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I. Introduction.

Given a topological dynamical system $\Sigma=(X, \sigma)$ where $X$ is a compact metric space
with a homeomorphism $\sigma$ , we sometimes meet the situation that the system $\Sigma$ is
decomposed into the disjoint union of subdynamical systems $\{\Sigma_{\gamma}=(X_{\gamma}, \sigma|X_{\gamma})|\gamma\in\Gamma\}$

where each $X_{\gamma}$ is an invariant closed subset of $X$. For instance, it is known that when
$\sigma$ is distal this is always the case in which $\Sigma_{\gamma}$ turns out to be minimal. Thus, in such a
case the transformation group $C^{*}$-algebra $A(\Sigma)$ associated to the system $\Sigma$ may be
considered as a connection of the family of transformation group $C^{*}$-algebras,
$\{A(\Sigma_{\gamma})|\gamma\in\Gamma\}$ of those topological dynamical subsystem, $\Sigma_{\gamma}s$ .

It is the purpose of the present paper to show that, under what conditions, the
algebra $A(\Sigma)$ becomes the algebra of all continuous operator fields over the fibred space
$\{\Gamma|A(\Sigma_{\gamma})\}$ in a fairly general setting for topological dynamical systems. There are recent
results closely related to our present discussions, namely those by D. Williams [12] and
M. A. Rieffel [13]. A main difference between their results and ours is the following;
they start using the fibred space $\{Y, A(t), \mathscr{F}\}$ of $C^{*}$-algebras with a compatible action
of a group $G$ on the algebra of continuous operator fields on $\{Y, A(t), \mathscr{F}\}$ and ask
whether the situation is still compatible or not in the fibered space $\{Y, A(t)\times_{\alpha_{t}}G\}$ of
crossed product $C^{*}$-algebras $A(t)\times_{\alpha_{t}}G’ s$ , whereas we are interested in the conditions
when such a starting situation arises from a given topological dynamical system.
Throughout our arguments, a homomorphism between $C^{*}$-algebras always means a
$*$-preserving homomorphism.

II. Analysis for decompositions of dynamical systems.

Since we are interested not only in usual dynamical systems as cited above but
also in the topological dynamical systems arised in the theory of operator algebras such
as shift dynamical systems (cf. [3], [11]), we consider, as a topological dynamical
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system, the system $\Sigma=(X, G, \alpha)$ where $X$ is a compact Hausdorff space, $G$ an amenabl
discrete group and the action $\alpha$ is a homomorphism from $G$ into the group of al
homeomorphisms on $X$. We note that no countability condition is imposed on $X$ a
well as on $G$ in general. The action $\alpha$ of $G$ on $X$ naturally induces an action, denote $($

by the same $\alpha,$ $onC(X)$ , the algebra of all complex valued continuous functions on:
by the definition $\alpha_{s}(fXx)=f(\alpha_{s}^{-1}x)$ for $f\in C(X)$ . The $C^{*}$-algebra $A(\Sigma)$ is by definitio]

the crossed product $C(X)\times_{\alpha}G$ with respect to the action $\alpha$ on $C(X)$ . We denote $\delta_{s}$ th
unitary operator of $A(\Sigma)$ corresponding to an element $s\in G$ . Let $\epsilon$ be the canonica
projection of norm one from $A(\Sigma)$ to $C(X)$ . Since the group $G$ is amenable, the map
becomes a faithful positive map and moreover we can use the Fourier coefficient
$\{a_{s}=\epsilon(a\delta_{s}^{*})|s\in G\}$ defined effectively for an element $a\in A(\Sigma)$ .

Now suppose that $X=\bigcup_{\gamma e\Gamma}X_{\gamma}$ , where $\{X_{\gamma}|\gamma\in\Gamma\}$ is a family of disjoint $close_{1}$

invariant subsets. One may then consider the index set $\Gamma$ as the quotient space of:
with respect to the relation $R$ defined by the family $\{X_{\gamma}\}$ . Let $q$ be the quotient map $0$

Xto $\Gamma$ . We recall thata subsetS in $\Gamma isopenifandonlyiftheinverseimageq^{-1}(S$

is open in $X$. Write $\Sigma_{\gamma}=(X_{\gamma}, G_{\gamma}, \alpha_{\gamma}=\alpha|X_{\gamma})$ , the induced dynamical system on $X_{\gamma}an|$

denote by $A(\Sigma_{\gamma})$ the associated transformation group $C^{*}$-algebra. We notice that th
same context for $A(\Sigma)$ as above is available for $A(\Sigma_{\gamma})$ denoting $\epsilon_{\gamma}$ the canonical projectio]
of norm one in $A(\Sigma_{\gamma})$ . The homomorphism $\rho_{\gamma}$ : $C(X)\rightarrow C(X)|X_{\gamma}=C(X_{\gamma})$ is compatibl
with the action $\alpha$ and it gives rise to the natural homomorphism from $A(\Sigma)$ to $A(\Sigma_{1}$

which we also denote by $\rho_{\gamma}$ . The compatibility of the original homomorphism $\rho_{\gamma}$ implie
the equality $\rho_{\gamma}\circ\epsilon=\epsilon_{\gamma}\circ\rho_{\gamma}$ . Define the ideal $I_{\gamma}$ of $A(\Sigma)$ as the kernel of $\rho_{\gamma}$ .

LEMMA 2.1. $I_{\gamma}$ is the closed linear span of the generating elements $\{f\delta_{s}|f\in C(X$

with $f|X_{\gamma}=0,$ $s\in G$ }.
$PR\infty F$ . Let $J_{\gamma}$ be the closed linear span mentioned above. It then tums out to $b$

an ideal because of the covariance relation between $C(X)$ and unitary elements $\{\delta_{s}|s\in G$

together with the invariance of $X_{\gamma}$ . It is clearly contained in $I_{\gamma}$ and by definition ther
is a natural embedding of $C(X_{\gamma})$ into the quotient $C^{*}$-algebra $A(\Sigma)/J_{\gamma}$ . Therefore, th
universality of covariance relations for the crossed product $C(X_{\gamma})\times_{\alpha_{\gamma}}G$ shows that ther
exists a homomorphism from $A(\Sigma_{\gamma})$ to $A(\Sigma)/J_{\gamma}$ , which combined with $\rho_{\gamma}$ yields th
quotient homomorphism: $A(\Sigma)\rightarrow A(\Sigma)/J_{\gamma}$ . This completes the proof. $[$

LEMMA 2.2. An element $a$ in $A(\Sigma)$ belongs to $I_{\gamma}$ if and only if all its Fourier coeff
cients $a_{s}$ vanish on $X_{\gamma}$ . Hence if $\rho_{\gamma}(a)=0$ for every $\gamma\in\Gamma,$ $a=0$ .

$PR\infty F$ . Let $\rho_{\gamma}(a)_{s}betheFouriercoefficientsinA(\Sigma_{\gamma})fors\in G$ . We have then,

$\rho_{\gamma}(a)_{s}=\epsilon_{\gamma}(\rho_{\gamma}(a)\rho_{\gamma}(\delta_{s})^{*})=\epsilon_{\gamma}\circ\rho_{\gamma}(a\delta_{s}^{*})$

$=\rho_{\gamma}\circ\epsilon(a\delta_{s}^{*})=\rho_{\gamma}(a_{s})$ .
Hence,



TOPOLOGICAL DYNAMICAL SYSTEMS 411

$a\in I_{\gamma}\leftrightarrow\rho_{\gamma}(a)_{s}=0$ for every $s\in G$

$\leftrightarrow\rho_{\gamma}(a_{s})=0$ for every $s\in G$

$\leftrightarrow a_{s}|X_{\gamma}=0$ for every $s\in G$ .
The last assertion is a consequence of standard results for reduced crossed products. $\square $

In the following we shall eventually show when the algebras $A(\Sigma)$ is isomorphic to
the algebra of all continuous operator fields over the fibered space $\{\Gamma|A(\Sigma_{\gamma})\}$ . For this
purpose the conditions that we have to claim are the Hausdorff property of the space
$\Gamma$ and the continuity of the function: $\gamma\rightarrow\Vert\rho_{\gamma}(a)\Vert$ for each element $a\in A(\Sigma)$ . The following
propositions clarify the situations. Write $a(\gamma)=\rho_{\gamma}(a)$ .

