On Unramified Galois Extensions of Certain Algebraic Number Fields

Kenzo KOMATSU and Takashi NODERA

Keio University

Abstract. Let $a \in \mathbb{Z}$ such that $a \neq 1$, $a \neq -2^{17}$ and (17, a) = 1. Let $\alpha_1, \alpha_2, \dots, \alpha_{17}$ denote the roots of $x^{17} + ax + a = 0$. It is shown that every prime ideal is unramified in $\mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_{17})/\mathbb{Q}(\alpha_1)$ if and only if $a = 2^{62}n^2 + 4605612312119580521n + 1149886651258880054$ for some $n \in \mathbb{Z}$.

1. Introduction.

Let $l \equiv 1 \pmod{8}$ denote a prime number, and let a denote a rational integer with (l, a) = 1 such that

$$f(x) = x^l + ax + a$$

is irreducible over the rational number field Q. If $(l-1)^{l-1}a+l^l$ is a square, then the Galois group of f(x)=0 over Q is a non-cyclic simple group, and every prime ideal is unramified in $Q(\alpha_1, \alpha_2, \dots, \alpha_l)/Q(\alpha_1)$, where $\alpha_1, \alpha_2, \dots, \alpha_l$ denote the roots of f(x)=0 ([3], Theorem 2). This leads to the following problem: Find all the integer solutions x, y of the equation

$$(1.1) (l-1)^{l-1}x + l^{l} = y^{2}.$$

In theory it is easy to solve (1.1). In practice the numbers $(l-1)^{l-1}$ and l^l are so large that one has to use computer even for the simplest case l=17. In the present paper we confine ourselves to the case l=17, and solve the Diophantine equation

$$16^{16}x + 17^{17} = y^2, \qquad y > 0.$$

Since the coefficient of x is a power of 2, our equation (1.2) has very simple structure, as we shall see in the next section.

2. Integer solutions of $16^{16}x + 17^{17} = y^2$.

Z denotes the ring of rational integers.

THEOREM 1. For each $n \in \mathbb{Z}$, let

$$t_n = 2^{62}n^2 + b_0n + a_0$$
, $s_n = |2^{63}n + b_0|$,

where the constants a_0 and b_0 are defined by

$$a_0 = 1149886651258880054$$
,
 $b_0 = 4605612312119580521$.

Then the integer solutions of the equation

$$(2.1) 16^{16}x + 17^{17} = y^2, y > 0$$

are given by

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t_n \\ s_n \end{pmatrix} \qquad (n = 0, \pm 1, \pm 2, \cdots).$$

The integers $t_n (n \in \mathbb{Z})$ satisfy

$$(2.2) 0 < t_0 < t_{-1} < t_1 < t_{-2} < t_2 < t_{-3} < t_3 < \cdots.$$

Moreover, t_n is divisible by 17 if and only if $n \equiv 5 \pmod{17}$.

PROOF. Define y_i ($i = 4, 5, \dots, 64$) by

$$y_4=1,$$

(2.3)
$$y_{i+1} = \begin{cases} 2^{i-1} - y_i & \text{if } (y_i^2 - 17^{17})/2^i \text{ is odd }, \\ y_i & \text{if } (y_i^2 - 17^{17})/2^i \text{ is even }. \end{cases}$$

Then, by induction, we see that

(2.4)
$$\frac{y_i^2 - 17^{17}}{2^i} \in \mathbb{Z}, \quad y_i \in \mathbb{Z} \text{ and } 0 < y_i < 2^{i-2}.$$

We obtain

$$y_{64} = 4605612312119580521 = b_0$$
,
$$\frac{y_{64}^2 - 17^{17}}{2^{64}} = 1149886651258880054 = a_0$$
,

so that

$$2^{64}a_0 + 17^{17} = b_0^2.$$

For every $n \in \mathbb{Z}$, $\binom{x}{y} = \binom{t_n}{s_n}$ is a solution of (2.1):

(2.6)
$$16^{16}t_n + 17^{17} = 2^{126}n^2 + 2^{64}b_0n + 2^{64}a_0 + 17^{17}$$
$$= 2^{126}n^2 + 2^{64}nb_0 + b_0^2$$

$$=(2^{63}n+b_0)^2=s_n^2$$
.

Conversely, suppose that

$$16^{16}x + 17^{17} = y^2$$
, $y > 0$, $x \in \mathbb{Z}$, $y \in \mathbb{Z}$.

