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On Realizations of Families of Strongly Pseudo-Convex
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Let (V, 0) be a normal isolated singularity and M its link (i.e. a cut locus with
a small sphere in an ambient space). It was proven in [M4] that, if dim¢(V, 0)>4
and depth(V, 0)>3 then the Kuranishi family of CR structures on M (constructed

in [AK2]) induces the versal family of (¥, o) (cf. [G]).

However, in spite of some interesting non-versal families of isolated singularities
(e.g. modular deformations [K-S], [P]) or non-Kuranishi families of CR structures
(e.g. [A-M2]), the argument in [M4] hardly enables us to compare non-Kuranishi

families of CR structures with families of isolated singularities.

In this paper, we will consider realizations of families of strongly pseudo-convex
CR structures as families of real hypersurfaces of complex manifolds (i.e. a relative
version of [O]). A family of (1,1)-convex-concave ambient manifolds of the family of
CR manifolds can be completed to a flat family of normal isolated singularities, if

depth(V, 0) =3, by A. Fujiki’s unpublished work [F].

Let M be a strongly pseudo-convex real hypersurface of a complex manifold X,
the complex structure of X induces a CR structure CTMNT"X | » on M, we will denote
it by °T” and fix a (non-canonical) splitting CTM =°T" +°T' + CF, where °T'=°T"
and F is a real line subbundle of TM. Denote A9%(°T' + CF) :=I'(M, (°T' + CF)®
AY°T")*) and denote by «/24(°T’ + CF) its completion with respect to the k-th order
Sobolev norm. The following notion of families of CR structures is an analogy of ones
of complex structures: Fix an integer k>n+2 and let (S, 0)=(C™, 0) be a germ of
complex space defined by an ideal £5 ,=C{sy, 55, ', Sp}. A family of deformations

?
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satisfying w(0)=0 and
Py(w(s))=0 mod £ 24T +CF){s1,53, """ S} »

where P,(w) is the integrability condition (cf. §2 below).
Then our main theorem is

MAIN THEOREM. Let M be a strongly pseudo-convex real hypersurface of a complex
manifold X with dim¢ X > 4. Fix an interger k>n+2. If a family w(s) of deformations of
CR structures on M is in AY'*(CT")[[s1, S2, * * *» Sm]], then there exists a family W —(S, 0)
of complex manifolds with a family of CR-embeddings of Sobolev (k+ 1/2)-class
G : M x (S, o)W with respect to w(s) over (S, o).

The assumption w(s)e AY>'CT)[[s,, 52, - -, 5,,]] means that w(s) is a family of
CR structures fixing the original contact structure Re(°T'+°7T"). And, in view of
deformations of isolated singularities, this assumption is not restrictive, because any
family of isolated singularities corresponds to some family of CR structures fixing the
contact structure (cf. [Ak2], [A-M1]).

Let n: %—(T, o) be the (formally) versal family of deformations of complex
manifolds near M, constructed in [M4]. Then the main theorem will be proven by
constructing a holomorphic map 7 : (S, 0)—(T, 0) and a family of CR-embeddings
G: M x(S, 0)>% x (r,,) (S, 0) with respect to w(s). We will construct the maps 7 and G
by formal extensions to infinitesimal neighbourhoods of (S, 0). Vanishings of ob-
structions to formal extensions follow form the fact that the (non-canonical) restriction
map HYQ, @)—»Hgb(M,°T'+CF) is isomorphism at g=1, 2, where Q is a (1, 1)-
convex-concave neighbourhood of M in X and H%R, @) denotes the g-th Cech co-
homology group with coefficients in the sheaf of germs of holomorphic vector field
©. In this argument, we need not the assumption w(s)€ A3 *CT)[s1, 525 " *» Sml]-
However we need this restriction for the convergence procedure, because the Sobolev
estimate || 3, N, Xf I, <c |l fl does not hold unless Xe°T" +°T".

As a corollary of (the proof of) the main theorem, we have that the versal family
of strongly pseudo-convex CR structures on M is determined uniquely in the following
sense. :

COROLLARY 5.1. Let M be as in the main theorem. Then any versal family of CR
structures on M (in the sense of Kuranishi) is realized as a real hypersurface of the
(formally) versal family of deformations of X near M. In particular, their parameter spaces
coincide with each other.

The arrangement of this paper is as follows. We will define the concept of families
of CR structures in §§1 and 2. In §3, we will recall the construction of the (formally)
versal family of tubuler neighbourhoods of M in [M4]. The proof of the main theorem
will depend deeply on this construction, and it will be given in §4. In §5, we will prove
Corollary 5.1.
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Throughout this paper, as parameter spaces of families, we will consider germs of
not necessarily reduced complex analytic spaces. About basic concepts, refer to [T] for
holomorphic vector bundles on a CR manifold, to [Akl] for deformations of CR
structures, and to [Ak2] (resp. [Ak3]) for the new harmonic analysis associated to the
construction of the Kuranishi family of strongly pseudo-convex CR structures (resp.
of complex structures on a (1,1)-convex-concave domain). In more general situation
dealt with in [M3], the method of this paper works well and the main theorem will be
valid. _

The author would like to thank Prof. T. Ohsawa for his valuable comments
improving the first version of this paper.