PROPOSITION 2.3. The following assertions are equivalent;
(a) $\Gamma$ is Hausdorff,
(b) The map $q$ is a closed map,
(c) The function: $\gamma\rightarrow\Vert a(\gamma)\Vert$ is upper semi-continuous for every element $a\in A(\Sigma)$ .
$PR\infty F$ . The implication $(a)\Rightarrow(b)$ ; Since the map $q$ is continuous it carries a closed

hence compact subset of $X$ to a compact subset of $\Gamma$ , and if $\Gamma$ is Hausdorff the latter
set becomes closed in $\Gamma$ .

The implication $(b)\Rightarrow(c)$ ; We assert that for any $\epsilon>0$ the set $H=\{\gamma\in\Gamma|\Vert a(\gamma)\Vert<\epsilon\}$

is open.
Take a point $\gamma_{0}$ in $H$. Then by Lemma 2.1 we can find an element $b=\sum f_{s}\delta_{s}$ of

finite sum such that $f_{s}|X_{\gamma 0}=0$ for every $s$ and $\Vert a+b\Vert<\epsilon$ . On the other hand, by the
compactness of $X_{\gamma 0}$ , there exists a neighborhood $U$ of $X_{\gamma 0}$ such that

$\sum_{s}|f_{s}(x)|<\epsilon-\Vert a+b\Vert$ for every $x\in U$ .

Here by [5; Theorem $3.10(c)$] the union of all members of $X/R$ which are subsets of $U$

is an open set containing $X_{\gamma 0}$ . Hence its quotient image $V$ becomes a neighborhood of
$\gamma_{0}$ such that for every $\gamma\in V$ we have

$\Vert a(\gamma)\Vert\leq\Vert a(\gamma)+b(\gamma)\Vert+\Vert\sum_{s}(f_{s}|X_{\gamma})\rho_{\gamma}(\delta_{s})\Vert$

$\leq\Vert a+b\Vert+\sup_{xeU}\sum|f_{s}(x)|<\epsilon$ .

This completes the assertion.
The implication $(c)\Rightarrow(a)$ ; Take two different points $\gamma_{1}$ and $\gamma_{2}$ in $\Gamma$ . Since $X$ is com-

pact, there exists a continuous function $f$ such that $0\leq f\leq 1,$ $f|X_{\gamma_{1}}=0$ and $f|X_{\gamma_{2}}=1$ .
From the assumption the sets $V_{1}=\{\gamma\in\Gamma|\Vert\rho_{\gamma}(f)\Vert<1/2\}$ and $V_{2}=\{\gamma\in\Gamma|\Vert\rho_{\gamma}(1-f)\Vert<$

$1/2\}$ are disjoint open subsets of $\Gamma$ which contain $\gamma_{1}$ and $\gamma_{2}$ , respectively. Hence, $\Gamma$ is
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a Hausdorff space. $\subset$

PROPOSITION 2.4. The following assertions are equivalent;
(a) $q$ is an open map,
(b) The closure of any saturated subset of $X$ is also saturated,
(c) The function: $\gamma\rightarrow\Vert a(\gamma)\Vert$ is lower semicontinuous for every element $a\in A(\Sigma)$ ,
(d) The space of ideals $\{I_{\gamma}|\gamma\in\Gamma\}$ with hull-kernel topology is homeomorphic to $\Gamma$

$PR\infty F$ . The implication $(a)\Rightarrow(b)$ ; Take a set $S=\bigcup_{\gamma\in\Lambda}X_{\gamma}$ and a point $x\in\overline{S}$, tht
closure of $S$ . Let $y$ be a point of $X$ equivalent to $x$ and $U$ be a neighborhood of $y$ . Tht
image $q(U)$ is then a neighborhood of $q(y)$ , and $ q(U)\cap\Lambda\neq\emptyset$ because $q(y)=q(x)\in\overline{\Lambda}$

Hence,

$ U\cap q^{-1}(\Lambda)=U\cap S\neq\emptyset$ ,

which implies that $y\in\overline{S}$. Namely, $\overline{S}=R(\overline{S})$ .
The implication $(b)\Rightarrow(c)$ ; We assert that for any $\epsilon>0$ the set $ F=\{\gamma\in\Gamma|\Vert 4\gamma$) $\Vert\leq\epsilon$ ]

is closed. Here we may assume that $a$ is positive. Take a point $\gamma_{0}\in\overline{F}$ and suppose tha
$\Vert a(\gamma_{0})\Vert>\epsilon$ . We consider a continuous function $h$ on the real line defined as

$h(t)=\left\{\begin{array}{l}0ift\leq(\epsilon+\Vert a(\gamma_{0})\Vert)/2\\lift\geq||a(\gamma_{0})||\\1inearotherwise\end{array}\right.$

Then,

$h(aX\gamma)=h(\rho_{\gamma}(a))=0$ for every $\gamma\in F$ ,

henoe by Lemma 2.2 every Fourier coefficient of $h(aX\gamma)$ vanishes on $X_{\gamma}$ . On the othe
hand, from the assumption for (b) the set $X_{\gamma 0}$ is contained in the closure of $q^{-1}(F)$

Therefore every Fourier coefficient of $h(aX\gamma_{0})$ vanishes on $X_{\gamma 0}$ and $h(aX\gamma_{0})=0,$ $Wherea\mathfrak{l}$

the property of the function $h(t)$ tells us that $h(aX\gamma_{0})\neq 0$ . This is a contradiction and 1
is a closed set.

The implication $(c)\Rightarrow(d)$ ; Suppose that $\gamma_{\alpha}\rightarrow\gamma_{0}$ in $\Gamma$ and take an element $a$ in th $($

intersection of the set $\{I_{\gamma_{\alpha}}|\alpha\geq\alpha_{0}\}$ for an arbitrary fixed index $\alpha_{0}$ . For any $\epsilon>0th($

point $\gamma_{0}$ belongs to the closure of the set $\{\gamma\in\Gamma|\Vert a(\gamma)\Vert\leq\epsilon\}$ , hence $\Vert a(\gamma_{0})\Vert\leq\epsilon becaus($

the set is closed. It follows that $a(\gamma_{0})=0$ , that is, $a\in I_{\gamma 0}$ . Thus the map: $\gamma\rightarrow I_{\gamma}$ is continuous
Conversely, let $F$ be a closed set in $\Gamma$ . We assert that the set $H=\{I_{\gamma}|\gamma\in F\}$ is hull
kernel closed. Thus take an ideal $I_{\gamma 0}\in\overline{H}$ and suppose that $\gamma_{0}\not\in F$. Then, $X_{\gamma 0}\cap\overline{q^{-1}(F)}=$

$\emptyset$ and we can find a continuous function $f$ on $X$ such that $f|X_{\gamma}=0$ for every $\gamma\in F$ ant
$f|X_{\gamma 0}=1$ . It follows that $f$ belongs to the intersection of any subset of $H$ and $f\not\in I_{\gamma 0},$

$|$

contradiction.
The implication $(d)\Rightarrow(a)$ ; Take an open set $O$ in $X$ and an arbitrary point $\gamma\in q(O)$

the complement of $q(O)$ . Then, $ X_{\gamma}\cap O=\emptyset$ which implies that the set $q^{-1}(q(O)^{c})i$
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contained in the closed set $O^{c}$ . Therefore, for any point $x$ of $O$ there exists a continuous
function $f_{x}$ such that $f_{x}|q^{-1}(q(O)^{c})=0$ and $f_{x}(x)=1$ . This means that any ideal $I_{\gamma 0}$ for
$\gamma_{0}\in q(O)$ does not belong to the closure of the set $\{I_{\gamma}|\gamma\in q(O)^{c}\}$ . Hence, by assumption

$ q(O)\cap\overline{q(O)^{c}}=\emptyset$

and $q(O)^{c}=\overline{q(O)^{c}}$ . Thus, $q$ is an open map. This completes all proofs. $\square $

