eigenvalues of $ad(\sigma(z))$ are 1, $-1$ . Hence $\sigma(z)\in Rz$ . On the other hand,
if dim $c=1$ , then clearly, $c=Rz$ . We have thus found that $\sigma(z)=cz\cdot for$ some $c\in R$ . Since
$\sigma^{2}=1$ , it follows that $c^{2}=1$ . In the case where $c=-1$ , we have $\theta\sigma(z)=z$ . Therefore, in
this case, we take $\theta\sigma$ instead of $\sigma$ . Then we can take such a $\sigma$ that $\sigma(z)=z$ holds. We
have thus proved (i).

(ii) Sinoe $z\in \mathfrak{g}^{\sigma},$ $\mathfrak{g}^{\sigma}\cap \mathfrak{g}_{0}=\mathfrak{g}^{\sigma,\tau},$ $\mathfrak{g}^{\sigma,-\tau}=\mathfrak{g}^{\sigma}\cap \mathfrak{g}_{-1}\oplus \mathfrak{g}^{\sigma}\cap \mathfrak{g}_{1}$ , it follows that $G^{\sigma}\cap P$

is a parabolic subgroup of $G^{\sigma}$ . The rest follows from properties of symmetric R-spaces.
(iii) First show that $\pi_{P}\circ\iota$ is injective. For this purpose, take $g\in G^{\theta\sigma}$ and assume

that $\pi_{P}(l(gG^{\theta\sigma,\tau}))=eP$ . Since $P=G^{\tau}N$, there are $h\in G^{\tau}$ and $n\in N$ such that $g=hn$ . Let $\overline{N}$

be the opposite of $N$. Since $\theta\sigma(g)=g$ , it follows that $hn=\theta\sigma(hn)=\theta\sigma(h)\theta\sigma(n)$ . Then
$\theta\sigma(h)\in G^{\tau}$ and $\theta\sigma(n)\in\overline{N}$. These imply that $h=\theta\sigma(h),$ $n=e$ . Hence $g=h\in G^{\tau}\cap G^{\theta\sigma}$ and the
injectivity of $\pi_{P}\circ\iota$ follows.

Next we will show that ${\rm Im}(\pi_{P}\circ l)$ is open. Put $0=eG^{\tau}$ . This is regarded as an element
of $G^{\theta\sigma}/G^{\theta\sigma,\tau}$ . Moreover we need the identifications

$T_{o}(G^{\theta\sigma}/G^{\theta\sigma,\tau})\simeq \mathfrak{g}^{\theta\sigma}/\mathfrak{g}^{\theta\sigma,\tau}$ ,
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$T_{o}(G/G^{\tau})\simeq \mathfrak{g}/\mathfrak{g}^{\tau}$ ,

$\tau_{\pi_{P}(a)(G1^{P)\simeq \mathfrak{g}}}/\mathfrak{g}^{\tau}\oplus \mathfrak{g}_{1}^{-\tau}$

(Here we assumed that Lie$(N)=\mathfrak{g}^{\tau}\oplus \mathfrak{h}^{-\tau}.$) Then

$(\pi_{P}\circ\iota)_{*}$($x$ mod $\mathfrak{g}^{\theta\sigma,\tau}$)

$=(\pi_{P})_{*}$($x$ mod $\mathfrak{g}^{\tau}$)

$=\frac{1}{2}(x-[z, x])mod \mathfrak{g}^{\tau}\oplus \mathfrak{g}_{1}^{-\tau}$

On the other hand, from the property of $z$, the maps

$\mathfrak{g}^{\theta.\sigma,-\tau}\rightarrow \mathfrak{g}_{-i^{\sigma}}^{-\tau}$ , $x\mapsto\frac{1}{2}(x-[z, x])$ ,

$\mathfrak{g}^{-\theta.-\sigma.\neg}\rightarrow \mathfrak{g}_{-i}^{-\tau-\sigma}$ ,

are linear isomorphisms. Noting that

$x\mapsto\frac{1}{2}(x-[z, x])$

$\mathfrak{g}^{\theta\sigma}/\mathfrak{g}^{9\sigma.\tau}\simeq \mathfrak{g}^{9,\sigma,-\tau}\oplus \mathfrak{g}^{-\theta,-\sigma.-\tau}$

$\mathfrak{g}/\mathfrak{g}^{f}\oplus \mathfrak{g}_{1}^{-\tau}\simeq \mathfrak{g}_{-i^{\oplus \mathfrak{g}_{-1}^{-\tau,-\sigma}}}^{-\tau\sigma}$ ,

we find that if $x\in \mathfrak{g}^{\theta.\sigma,-\tau},$ $y\in \mathfrak{g}^{-\theta,-\sigma,-\tau}$ , then

$(\pi_{P}\circ\iota)_{*}$($x+y$mod $\mathfrak{g}^{\theta\sigma.\tau}$)

$=\frac{1}{2}\{(x-[z, x])+(y-[z, y])\}$ mod $\mathfrak{g}^{\tau}\oplus \mathfrak{g}_{1}^{-c}$

Then we find that $(\pi_{P}\circ\iota)_{*}T_{a}(G^{9\sigma}/G^{9\sigma,\tau})=T_{\pi_{P}(a)}(G/P)$ . Since $\pi_{P}\circ\iota$ is $G^{90}$-equivariant, it
follows that the image of $\pi_{P}\circ\iota$ is an open subset of $G/P\simeq G^{\theta}/G^{\theta,\tau}$ .

(iv) $IfMisaC^{\infty}$-manifold, andL is its closed submanifold, then

$0\rightarrow T_{L}^{*}M\rightarrow T^{*}M|L\rightarrow T^{*}L\rightarrow 0$

is an exact sequence. Consider the case where $M=G^{\theta}/G^{\theta,\tau}$ and $L=G^{\theta,\sigma}/G^{\theta.\sigma.\tau}$ . Then it
follows from (ii) that

$T^{*}M\simeq G/G^{\tau}\simeq(G^{\theta}\times \mathfrak{g}^{-\theta,-c})/\sim,$

$ T^{*}L\simeq G^{\sigma}/G^{\sigma,\tau}\simeq(G^{\theta,\sigma}\times \mathfrak{g}^{-0,-\sigma.-\tau})/\sim$ .
On the other hand, since $\mathfrak{g}^{-\theta,-\tau}=\mathfrak{g}^{-\theta,-\sigma.-\tau}\oplus \mathfrak{g}^{-\theta,\sigma.-\tau}$, we have

$T_{L}^{*}M\simeq(G^{\theta.\sigma}\times \mathfrak{g}^{-\theta.\sigma,-\tau})/\sim\simeq G^{\theta\sigma}/G^{\theta\sigma.\tau}$
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Similar argument goes well for the case where $L=G^{\theta\sigma\tau}/G^{\theta\sigma,\tau}$ .

REMARK. (i) Theorem 4, (ii) is regarded as an extension of Theorem 7.2 in [CN]

to the case of symmetric R-spaces.
(ii) Theorem 4, (iii) is regarded as a generalization of ”Borel embedding” of a

Hermitian symmetric spaoe of the non-compact type to its compact dual. A result similar
to Theorem 4 was obtained by Makarevi\v{c} [M].
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