§1. CR structures.

Let M be a real C® manifold with dimg M =2n—1. An almost CR structure on
. M is a subbundle E of CTM satisfying

(1.1) EnE={0} and rankc(CTM/(E+E))=1.
We call E a CR structure if, moreover, it satisfies
(1.2) [u,v]el'(M, E) for any wu,vel' (M, E).

A real manifold M with a CR structure E is called a CR manifold (M, E). A differentiable
embedding g of M into a complex manifold X is called a CR embedding of (M, E) into
X if it satisfies dg(E)=dg(CTM)NT"X.

Any differentiable embedding into a complex manifold as a real hypersurface
naturally induces a CR structure with respect to which the embedding is a CR-one.
Conversely, [O] proved that any C* compact strongly pseudo-convex CR manifold
(M, E) with dimgM>5 has a CR embedding into a complex manifold as a real
hypersurface. Here let us define “strongly pseudo-convex’: If we choose a non-vanishing
real one-form 0 (called a contact form) annihilating E+ E, the Levi form is defined as
the Hermitian form on Eby (X, Y) := —-\/——1 O([X, Y]). (The Levi form is defined up
to a non-vanishing real factor. So the rank and the signature depend only on the CR
structure E.) The CR structure is called strongly pseudo-convex if the Levi form has a
definite sign at each point of M.

Throughout this paper, we will assume that M is a strongly pseudo-convex compact
real hypersurface of a complex manifold X and °T"=CTMn(T"'X | M) 1S a naturally
induced CR structure on M. ‘

On a CR manifold (M, °T""), We have the tangential Cauchy-Riemann operator
Oy €°(M)—> AL :=T'(M, (°T")*) given by 0,f(X)=Xf for XeI'(M, °T").

A holomorphic vector bundle on a CR manifold M is a complex vector bundle V'
with a differential operator 0, : (M, V)—>AY (V) :=I'(M, V®(°T")*) satisfying
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(1.3) 3(f5)=(0,)®s+f(0,s)  for fe¥>(M) and se(M, V),
and '
a4 3,0,=0,

where J,: A (V)= A2 %(V) is the differential operator naturally induced from the
above 0,

REMARK 1.1. If Vis a complex analytic vector bundle on X and V= |, then V
is a holomorphic vector bundle on a CR manifold M by

(1.5)  Ops=(09|-r~  where §eI'(X, V) is an extension of s.

Let °T"=°T" and F be a real line subbundle of TM such that CF~CTM/(°T" + °T").
Fix a splitting CTM=°T"+°T'+ CF as differentiable vector bundles and denote
°T’+ CF by T'. Throughout this paper, we will denote by subscripts °7”, °T”, CF and
T’ the projection onto them respectively.

REMARK 1.2 (cf. [Akl] and [T]). T’ is a holomorphic vector bundle on M by
(Op8)()=[s, u]y for se (M, T') and ue I'(M, °T"). The projection p Np: T'>T'X |y
induces an isomorphism of holomorphic vector bundles (7", 3,) ~(T'X l > 05) wWhere
(T'x ] m> Op) denotes the holomorphic vector bundle induced from the complex analytic
vector bundle 7°X on X as in Remark 1.1.

For a holomorphic vector bundle V' we denote 42 %(V):=I'(M, V® ACT")*), then
we have a differential complex

(1.6) 0—— A2%(V) — A2 (V) 5 A2(V) —2» % — > Ay"Y(V)—0

defined from the above J, satisfying (1.3) and (1.4) by the usual way (cf. [T] where he
denote 0, instead of J,).

If we fix an Hermitian metric on M (i.e. a Riemannian metric which is hermitian
in the fibres of °T" +°T") and an Hermitian inner product along fibres of ¥, then we
have the formal adjoint operator 8, : 49" 9*}(V)—>A2%V) of 8, : AL U(V)—> A1 Y(V).

THEOREM 1.1 (cf. [F-K]). For 1<g<n-—2,

(1) Hi={yeA®>%(V)| O,y =0} is finite dimensional where (1, =20,9,+ 9,7,

(2) there exists a linear map (so called the tangential Neumann operator)
Ny: Ay U(V)>AYY(V) such that [Ny =y —Hyz, [O,N,=N,, N,H,=
H,N,=0, where H, denotes the L*-orthogonal projection A"V )— Hj,

) NNV s+ 12=<Cs | B NY ;< Coll ¥ I, for Yyedp V), where || llyiy)z (resp.
I ) denotes the Sobolev norm of order s+1/2 (resp. the Folland-Stein norm of
order (s+ 1)) and C, and C; are positive constants independent of .
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§2. Families of CR structures.

Let M be a C® compact real hypersurface of a complex manifold X. We call an
almost CR structure E on M is at a finite distance from °T" if p,|z: E—°T" is an
isomorphism where p, denotes the projection CTM —°T"” with respect to the fixed
splitting CTM =°T" +°T’' + CF.

PrOPOSITION 2.1 ([Ak1] Proposition 1.1). If E is an almost CR structure on M
at a finite distance from °T", then there exists a unique we Ay''(M, T') such that
E={u—w(u)|ue°T"}.

We denote {u—w(u)|ue°T"} by “T".

ProrosITION 2.2 ([Ak1] Theorem 2.1). An almost CR structure “T" is a CR
structure if and only if w satisfies a non-linear partial differential equation Py(w)=

3,0+ R,(w) + Ry(w) =0, where J,0, R,(w) and Rs(w) are all in Ay*(T') given by,
Jor u,ve°T",

(2.1) Opeu, v) = [u, ()] — [v, @(W)] 1 — o([u, v]-r)
(2.2) Ry (@)(u, v) = —[w(u), o(v)]r + o([u, w(©)]or + [(w), v]-7-)
and
(2.3) R3(w)(u, v)= —o([w(u), ©(v)]-r) -
Let (S,0) be a germ of an analytic set in (C™ 0) defined by an ideal
Fs.o=C{sy, """, 5m}. We use the abbreviation (s) instead of (sq, * * -, Sp,).

Fix an interger k>n+2. And denote by o/ %(T") the completion of 4 %T") with
respect to the k-th order Sobolev norm. Then the following definition of families of CR
structures on M is an analogy of the one of families of complex structures.

DEFINITION 2.1. By a family of deformations of CR structures on M parametrized
by (S, 0) we mean a '

w(s)e Ly (T sy, -+, smp Ay ' (T)sy, 5 Sml]

satisfying
(1) w(0)=0,
(2) Py(()) €I, o 2{S15 " s Sm)-

Next we will consider a realization of a family of CR structures. Let (S, o) and ax(s)
be as above. And let n: & —(S, 0) be a family of complex manifolds. We may assume
that the complex space & is defined by a collection {F;;({;, 5)},,jc 4 satisfying (3.10) and
(3.11) below.

Let f;(z) = F;(z;, 0) and Ao={i| UnM # &}

DEerFINITION 2.2. By a CR embedding g : M x (S, 0)—% with respect to a family
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w(s), we mean a collection {gy(s)}; 4, such that, if we denote gi(s)=) . _, g¥(s}0/0z?),
) ged O, T'X|p){s1, -~ - sm}AL °Us, T'X|a)[Ls1, -+ - snd1 |
2 gi0)=2 (a=1,---,n),

(B) i) - Fifgfs), )€ I5, 00Uy, Disy, - -y s} (@=1,---,n),

@) (G NGHS) e FIs, o0 (U, Vs, s 5mp  (@=1,---,n),

where we denote by /}2-°(U;, T'X|y) the completion of 4% °(U;, T'X|,) with respect
to the (k+ 1)-th order Folland-Stein norm | ||;.

§3. Deformations of (1,1)-convex-concave domains near a real hypersurface.

Let X be an ambient complex manifold of M with the following condition: There
exists a smooth strictly plurisubharmonic function @ : X—(a,, b*) (-0 <a,<0<
b* < + o) such that d®+#0 on X, M={xe X | #(x)=0}, and Q, ,={xe X | a< H(x) < b}
is relatively compact for any a, <a<b<b*. .

The following analysis on the deformation complex (4% 4, T'X), 0) is due to T.
Akahori (cf. [Ak3] and [Ak4]), where 2 denotes 2, , for some a, <a<b<b*. Let

E1={peA®YRQ, T'X) | rope AYY(0R, T'X|;qnCTQ) and
rope Ayt 1(0R, T'X|,qnCToQ)} ,

where r: A>YQ, T'X)—> A 0R, T'X|,;) is the natural restriction map given by
ro(uy, -, u)=@uy, - - -, u,) for uy, -+, u,eI'(0Q2, T"X|,qnCTRQ). Then we have
a subcomplex (&%, 0) of (4>4Q, T'X), 7).

ProPosSITION 3.1 (cf. [Ak3] Theorem 3.4).
(1) HXE&)-HNQ, T'X) is surjective,
Q) HXE)-HHL, T'X) is an isomorphism for 2<q<n.

Next, we fix an hermitian metric on X which equals to the Levi metric (an Hermitian
metric which restricted to °7” +°T" coincides with the Levi form) near Q2 and let

2YE)={pe&?| (o(3,dP)p, Y»=0 on Q for any ye &I~} .

PROPOSITION 3.2 (cf. [Ak3] Theorem 5.1, [Ak4] Theorem 4.1 and [M2] Main
Theorem). For 2<q<n-—2,
(1) HYE)={pe2%8) | 0@ =3¢ =0} is finite dimensional,
(2) there exists a linear map N : A>Y(Q, T'X)—> A%, T'X) such that =N ¢+
H @, where H denotes the orthogonal projection onto HY(&),
B) N H#=#N=0,
@) ONpeD™ (&) and N @& if pe&i.
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ReEMARK 3.1. From (2) and (4) of Proposition 3.2, we infer that the harmonic
space H4(&) represents H}(&') for 2<q<n-—2.

We will recall the outline of the construction of the family of tubular neighbour-
hoods of M in [M4] Theorem 1. We fix a, <a,; <a<0<b<b, <b* and an hermitian
metric on X which is real analytic on a neighbourhood of @, , and equals to the Levi
metric near 0Q,, ,,. We denote 2=Q, , and Q,=Q, ,,. Let || [o,x and || [[{o,x be the
norms on A%%4Q,,T'X) introduced in [Ak3].

By the method in §7 of [Ak3], for a fixed k>n+2, we obtained a convergent
powerseries @()e L3 i{ty, . t,}NE[[1y, - -, 1,]] and an analytic space T having
the following properties, where /(34 denotes the completion of 4% !(Q;,T'X) with

respect to || [/(o,,-norm and r=dim¢ H(Q,, T'X):
(3.1) ¢(?) is real analytic on a neighbourhood of Q2 x o,
(3.2) ¢(0)=0,

(3.3) if ¢,(?) denotes the linear term of ¢(t), then 0¢,(¢)=0 and [¢,(¢)] spans the
first cohomology space HxQ,, T'X),

(3.4) T=h"10) where h is a complex analytic map from a neighbourhood W
of 0eC" into H?*(&) given by ()= P(p(t)), where P(¢(2))=0¢(t)—
e, (0],

(3.5 Plp())eFr A% {t1, ", 1}, where %, denotes the completion of
A% *(Q, T'X) with respect to || [|(o.x-norm (cf. [M4] Proposition 2.1).

By (3.1)~(3.5), we have a smooth map =n :  —(7, o) such that
(3.6) =n~1(0) is a neighbourhood of Q in X,
(3.7) the Kodaira-Spencer map p : T,T— H'(Q, ©) of this family is an isomorphism.

Precisely speaking, we have a collection {U,, (?)},. 4, of real analytic complex charts of
a neighbourhood of Q and a collection {F;({;, t)};, jc4 of transition functions such that

(3.8) {Uj};c4 is a finite open covering of a neighbourhood of @,

(39) =@} ---,2): UxD—-C" is a real analytic map depending complex
analytically on t=(¢,, - - -, t,), where D denotes a neighbourhood of 0 in C".

(3.10) F;;: C"xDoW;>W;cC"xD is a complex analytic isomorphism
between open sets W;; and W,

if we denote F{i({;, H={f-F,({;, ) (¢=1, - - -, n) then we have

B.11)  Fi(Fpll, ) — Fi(ly, DT (W nFj W)W, F1®opUcnxp) »

and
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(3.12) t;'°Fi,(Cj, =1t for A=1,---,r,

(3.13) Z{(O)—Fi(Z(0), ) e I'(UinU;, £1,,®0,€% x p) Where €%, , denotes the sheaf
of germs of real analytic functions on X x D which are complex analytic
in teD.

(3.14) (0—()ZNN) eI (U, F1,,@opad ') where 22! denotes the sheaf of germs:-
of real analytic (0, 1)-forms along fibres of X x D— D depending complex
analytically on .

§4. Proof of Main Theorem.

First of all, we discuss the relation between the Cech cohomologies and the
Dolbeault cohomologies over a CR manifold.

Let ¥ be a holomorphic vector bundle on a CR manifold M and denote by Ocx(V)
the sheaf of germs of CR sections of V. Since J,-Poincaré lemma holds for 1 <g<n—2
(cf. [A-H1] Theorem 2 and [A-H2] Theorem 3), we have the CR version of Dolbeault
isomorphism, for g<n—2,

HYM, Ocg(V)) (xim HY(UNM, Ocg(V)) = H5,(M, V) (=ZZV)/BYV))

where Z{(V)={pe 4)%M, V)| 8,0 =0} and BY(V)=0,421"Y(M, V).

Let V be a restriction on M of a complex analytic vector bundle ¥ on X and
U={U};c4 a Leray covering of Q. By restricting the correspondence under Dolbeault
isomorphism onto M, we have

PROPOSITION 4.1. We have a commutative diagram of cohomologies;
- Lol .
HYU, O(V)) — H¥(R, V)

lf" o l
HYUNM, Ocg(V) 2 HE(M, V) (1<q<n—2).

It is well known that a? is an isomorphism but 7 is not in general. 8! is injective.
By the same arguments in pp. 81 and 82 of [Y], we have

PROPOSITION 4.2. 4 is an isomorphism for 1 <q<n—2.

PROOF OF MAIN THEOREM. Let X and & be as in §3 and M ={xe X | &(x)=0}.
Let n: & (T, o) be the family of deformations of complex manifolds near M obtained
in [M4], Theorem 1 (cf. also §3) and (S, 0) = (C™, 0) be a germ of analytic space defined
by an ideal S5 ,=C{sy, " - -, 5,,}. We denote the maximal ideal of C{s,, - - -, s,,} by m.
We may assume that the complex space & is given by a collection of transition functions
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{Fi{{;, D}i, jea With a collection of families of complex charts {U,, Z,(f)};. 4 satisfying
(3.8)(3.14). Let Ao={i| U,nM +# &} and set f;(z) = Fi{(z;, 0).

We will construct sequences {g#(s)};c4, and t#(s) for u=0, 1, - - - satisfying the
following, where

9= 3 @G o) € AF T XL 520 7, 5,]) and

1"M(s)e Cr[[sl’ S2s T, sm]] :
@41  (@)@)=z (¢=1,---,n) and 1°=0,
“4.2), gi(s)=g*"1(s) modm* and 1*(s)=1*"'(s) mod m",
4.3), @iz, 5)— Filgi(z), 5), T*(s))=0
mod (m*** +F5 YAy ((UinUinM, D)[[sy, " -, sm]]1  (@=1,---,n),
(44), (G~ (NG (z;, =0
mOd (m“+1 +js,o)®Ag'1(UinM9 1)[[S19 T, Sm.]] (a= 13 Y n) s
4.5), h,(t*(s))=0 mod (m**'+ .45 ) A=1,---,1).
For u=0, because of (4.1), we set (g2)*(z,) =z%, 1°=0.
Suppose that {g#~(s)};c 4, and t*~!(s) are determined for some u>1.
The proof will rely heavily on Grauert division theorem (cf. [G]). It provides a
way specifying a representative of an element of (convergent) power series ring modulo

an ideal. We call the specific representative the canonical modulus.
Let g5 ,.(s) be the canonical modulus of

gt~ ) —Figh (), T~ 1)
modulo (m** ! + £ YR AP (UNU;nM, T'X|x)[[s1, 52, " *» Sml]
and &;,,(s) the canonical modulus of (5, — w(s))g" ™ *(s) '
modulo (m** ! + 75 J)®A4y '(UinM, TIX'X)[[Sn 8§25 s Sml] -

Note that 0,5 ,(s) and £; ,(s) are homogeneous of order u, by (4.3),_, and (4.4),_,
respectively. Next let

jedo B=

g5= Y ﬂil P OS O HW  (a=1,--.n),

where {p;};c 4, is a partition of unity subordinate to ZNM={U;nM}; 4,
We note that {£;,(s)} and {J,g},,(s)} are in AD*(M, T'X|,)[Ls1, 525 " * *» Sm]], by
(4.3),-, and (4.4),_,, and denote them by £,(s) and &,(s) respectively. Let

n 9F%
- i Zl%,@ =1,...’
{ Y a§1 ot° 0z} }E ( x) ‘ (@ )
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be a 1-cocycle and t(s) (6=1, - - -, r) homogeneous polynomials of s of order u given
by

([ 2 Ot ”(s)])=[Hb(éu(s)+e:;(s))J :

Let

b

UinM

gllu(s)-— Z p]( Z @ (S)>

jeAo

then {0,9%),.(s)} € AP (M, T'X| M)[[sl, S2, " **» Sm]] and denote it by &;,(s). Let
gu' ()= —IpNy(£u(5) + £ () + &) -
Finally we set
g4 ()=g%" () +g1u(8) + 7, + 9, (v,
and
() =1* " (s) +1,(s) .
We will prove that {g#(s)};c 4, and {t*(s)} satisfy (4.3),~(4.5),.

PROOF OF (4.3),: By the same calculations of [A-M1] Lemma 3.2, it follows from
(4.3),-,; and Proposition 4.4 (remark that Proposition 4.4 follows only from

(4'3)[1—— | g (4'5);4— 1)

u| ”(S) olk | “(S) + Z f;J

.I

a]klp(s) 0 (a=19 2,"',’1).

Since

(@1%(5)— F2(g(s), T(5)) = 0% () + (g} )*(6)
f” AP ) aFa

i 6f,, 5 @51 () +(g5,)%() — Z 2 Tu(s)

mOdlﬂO (m"+1 +fs,o)®A3’°(Uiﬂ U,ﬂM, TX|)[[s15 82, S,..]] ,
(4.3), follows from the definition of {g;,,(5)}:c 4, and {g},(s)}.

PROOF OF (4.4),: Since 0,£,(s)=0,¢'(s)=0 (cf. Sublemma 4.6 below) and B! is
injective, we infer from the definition of {g{(s)}ic 4, that H,E, ()= — Hy(£,(s) +£,(s)
holds. Therefore, since

(0p— 0(5))g4(s) = &,(8) + £1(8) + £,(5) + 0pg),/ (5)
modulo (n’l“-’-1 +“¢S o)®A0 1(M, T'XIX)[[Sls $3, "%, sm]] s

(4.4), follows from the definition of g,’(s).
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PRrROOF OF (4.5),: Well will show
hA(T”_l(S))EO mOd (m”+l+fs,o)®c[[s1, .'.’sm]] (A'=19 al)
Let p,(s) be the canonical modulus of
P(p(z*~1(s))) mod (m**'+55 )®A%XQy, T'X)[[s1, "5 sml] .

LEmMMA 4.3. (1) 0p,(s)=0,
() p(DEE[s1, " ", sml]-

ProOF. (1) JP(p(z*~(s)))= —[0e(z* ™ 1(5)), o(z*~ ()]

= —[P(o(z*~1(5))), p(t* "1 (s))]=0

mod (m**1 + 5 )®A%3(Q,, T'X)[[sy,  * *» Sml], by (3.5) and (4.5),,_;.
(2) Since p()e &[4, - -, t]], by [M4] Sublemma 2 and [M1] Proposition 1.1,
rP(o(t)) € AP 2(0Q,, T' X |,0,nCTOR,)[[1,, - * -, t,]]. Hence we have rp,(s)e Ay *(622,,

T’lelnCTagl)[[sl, -+, 5,]]. Then 0&,rp,(s)e Ay (09, T'Xlaglr\CTé’Ql)[[sl, R
s.]] follows from (1). Q.E.D.

It is enough to show
ProposITION 4.4. r?[p,(s)|a]=0.

In fact, by Proposition 4.2, [p“(s)] 3] =0 follows from Proposition 4.4. Since the
restriction map H¥Q,, T'X )—>H%Q, T'X) is an isomorphism by [H] Theorem 3.4.8,
we have [p,(s)]=0 in H¥£,, T'X). This implies [p,(s)]=0 in H3&") by Proposition
3.1. Therefore #p,(s)=0 follows from Remark 3.1.

Now we will prove Proposition 4.4. Let Z,;,,({;, 5) be the canonical modulus of

Fallor 1)) — Fif(F(Co ™~ 1)), T~ 1(s)) mod (m# ™1+ .55 ,)

in COUNU;NU,, O)[[s4, * * *, Sm]]. Then Z;5 ,(s) is a homogeneous polynomial of s
of order u and satisfies

5 OfE .‘
E:,.,,‘(s)—sg‘k,u(s)+ﬂzl—a—z';—sfkl,,(s)=o (a=1,2,+-,n).
= j

By Proposition 4.1, Proposition 4.4 follows from

LeMMA 4.5. (1) B2 F*([Eij (9] =0,

@ P[Eiu ()= —[Pu9)]a)
PrOOF OF LEMMA 4.5 (1). The following Sublemma 4.6 implies Lemma 4.5 (1).
SUBLEMMA 4.6. (1) 0,&;,(s)=0,

Q) 040451, = —&;1 () + &) u(5),

3 (Eijklu(s))lM =0 ) u(8) — Ok u(8) + T35 u(5)-
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Proor. (1) By [Akl] Proposition 3.2 and (4.4),_,,

05811 ,(5) = (0, — (5)) g%~ 1(8) + (5)E1 u(5)
= Py((5))g¥ ™1 (5) + (8)&; u(5)
=0 mod (m"*'+ .55 )®A*(UinM, T'X|\)I[s1, - > Sml] -

By (4.3),_, and (4.4),_,, we have

050:;1,(8) = (0, — (s))gt ~*(s) — % (Op—a(s)g}s ()

J

mOd (m“+1+.fs,o)®Ag’1(U,-ﬁUth, T’XIM)[[SI’ T, Sm]] .
By (4'3)[4—1’

0','_,'“‘(3)50',-”“(5)—O'jk|“(S)+Eijk|“(gi‘_I(S), Tﬂ_l(s))
mod (m*** +F5 YR AY (UnUinUyn M, T'X|y)lLsy, - *» Smll -

Since =, (s, 5) is homogeneous of order u in s,

(4.6)

4.7

(4.8)

B ugk ™ 1(s), 5)= Eijk]p(zka s)
mod (m** !+ S5 YR A (UinUnUpn M, T'X | )[sy, * **» sl .
Q.E.D.

PRrROOF OF LEMMA 4.5 (2). By (4.5),_,, we have
(O— o~ (MZi(zi, T (5))=0
mod (m“+JS.o)®A0,1(Ui9 T'X)[[sh T Sm]] s
Zi(fifzp), TN — Fi(2(zy, 7)), T H(9)) =0
mOd (mu+js,a)®A0,0(Uin Uj, T’X)[[sla B Sm.]] ’
P(p(x* ™ (s)))=0 mod (m*+ S5 )®A*&L, T'X)[s1, ", 5m]] -

Let 7;,,(s) and 4;;,,(s) be the canonical moduli of

@—e(@* "1 $)Nz(x*"(s)) mod (m** !+ I YRA% (U, T'X)[[s1, ** *» S]]

and of

E(fifz), TN — Fif2(z; 7 (), T 7 ()
mod (m**! + .55 )Q®A*U(UinU;, T'X)[sy, - -5 Smll >

respectively. Note that they are all homogeneous of order u, by (4.6)~(4.8). By the
same argument as the proof of Sublemma 4.6, we infer from (4.6) ~(4.8) the following
Sublemma 4.7 which implies Lemma 4.5 (2).

03

SUBLEMMA 4.7. (1) 01y ,(9)=p.)|v,
02i51,(8) = — 11 () + 111, (5),
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B Eiju(8) = Ajic) u(8) — Ak w(8) + 43 u(5).

Thus we have constructed {g#(s)};c 4, and {t*(s)} satisfying (4.1) and (4.2),~(4.5),
for all u>0.

The convergences of g(s)=lim,,_, , ,g%(s) and ©(s)=lim,, , ,7#(s), with respect to
the Folland Stein norm || ||; in A2 °(U,, T'X | ») and the euclidean norm in C” respective-
ly, follow by the same arguments as in §3 (II) of [A-M1]. We will omit it.

§5. Uniqueness of versal families of strongly pseudo-convex CR structures.

The family of strongly pseudo-convex CR structures w(s) (parametrized by (S, 0))
constructed in [Ak2] has the following property, which is called ““versal in the sense of
Kuranishi” in [Ak2]:

(1) For any family of complex manifolds n’' : &'—(T", o) such that '~ (o) is a neigh-
bourhood of M in X, there exists a holomorphic map 7’ : (7", 0)—(S, 0) and a family of
CR-embeddings G :M x (1", 0)—»%" with respect to w(t'(¢)) over (T, o).

(2) The infinitesimal deformation map T,S—H3(M, T') is bijecti‘}e.

As a corollary of the Main Theorem, we have a uniqueness of the versal family
of strongly pseudo-convex CR structures, in the following sense.

COROLLARY 5.1. Let M be as in the Main Theorem. Then any versal family of CR
structures on M (in the sense of Kuranishi) is realized as a real hypersurface of the
(formally) versal family of deformations of X near M. In particular, their parameter spaces
coincide with each other.

PRrROOF. Let ¢(s), parametrized by (S, o), be a versal family of CR structures on
M (in the sense of Kuranishi), and let n : & — (7, o) be the (formally) versal family of
deformations of X near M (cf. §3). '

From the versality (in the sense of Kuranishi) of ¢(s), we have a holomorphic map
o : (T, 0)—(S, 0) and family of CR embeddings G : M x (T, 0)—»% with respect to the
induced family w(a(?)). G is given by a collection {g,(#)}c4, satisfying (1)~ (4) of
Definition 2.2 with respect to w(a(¢)). Differentiating (3) and (4) of them, we have a
commutative diagram

de
T,T % v T,S

l | |

1 ° M | ’
@, )0 HiM, T'X|y) <2 HL(M, T")

where p’ is an isomorphism induced from the projection p’|r. : T'—T"X|y (cf. Remark
1.2).
On the other hand, from the argument in §4, we have a formal map 7: S—7 and
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a formal powerseries of CR-embeddings H : M x S—% x #S with respect to w(s), that
is, H is given by a collection {Ay(s)}ic,, of formal powerseries of s satisfying (1), (2)
and the formal version of (3) and (4) of Definition 2.2, with respect to {F{{({;, T(5))}4, je 40
and w(s). Differentiating (3) and (4) of them, we have that d%,: T,5— 7,7 commutes
with the above diagram.

Since the infinitesimal deformation maps T,7—H (%, ©) and T,S—H 31,,(M, T)
are isomorphisms, and since B! o' =r!oa! is an isomorphism by Proposition 4.2, we
have that do, - df,=id and df,-do,=id. Hence, by Annex, Note 1 of [Ar2], we have
that ¢ and % are isomorphisms. Then we have that ¢ is isomorphism by Corollary (1.6)
of [Arl]. Q.E.D.
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Note added in proof.

In the proof of Main Theorem, the convergence of gi(s)=1im#_, +94(s) and
©(s)=lim,_, ,  t*(s) does not follow by the same argument as in §3 (II) of [A-M1]. In
this note, we give a proof. It relies on estimates with respect to a pseudo-norm || I,
(p € R™). We first follow the expression of the pseudo-norm by [F-K1]. Refer to [F-K1]
§1 for more details. Let )  _yn7.8" be the Taylor series expansion of M(s)=

m (3—%/1—5;). Let K be a Banach space with its norm | [ (in the following
argument, (K, | |g) will be (Z£2%U; A M, T'X|3), || 1) (LR U;n M, T'X |30, || 1)
or (C",| ). For p=(py, "> pm)eR™ and f(s)e K{s}, we define a pseudo-norm
I £, :=sup,{(0*/¥)] £+ x}-

The following properties for f(s), g(s), f;(s) € K(s) are essential in our argument.
(N-1) f(s)e K{s} if and only if || f(s)||, < + co for some p .

We denote p’ <p (resp. p' <p) if p;<p; (resp. p;<p;) holds forall i=1,2, ---,m, and
denote p’/p:=max, _,_.{pi/p:}.

(N-2) If&I<Ifll, if p’<p.
(N-3) If £(0)=0 then || f(s)ll, <(p'/P)|f(s)ll, holds for p'<p.
(N-4) /&g, <dlf)N,lg®N, »
if |ap|x<d|o|xl B|x holds for all « and B in K.
(N-5) /() + g, < 1), + g, -
(N-6) If { f,(5)}:e; are disjoint (i.e. for each ve N™, (f;),=0 except

one index i=i(v)), then ||Y,_, ()|, =sup, I fi()l, -
We need the following two facts in our argument. '

LEMMA N.1. Let Ucc Wcc CN be open domains, V< U a real closed submanifold

and k a positive integer. Then there exist constants €>0 and C, >0, depending only on
V, U, W and k, such that
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Iz + () — &)~ WS, < Cal o IO

holds for he (W, 0), Y(s)eC>(V, || I)"{s} such that |h|y:=sup__,|h(z)|< + o,
Y(z, 0)=0 and ||Y||, <&, where we consider h(z+ Y(s)) — h(z) —(Oh/0z)z)Y(s) as an element
of C2(V, || lI){s}-

We can prove Lemma N.1 along the way of [F-K2] Lemma 2.17.

Let S be a germ of an analytic subset of (C™, 0) defined by an ideal #5< C{s}. We
denote by red, f(s) the canonical modulus of f(s)e K{s} modulo S5K{s}.

LeMMmA N.2 ([G] Satz 4, [F-K1] Satz 1.14). There exists a constant C,>0 such
that ||redy, f(s)ll, < C,ll f(s)ll, holds for all p.

Let k be the positive integer in the Main Theorem such that w(s) is convergent in
I lly-norm. Fix p,e R™ such that o:=|w(s)||,, < + 0.
We collect some constants.

(N-7) loyll<dldlillyl,  for ¢, y € CF(U;n M) and for all ie A, .

(N-8)  NGsgll<ellgli for geCP(U;n M, T") and for all ie A, .

(N-9) |HI<flEll  for EeAp!(T).

(N-10) |[{@tjlu}]|$h| nl for {@ij} € Z (¥, O) with {Qile} being
cohomologous to ne H(T") .

(N-11) II§P,-§: @5t <b| [{§: O%lnt’}]l

(N-12) I9sNs&llk <ali Sl -

We may assume that (U;nU;) x0cc W,

(N-13) F:=sup, . w, |Fijiz; 9l.

By (N-1) and (N-6), it is enough to show that the following estimates hold for
some 0<p<p,, 0<Z<o leand forall u=1,2, ---:

(1) 1g51u() +95.(5)+ 9, N, <Z0 ,
2,) lt.)ll, < Zo .

PROPOSITION N.3. Suppose (1,) and (2,) hold for some 0<p<p,, 0<Z <o~ ‘¢ and
v=1,2, - -+, u—1 (u<2), then the following holds:

1) 1958+ 91 +g. N, <CVZ%62+ C‘Z’Z(—E—)az + C‘”(;e—)o ,
0 0
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@ It ), < C9Z%2 + sz(_&)az +C® (_P_)o :
Po Po

where CY~ C® are constants independent of u, p, o and Z.
The following lemma implies Proposition N.3.

LEMMA N.4. Under the assumption of Proposition N.3, we have

e)) o, <C3Z%2,
(2) lgiu@), < CsZ?a?,
3 "€i|u(s)”psCSZ(_p”)O-2+C6<_p")U ,
, | Po Po
(4) 1€, <C,Z%2,
5 ||r“(s)||pscszzaz+cgz( )a +c10( d )a,
Po
(6) lgiju()ll, SC112202+C122< )0' +C13( )
(7) €., < C142202+C152< )U +C16(—pp——)a,
) "g'"(s)”pscl-,Zsz+CIBZ< )O‘ +C19(%)O”

where C5~ C,q are constants independent of u, p, 6 and Z.

Proor. (1) Set

@Y, 1) :=Fj(z;+y, 1) — Fyy(z;, 0)— lj( Zj, 0)'/"- £y (Z 0)r.

Let y=g%"'(s)—g{ and T=1*"'(s). Since g/~ l(s)—g,- , g4~ 1(s)-—gj? and t#71(s) are
(u— 1)-th order polynomials coinciding with their canonical modulus respectively, ;;,,(s)
is the homogeneous part of order u of —red, @,;(y, ). And since ||Y(s)||,<Zo <& and
=)l , < Zo <&, we have ||o;;,(5)ll, < lred,, P 5@, DI, < Call Py, DI, < C1C,FZ%a?, by
Lemmas N.1 and N.2.

(2) follows from (1), since g;,(s)=)_; ;0 i1.(5)-

(3) Since (J,—w(s))gt ™ (s)=04g} ™ () —g?)—c(s)g¥ ™ '(s) and 95“ I(S)—g? is a
(u—1)-th order polynomial satisfying red, (g% *(s)—g{)=g% '(s)—g?, &.(5) is the
homogeneous part of order p of red,,w(s)g* ™~ *(s). Hence, [|&;,(s)ll, < lired, w(s)gt = (),
< Cyllo(s)g¥ ()N, < Co{llo(s)gt ™ () — g, + @)} < C2{d(p/po)Za? +(p/po)o}, by
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(N-3).

(4) follows from (2) and (N-8), since £,(s)=0,g/),(5).

(5) follows from (3), (4), (N-9) and (N-10), since [} ; 0, , 0 %|ut°(s)] is cohomol-
ogous to Hy(E,(s)+ & (s)).

(6) follows from (5) and (N-11), since gjj(s)= - P P2, O%IMmTo(s).

(7) follows from (6) and (N-8), since f;j(s)=6',,g;i,,(s).

(8) follows from (3), (4), (7) and (N-12), since g}(s)= — 9,N(&,(5)+ E4(s) + E1(5)).

Q.E.D.

PRrOOF of convergence. Let Z>0 be such that C'YZs <1/3 and C*¥Zs < 1/3 hold.
Let p, € R be such that p, <po, {|9;1(s) +97j1(s) + 97 (s)ll,, <Ze and ||7,(s)]l,, < Zo hold.
Next, choose 0<p<p, such that C®(p/py)a<1/3, C3(p/py)<Z/3, CP(p/po)o<1/3
and C®(p/p,) < Z/3 hold. Then, by Proposition N.3, (1,) and (2,) hold for p=1,2, - - -.
This completes the proof of convergence.
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