III. Main results and applications.

In order to state our main theorem we must recall the definition of the algebra of
continuous operator fields over a fibred space $\{Y|A(t)\}$ where $Y$ is a compact Hausdorff
space and $A(t)$ is a $C^{*}$-algebra assigned for a point $t\in Y$ ([2], [10]). Let $\mathscr{F}$ be $a*$-algebra
of cross sections on $Y$ such that the function: $ t\rightarrow\Vert b(t)\Vert$ is continuous for every element
$b\in \mathscr{F}$ and at each point $t$ the set $\{b(t)|b\in \mathscr{F}\}$ forms a dense $*$-subalgebra of $A(t)$ . A
cross section or an operator Peld $a$ on $\{Y|A(t)\}$ is said to be continuous at a point $t_{0}$

with respect to $\mathscr{F}$ if for each $\epsilon>0$ there exist an element $b\in \mathscr{F}$ and a neighborhood $U$

of $t_{0}$ such that $\Vert a(t)-b(t)\Vert<\epsilon$ for every $t\in U$. The algebra of all continuous operator
fields on $\{Y|A(t)\}$ then forms a $C^{*}$-algebra $C,(Y|A(t))$ .

THEOREM 3.1. Suppose that both conditions in Propositions 2.3 and 2.4 hold and
let $\mathscr{F}$ be the family of cross sections $a(\gamma)s$ on { $\Gamma$ I $A(\Sigma_{\gamma})$} coming from the elements of
$A(\Sigma)$ . Then $A(\Sigma)$ is isomorphic to the $C^{*}$-algebra $C,(\Gamma|A(\Sigma_{\gamma}))$ .

$PR\infty F$ . Define the map $\Phi$ from $A(\Sigma)$ into $C_{F}(\Gamma|A(\Sigma_{\gamma}))$ by $\Phi(a)=\{a(\gamma)\}$ . By Lemma
2.2, $\Phi$ is $a*$-isomorphism. We assert that $\Phi$ is an onto map. Take two different points
$\gamma_{1}$ and $\gamma_{2}$ in $\Gamma$ and a continuous function $f$ on $X$ such that $f|X_{\gamma_{1}}=0$ and $f|X_{\gamma_{2}}=1_{:}$

Then, $f\in I_{\gamma_{1}}$ and $1-f\in I_{\gamma_{2}}$ , which means that $I_{\gamma_{1}}+I_{\gamma_{2}}=A(\Sigma)$ . It follows that for an
arbitrary pair of elements $(c, d)$ in $(A(\Sigma_{1}), A(\Sigma_{2}))$ there exists an element $a\in A(\Sigma)$ such
that $a(\gamma_{1})=c$ and $a(\gamma_{2})=d$. In fact, taking two elements $a_{1}$ and $a_{2}$ in $A(\Sigma)$ with $a_{1}(\gamma_{1})=c$

and $a_{2}(\gamma_{2})=d$ it suffices to put

$a=a_{1}-b_{1}=a_{2}-b_{2}$

for an expression $a_{1}-a_{2}=b_{1}-b_{2}$ where $b_{1}\in I_{\gamma_{1}}$ and $b_{2}\in I_{\gamma_{2}}$ . Therefore, by the non-
commutative Stone-Weierstrass theorem for continuous operator fields [10; Theorem
2.2] we see that $\Phi(A(\Sigma))=C,(\Gamma|A(\Sigma_{\gamma}))$ . $\square $

REMARK 3.2. Actually what we have proved here is the fact that under the present
conditions the set of hulls $\{h(I_{\gamma})|\gamma\in\Gamma\}$ forms a continuous decomposition of the primi-
tive ideal space Prim$(A(\Sigma))$ of $A(\Sigma)$ in the sense of [10; \S 3].

As an application of the above theorem we consider first the structure of the $\tilde{g}roup$

$C^{*}$-algebra of 3-dimensional discrete Heisenberg group described as



414 JUN TOMIYAMA

$H=\dagger\left(\begin{array}{lll}1 & l & m\\0 & 1 & n\\0 & 0 & 1\end{array}\right)|l,$ $m,$ $n\in Z\}$ .

As is well known, $H$ is regarded as a semidirect product of the commutative $gro\rceil$

$Z\times Z$ by $Z$ through the isomorphisms;

$\{\left(\begin{array}{lll}1 & 0 & m\\0 & 1 & n\\0 & 0 & 1\end{array}\right)|m,$ $n\in Z\}\simeq Z\times Z$ ,

$\{\left(\begin{array}{lll}1 & l & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)|l\in Z\}\simeq Z$ .

Hence the group is amenable and its group $C^{*}$-algebra $C^{*}(H)$ is isomorphic to tl
crossed product $C^{*}(Z^{2})\times_{\alpha}Z$ where $\alpha$ is the action of $Z$ on the group $C^{*}$-algebra $C^{*}(Z$

induced from that of $Z$ on $Z^{2}$ . Furthermore, when we regard $C^{*}(Z^{2})$ as $C(T^{2})$ , tl
algebra of all continuous functions on the 2-dimensional tori $T^{2}$ the generatir
homeomorphism $\sigma$ of $T^{2}$ derived from the action $\alpha$ of $Z$ on $C(T^{2})$ is defined as

$\sigma(s, t)=(s, t-s)$ (cf. [11; \S 4.4]).

Thus, $T^{2}=\bigcup_{s\in r}(s, T)$ is a decomposition treated above where the parameter space
is naturally identified with the torus $T$. It is then obvious that the condition $(b)l$

Proposition 2.4 holds, and we have the following corollary.

COROLLARY 3.3. The group $C^{*}$-algebra $C^{*}(H)$ is isomorphic to the $C^{*}$-algebra $($

all continuousfields $C,(T|A(\Sigma_{s}))$ over thefibredspace $\{T|A(\Sigma_{s})\}$ where $\Sigma_{s}=\{(s, I),$ $\sigma|(s,$ $\eta$

At each level $s$ an irrational or a rational rotation $C^{*}$-algebra $A_{s}$ appears as the fibr
algebra $A_{s}=A(\Sigma_{s})$ according to the conditions $s$ being irrational or rational. $[$

A similar topological reduction of the algebra $C^{*}(H)$ has been obtained by Andersc
and Paschke [1; Theorem 1.1], but not as a decomposition of the above topologic $($

dynamical system. The result in the present form has been proved first by Tamura [7
Next, consider the so-called non-commutative solid torus $D_{\theta}=D^{2}\times 9Z$ which $pla\rceil$

a basic r\^ole through the discussions in [6] and [7]. Here $D^{2}$ means the unit disk in th
complex plane and the crossed product is defined by the $\theta$-rotation in $D^{2}$ along th
origin. One then easily sees that the relevant dynamical system on $D^{2}$ has tl
decomposition space $[0,1]$ , the unit interval, and moreover satisfies the condition (1
in Proposition 2.4. Therefore this is also the case for which the theorem is applicabl
Let $A_{\theta}$ be the rotation algebra $C(T)\times\theta Z$ with respect to the $\theta$-rotation on the unit circl
It is then shown ([7; Proposition 6.4]) that we can further transform the resultir
algebra of continuous operator fields into the algebra of all $A_{\theta}$-valued continuou
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functions on $[0,1],$ $C([0,1], A_{\theta})$ so that the algebra $D_{\theta}$ is realized as a $C^{*}$-subalgebra
of $C([0,1], A_{\theta})$ with arestriction for the values at the point $0$ .

As the third example, we consider the structure of the rational rotation algebra $A_{\theta}$

for the rotation $\theta=q/p$ . In this case, every point of the torus $T$ is a periodic point with
the period $p$ , and one easily sees that the orbit space is again homeomorphic with $T$.
Therefore, we obtain a topological reduction of the algebra $A_{\theta}$ over $T$ by our theo-
rem. Here every transformation group algebra $A(\Sigma_{s})$ corresponding to the orbit
$\{s+qi/p|0\leq i\leq p-1\}$ is‘ isomorphic to the crossed product $l^{\infty}(p)\times_{\alpha_{p}}Z$ with respect to
the cyclic shift $\alpha_{p}$ on the set $\{0,1, \cdots,p-1\}$ . Moreover one can easily verify that the
fibred space $\{T|A(\Sigma_{s})\}$ turns out to be a fibre bundle with the fibre $l^{\infty}(p)\times_{\alpha_{s}}Z$ and $A_{\theta}$

is isomorphic to the algebra of all cross sections in this bundle. On the other hand, $A_{\theta}$

is known to be a p-homogeneous $C^{*}$-algebra (cf. [11; Corollary 4.1.9]), hence it is
isomorphic to the algebra of all sections in the fibre bundle over $T^{2}$ with the fibre
$M_{p},$ $p\times p$ matrix algebra (cf. [11; Theorem 4.2.1] and [8; Theorem 5]). In the present
context, this further structure of $A_{\theta}$ is obtained from the reduction of the fibre algebra
$l^{\infty}(p)\times_{\alpha_{p}}Z$ as a $C^{*}$-algebra combined with the first reduction before.

Now recall the case of a topological dynamical system $\Sigma=(X, \sigma)$ for a distal
homeomorphism $\sigma$ . As we said before, in this case $X$ is always decomposed into the
disjoint union ofminimal closed subsets (cf. [11; Proposition 1.2.5]). Hence the condition
(b) in Proposition 2.4 obviously holds for this decomposition, whereas it may not be
a Hausdorff decomposition in general. We shall show that if the collection of
homeomorphisms $\{\sigma^{n}|n\in Z\}$ are equicontinuous (necessarily $\sigma$ is distal) the de-
composition becomes a Hausdorff decomposition, and we can apply our reduction
theorem to the system $\Sigma$ . Every fibre algebra $A(\Sigma_{\gamma})$ in this reduction is simple, because
$\Sigma_{\gamma}$ is minimal. We proceed however our arguments keeping our general setting
$\Sigma=(X, G, \alpha)$ on. Recall that a compact space $X$ has a unique uniform structure which
describes the original topology. We denote $\mathfrak{U}=\{\lambda, \mu, \cdots\}$ the family of indexes on $X$

which determines the uniform structure on $X$. The family $U$ is a filter of open sets in
the product space $X\times X$ satisfying the following condition;

(a) Every index $\lambda$ contains the diagonal set $\Delta$ ,
(b) If $\lambda=\{(x, y)\}\in U$ , then $\lambda^{-1}=\{(y, x)\}\in U$ ,
(c) For each index $\lambda$ there exists an index $\mu$ such that $\mu^{2}\subset\lambda$ , where $\mu^{2}$ is defined

as the set of $X\times X,$ $\{(x, z)\}$ for whose pair $(x, z)$ there exists $y\in X$ such that $(x, y)\in\mu$ and
$(y, z)\in\mu$ . For each point $x\in X$ the sets

$\{\lambda(x)|\lambda\in U\}$ where $\lambda(x)=\{y|(x, y)\in\lambda\}$

form a base of neighborhoods of $x$ .
We recall the system $\Sigma$ equicontinuous if the action $\alpha$ is equicontinuous. Namely,

for any index $\lambda$ there exists an index $\mu$ such that $(x, y)\in\mu$ implies that $(\alpha_{s}(x), \alpha_{s}(y))\in\lambda$

for every $s\in G$ . As in the case of usual topological dynamical systems, we say that $\Sigma$

is minimal if all orbits of the points in $X$ are dense in $X$.



416 JUN TOMIYAMA

THEOREM 3.4. If the system $\Sigma=(X, G, \alpha)$ is equicontinuous, the space $Xi$.
decomposed into the disjoint union of closed invariant subsets $\{X_{\gamma}|\gamma\in\Gamma\}$ such that ead
system $\Sigma_{\gamma}=(X_{\gamma}, G, \alpha|X_{\gamma})$ is minimal. This decomposition satisfies the conditions $0_{J}$

Propositions 2.3 and 2.4. Hence the algebra $A(\Sigma)$ is isomorphic to $C,(\Gamma|A(\Sigma_{\gamma}))$ .
$PR\infty F$ . Take an arbitrary point $x_{0}$ and denote by $O(x_{0})$ the orbit of $x_{0}$ . For $tht$

assertion it is enough to show that for any $y\in\overline{O(x_{0})},$ $\overline{O(y)}=\overline{O(x_{0})}$ . Let $\lambda$ be an index $iI$

U. By the equicontinuity, there exists an index $\mu$ such that $(x, z)\in\mu$ implies tha
$(\alpha_{S}(x), \alpha_{s}(z))\in\lambda$ for every $s\in G$ . Choose an element $t\in G$ such that $\alpha_{t}(x_{0})\in\mu^{-1}(y)$, that is
$(\alpha_{t}(x_{0}), y)\in\mu$ . It follows that

$(x_{0}, \alpha_{t}^{-1}(y))\in\lambda$ , that is, $\alpha_{t}^{-1}(y)\in\lambda(x_{0})$ .

As $\lambda$ is arbitrary, $x_{0}\in\overline{O(y)}$ and $\overline{O(y)}=\overline{O(x_{0})}$ . Thus we have a decomposition $X=\bigcup_{\gamma\in\Gamma}X$

where $X_{\gamma}=\overline{O(x)}$ for every $x\in X_{\gamma}$ . Therefore, the decomposition satisfies the condition
(b) in Proposition 2.4.

In order to show that $\Gamma$ becomes a Hausdorff space, we shall show that the quotien
mapq is closed. Thus, letF beaclosed subset ofXand let R$(F)$ be its saturation b!
the relation $R$ . Take an arbitrary net $\{x_{\alpha}\}$ in $R(F)$ converging to $x_{0}$ . We may assum $($

that $\{x_{\alpha}\}$ is not eventually contained in any set $X_{\gamma}$ in $R(F)$ . For, otherwise, the poin
$x_{0}$ belongs obviously to some set $X_{\nu 0}$ in $R(F)$ . Let $x_{\alpha}\in X_{\gamma_{\alpha}}$ and choose an element $y_{\alpha}$ in
$F\cap X_{\gamma_{\alpha}}$ . One may then assume that $\{y_{\alpha}\}$ also converges to a point $y_{0}\in F$. We assert tha
$x_{0}\sim y_{0}R$ whence $x_{0}\in R(F)$ . For an arbitrary index $\lambda$, choose an index $\mu$ such that $\mu^{2}\subset\lambda$

and furthermore an index $v$ such that $ v^{2}\subset\mu$ . Take an index $\omega$ such that

$(x, y)\in\omega$ implies that $(\alpha_{s}(x), \alpha_{s}(y))\in\mu$ for every $s\in G$ .
As $v^{-1}(x_{0})$ and $\omega(y_{0})$ are neighborhood of $x_{0}$ and $y_{0}$ respectively, there exists $a1$

index $\alpha_{0}$ for those converging nets such that $x_{\alpha_{O}}\in v^{-1}(x_{O})$ and $y_{a_{0}}\in\omega(y_{0})$ . Besides, sinc $($

$x_{a_{0}}$ belongs to $\overline{O(y_{\alpha_{O}}}$) there exists an element $t$ of $G$ such that $\alpha_{t}(y_{\alpha_{O}})\in v^{-1}(x_{a_{O}})$, that is
$(\alpha_{t}(y_{\alpha_{O}}), x_{a_{O}})\in v$ . On the other hand, $(x_{\alpha_{O}}, x_{0})\in v$ hence $(\alpha_{t}(y_{\alpha_{O}}), x_{0})\in\mu$ . Now sinc $($

$(y_{0}, y_{\alpha_{O}})\in\omega$ ,

$(\alpha_{s}(y_{0}), \alpha_{s}(y_{\propto 0}))\in\mu$ for every $s\in G$

and in particular $(\alpha_{t}(y_{0}), \alpha_{t}(y_{a_{O}}))\in\mu$ . Therefore, $(\alpha_{t}(y_{0}), x_{0})\in\lambda$ , that is, $\alpha_{t}(y_{0})\in\lambda^{-1}(x_{0})$

This means that $x_{0}\in\overline{O(y_{0})}$ and $x_{0}\in R(F)$ . This completes all proofs. $\subset$

In the above theorem, the fibre algebra $A(\Sigma_{\gamma})$ may not be simple, even if $\Sigma_{\gamma}i$

minimal, when $G$ is non-commutative. It becomes simple if the action $\alpha$ satisfies th
condition mentioned in [4; Theorem 4.4], which is necessarily satisfied when $Gi$

commutative.
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