Then, by (2.5),

$$2^{64}(x-a_0) = y^2 - b_0^2 = (y-b_0)(y+b_0)$$

and so

$$2^{62}(x-a_0) = \frac{y-b_0}{2} \cdot \frac{y+b_0}{2}.$$

Clearly, y is odd. Since either $(y-b_0)/2$ or $(y+b_0)/2$ is odd, it follows that either $(y+b_0)/2$ or $(y-b_0)/2$ is divisible by 2^{62} . Hence

$$y + b_0 = 2^{63}k$$
 or $y - b_0 = 2^{63}k$

for some $k \in \mathbb{Z}$. Since y > 0, we obtain $y = s_n$ for some $n \in \mathbb{Z}$, and so $x = t_n$.

Now we prove (2.2). In fact, for every $n \ge 0$, we have

$$t_{-(n+1)}-t_n=(2n+1)(2^{62}-b_0)>0$$
,

since $b_0 = y_{64} < 2^{62}$. Clearly,

$$t_k - t_{-k} = 2b_0 k > 0$$

for every k > 0. Hence

$$t_0 < t_{-1} < t_1 < t_{-2} < t_2 < \cdots$$

The last assertion follows from the following congruences:

$$2^{62} \equiv 13 \pmod{17}$$
, $a_0 \equiv 2 \pmod{17}$, $b_0 \equiv 6 \pmod{17}$.

3. Irreducibility.

THEOREM 2. Let $a \in \mathbb{Z}$. Then $f(x) = x^{17} + ax + a$ is irreducible over \mathbb{Q} if and only if $a \neq 0$, $a \neq 1$ and $a \neq -2^{17}$.

PROOF. It is easily seen that, if $a \neq k^{17}$ $(k \in \mathbb{Z})$, f(x) is irreducible over \mathbb{Q} ([2], Lemma 1). Suppose that $a = k^{17}$ $(k \in \mathbb{Z}, k \neq 0)$. Then

$$f(x) = a((x/k)^{17} + k(x/k) + 1)$$
.

The irreducibility of f(x) is equivalent to the irreducibility of

$$g(y) = y^{17} + ky + 1$$
.

If $|k| \ge 3$, g(y) is irreducible ([4], Theorem 2). On the other hand, $y^{17} + y + 1$ is divisible

by $y^2 + y + 1$; $y^{17} - y + 1$ is irreducible; $y^{17} + 2y + 1$ is irreducible; $y^{17} - 2y + 1$ is divisible by y - 1. This completes the proof.

4. Unramified Galois extensions.

THEOREM 3. Let $a \in \mathbb{Z}$ such that $a \neq 1$, $a \neq -2^{17}$ and (17, a) = 1. Let $\alpha_1, \alpha_2, \dots, \alpha_{17}$ denote the roots of

$$f(x) = x^{17} + ax + a = 0$$
.

Then the following two statements are equivalent:

- (1) Every prime ideal is unramified in $Q(\alpha_1, \alpha_2, \dots, \alpha_{17})/Q(\alpha_1)$;
- (2) $a=t_n=2^{62}n^2+4605612312119580521n+1149886651258880054$ for some $n \in \mathbb{Z}$.

PROOF. It follows from Theorem 2 that f(x) is irreducible over Q. Now the result follows from Theorem 1, [3] (Theorem 2) and [1] (Theorem 4).

It is an open problem to determine the Galois groups of $x^{17} + t_n x + t_n = 0$ over Q $(n=0, \pm 1, \pm 2, \cdots)$. The prime factors of the constants a_0 and b_0 (§2) are as follows:

$$(4.1) a_0 = 2 \cdot 13 \cdot 2039 \cdot 21690245053361.$$

$$(4.2) b_0 = 313 \cdot 14714416332650417.$$

References

- [1] K. Komatsu, Discriminants of certain algebraic number fields, J. Reine Angew. Math., 285 (1976), 114-125.
- [2] K. Komatsu, On certain homogeneous Diophantine equations of degree n(n-1), Tokyo J. Math., 12 (1989), 231–234.
- [3] K. Komatsu, On the Galois group of $x^p + ax + a = 0$, Tokyo J. Math., 14 (1991), 227–229.
- [4] E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956), 287-302.

Present Address:

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN