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Abstract. We introduce multivariable q-analogues of the determinant and show a sufficient condition
for an interval of the symmetric group to have a symmetric chain decomposition in the Bruhat order by
using the expansion formulas.

§0. Introduction.

The purpose of this article is to show a sufficient condition for an interval of the
symmetric group to have a symmetric chain decomposition (see Def. 3.1. 1) in the Bruhat
order by using expansion formulas of multivariable g-determinants.

In §1 we introduce multivariable g-analogues of the determinant which contains
several parameters g;; and we investigate their expansion formulas. This specializes to
the quantum determinant (see [NYMY]). In §2 we then introduce four kinds of orders
on the symmetric group and study the relationship with the Bruhat order. In §3 we
give the proof of the following result (Theorem 3.1.7) which contains a sufficient
condition for an interval of the symmetric group to have a symmetric chain
decomposition in the Bruhat order. First, we define some notation. We denote the
symmetric group of degree n by S,. Let x, x' € S,. We put [/ x]p:={yeS,; x'<p
y <px}, where <j denotes the Bruhat order (see §2). For ie[n] := {1,2, - -, n}, we put
0(x):=#{j; i< j, x()>x(j)} and we define x <, y <> IV(x) <I{V)(y) for all ie[n]. We
define two conditions as follows: (t,) IV(x)<I¥(x)+1 for Vie[n—1], (t}) 19,0 <

I{Y(x') for Vie[n—1]. For x', xe S, if x’ satisfies (1), x satisfies (¢t;) and x’ <, x, then

the interval ([x’, x]5, <g) has a symmetric chain decomposition. In particular, the rank
generating functionis given by ) 7_ (1+g+g>+ - - - +¢" " ®~5"¢Y)_For the other three
orders defined in Def. 2.1.1, we can find similar sufficient conditions (see Prop. 3.1.4).

Let us give a brief review of results known on this problem. Kung-Wei Yang
defined a g-analogue of the determinant over a field of characteristic 0 and got the
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expansion formula for 1 row (column) and last row (column), but there was no comment
about other rows and columns ([Y]). We found the expansion formulas for all rows
and columns. It is known that Weyl groups of type 4, B and D have symmetric chain
decompositions in the Bruhat order (cf. [S2]). Let x’ and x be elements of a Coxeter
group satisfying x’ <z x. For I(x)—I(x")<3, it can be easily inferred from [B] that the
interval ([x', x]z, <g) has a symmetric chain decomposition. In general, the interval
does not always have symmetric chain decomposition and no general theorems seems
to be known. Our results give the sufficient conditions.

§1. q-analogues of the determinant.

In this section, we first make a refinement of the inversion number and introduce
multivariable g-analogues of the determinant. We state their relations and expansion
formulas.

1.1. The Q-determinant.

DeriNniTION 1.1.1. For we &, ie[n] and pe[4], we define an inversion number
of the p-th kind at i (denoted by I{P(w)) as follows: IV(w):=#{j; i< j, w(i)>w(j)},
I(w) :=#{k ; k<i, wk)>w(i)}, IP(W) :=121W), P(W) : =121 ,(w). Then, for pe[4],
the inversion number of w (denoted by [(w) here) is expressed by Y7 [{P(w). (Note that
the inversion number of w equals the length of w for all we &,.) Of course, I{V(w)=
[D(w) =13(w)=1{*w)=0 for any we S,

There are many relations in these refined inversion numbers. One can easily show
the following.

LeEMMA 1.1.2. For we S, and ie[n], we have

IDOw)=13 1 _{wowwo) =12, _{wow ™ 'wg) = ¥w™),
where wy, is the longest element of S, (i.e. wq :=(’l1 ni . '1'))

We introduce multivariable g-analogues of the determinant.

DerFiNITION 1.1.3.  Let K be a commutative ring, ¢; (1<i<n)and q; ; (1<i< j<n)
be commutative variables. We put q;;:=4¢;}, ¢i;:=1 (1<i<j<n) and Q:=(q; )€
M(n, K[g; ;, 1<i,j<n]). For weS,, we put Q, :=[],.; .o>wp(—2.,) and Q,:=
Il owiy>wiy di - et A=(a;, )€M(n, K). When there does not occur confusion, we
denote g; ;and a; ; by g;;and a;;, respectively. We define the Q-determinant of 4 (denoted
by detgA4) by

Z Q. A1w(1)B2w(2) """ Cnwim) = Z Q;-lawun Aw2)2 " " Qymn -
we Gn we Gn
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Also, we define the Q-permanent of 4 (denoted by peryA) by

Z Qua1w1)%2w2) " * " Anwoimy = Z Qu-18u(1)1 Gw2)2 """ Grouyn -
we Gn v we S,
Moreover we put q:=(q;,q,, """, q,), det A :=detQA|qU=qi(15i,jsn) and per 4 :=
det_,A4. We call det, A (resp. per,A) the g-determinant of A4 (resp. the q-permanent
of A).

ExaMmPLE 1.1.4.

abc
deto(d e f)=aei*423afh—‘I12bdi+‘hsqzsbfg+Q1zq1acdh—Q12‘I1sqzaceQ .
ghi

REMARKS. (i) For A=(a;)e M(n, K) and pe[4], we have

(1) (1) (1)
deth= Z (—gy) (w)("qz)l2 ™. .. (— g~ (W)alw(l)aZW(Z) T Quyny >
we sn

pergA= Y gi’MgEm .. ghkmg oy o Bty -
we Gn
(i) For A=(a;) € M(n, K), det, ... ;,A4 equals the determinant of A and per ,,... ;,4
equals the permanent of 4 which is defined by ), .. @1w(1)32w(2) " * Gnwimy (MDD (iii)
Both the Q, g-determinants and the Q, g-permanents are multilinear with respect to
columns and rows. (iv) The determinant can be defined in terms of the exterior algebra.
In our case, one can define g-analogues of the exterior algebra to obtain Q-determinant

(see the proof of Prop. 1.2.2).

1.2. Expansion formulas. We will prove expansion formulas into minors for the
Q-determinant and the Q-permanent. By virtue of Def. 1.1.3, there is no loss of generality
by restricting ourselves to the Q-permanent.

First, we introduce g-analogues of the complementary submatrix.

DEFINITION 1.2.1. Let n>2, A=(a;)e M(n, K) and 1<i,j<n. We define A4,/(Q),
Ai{@)eM(n—1, K[gq,;, q;;; 1 <i,j<n]) as follows:

u<i u<i
| a ;a
" <V<j) Ani G (V>j)

A4;/(Q):= , Aij(‘l):=Aij(Q)|qw=qtusi,jsn)'
‘ u>i u>i
i a v a v
Yiu (v<j> * (v>j)

Then, we have the following expansion formulas.

ProPOSITION 1.2.2. For A=(a;;)e M(n, K) and je[n], we have
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pergA= kzl ayj Perg,, Ak (Q) = kz:l a perg,, A(Q) ,

where Q, j is the ordinary (i, j)-complementary submatrix (i.e. Q;; is the n—1 square matrix
given by removing i row and j column from Q). In particular, we have

n n
pergd= k; B PeT (g, 02, -, i Ais (D) = kzl Ak PET (g, 43, G, - arAik(@) »

Where (ql’ q2’ T, 6;9 Y qn) :=(q19 dz, "> qk—l’ qk+1’ T, qn)

PrROOF. Let M be a K-algebra with generators x,, x,, * - -, x, whose basic rela-
tions are given by x;x;=0 and x;x;=¢;;x;x; (1<i,j<n). We put q(ry,r,, ", r):=
[<r)i5;9re, fOr ry,ra -, rs€N°. For A=(a;)eM(m K) and je[n], let s;=
ZL | GiXi€ M. Then, we can easily see that s;s, - - - 5, =(pergA)x,x, - - - x,,. Also, we can
get

§183° " sn=_zaijj Z 9i;i, Dijir " " " Dijij- 1 914,924 " Dij-144
ij il,i_z,"',?;,"',in

. . {\ . /l\
Qs gy L By By A By Xy Xyt X,
=ZaiijperQijiinjj(Q)x1 Xy Xy D
ij

REMARK. Prop. 1.2.2 is an extension of the results of K. W. Yang ([Y]).
We shall use expansion formulas in the following form from now on.

COROLLARY 1.2.3. For A=(a;) € M(n, K), we have
per,A= -21 gi tay;peryg, g g Ay (L L -, 1),
i=

REMARK. There exists an analogue of the Laplace expansion formula for the
g-determinant (the detailed statement is noted in [T]).

§2. The Bruhat order and other orders.

Let us recall the definition of the Bruhat order for the symmetric group &,. Let
T={(,j); 1<i< j<n}, where (i, j) is the permutation switching the number i and j and
leaving the other numbers fixed. For x', xe S,, we call x’ is a reduction of x (denoted
x" <’ x here) if and only if there exists =i, j)e T such that x(i) > x(j) and x’=xt. Then,
the Bruhat order denoted by <j is defined as follows: x’' <gx<>3z,, z,, - - -, z, € S,,, s.t.
x'=2z,<z_y< - - <z; <x. For the Bruhat decomposition GL(n, C)=]],, . ¢,BWB,
where B denotes the set of upper triangular matrix, it is known that
BwB/Bc Bw'B/B<>w <gw (cf. [H]).
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In this section, we will introduce other four kinds of orders <, <;, <sand <,
on &,, and investigate the relations with the Bruhat order.

2.1. Definition of (S,, <,) and its relations with (S,, <j).

DEFINITION-PROPOSITION 2.1.1.  For pe[4], we define an order <,

on S, by
X<,y <> IP(x)<IPNy) for all ie[n] .

PrOOF. We can easily see that <, is well defined from the following equation.

° n
(1) (1) (1) .
2 4y Mgy ™ gt ™=per, H=[] (1+q+a?+ - +4I™,
we Gn i=1

where H is an n-square matrix whose entries are all 1. For other cases, we can get the
similar equations from Lem. 1.1.2. O

REMARKS. (i) These five kinds of orders on &, are mutually distinct. (ii) The
identity element e is minimal and the element w, is maximal in the poset (S,, <,) for
each re{l,2, 3, 4, B}.

DEeFINITION 2.1.2. Let (P, <p) and (Q, <o) be posets. We denote x <, y if y covers
x1in (P, <p) (i.e. x <,z <py = z=x or y). Q is called a cover suborder of P if and only
if P equals Q as a set and the order <o of Q is generated by a subset of the covering
relation of P (i.e. for x,yeQ, x <@y = X <p y). We define the poset P x Q called the
direct product of P and Q as follows: PxQ= {(x,y); xeP,yeQ} as a set and
(%, ¥) <pxg(x,y) if and only if x <, x’ and y <oy.Forre{l,2,3,4,B} and x, ye S,
with x <, y, we put [x,y], :={z€S,; x <,z <, y}. Let a and b be integers with a <b.
La, b] is the totally ordered set on [a, b]:={a,a+1, - - -, b} with ordinary order of Z.

The following proposition immediately follows from Def.-Prop. 2.1.1.
PROPOSITION 2.1.3.  For pe[4], we have
(S, <) 2[0,n—1]x[0,n—2] x - - - x[0, 0] .

We have the following relations between (S,, <) and (S,, <) (pe[4]). Note that
the case p=3 is described in [S2].

PROPOSITION 2.14. (&,, <,) is a cover suborder of (S,, <p) for pe[4].

PrOOF. Letx, ye S,. We can see the following easily. x <, y <> 3i, je[n] such that
i< j, y(@)>y(j), y(k)=y(i) or y(j)=y(k) for all ke[i, n] and x= Wi, j). Hence, we can see
this proposition in case p=1. Similarly, we can show this one in other cases. O

2.2. Definition and properties of S,(a’; a). In this place, we define a subset of
S, and we show that it is equal to a certain interval with respect to the Bruhat order
as a set. This result plays a crucial role in the proof of the main theorem.
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DEerFINITION 2.2.1. Let a,,a,,--',a, and dai, a5, ‘-, a, be natural numbers
satisfying 1<a,<a,_;<'--<a41<a,<a,<':'<a,<n and a;,—a;>i—1 for Vie[n].
Weputa:=(a, a,, -, a,) and &’ :=(a}, d, - - *, a,). Then, we define subset S,(a’; a) of
S, by {we S, ; ai<w(i)<a; for Vie[n]}. For 1<i,j<n, we put m;;:=1 if a;<j<a,
otherwise m;;: =0, and M,,(d‘ @ a':) :=(m;;) € M(n, R).

@ a," " a

Then, we have the following lemma.

LEMMA 2.2.2.
(Sn(a,; a)’ S1) = [all_l’ a, — 1] X [alz—l, 02—2] XX [a:l—l’ an_n] .

Proor. From Cor. 1.2.3, we have

1) 1(1) L. 1 _
Z qll (W)qzz (w) qnn (W)_pequn(

we Sn(a’; a)

D d n , . .
oo a">=l—l(q:-'"‘+q:-“+---+q:-“”‘)-
i=1

a,a, - a,
So, the function u from (S,(a’;a), <;) to [ai—1,a,—1]x[a,—1,a,—2]x--*x
[a,—1, a,—n] defined by u(w) :=({P(w), IEDW), - - -, I{Y(w)) is isomorphism. 0O

REMARK. We put w=(1,2)(1,3)--- (1,1, +1)(2,3)2,4) - - (2,1, +2)---(n—1,

l,_,+n—1). Then, we have uy(w)=(, 1,, -, l,_1, 1,), where p is defined in Lem. 2.2.2
and [, :=0.

We can easily see the following corollary from Lem. 2.2.2 and its proof.
COROLLARY 2.2.3. We use the same notation as in the proof of Lem. 2.2.2. We put
Xy i=p"Yay—1,a5—1,---,a,—1), x,:=p"Ya,—1,a,—2,---,a,—n).
Then, we have S;;,(a’; a)=[x}, x,1;-

From now on, x| and x, denote the elements defined in Cor. 2.2.3.
Next, we have the following proposition, which follows from Lem. 2.2.5.

PrOPOSITION 2.2.4. We have [x}, x;1, =[x}, x11s-

LEMMA 2.2.5. For xe[x}, wol, and ye[e, x,1,, we can see the following.
(i) When x is one of the reductions of ze S, (i.e. x < z), we have ze [x}, wol,.
(ii) When ze S, is a reduction of y (i.e. z<'y), we have z€[e, x,];.
(ili) When ze[x}, x,15, we have ze[x, x,],.

PrOOF. Notethat[e, x,], ={we S, ; w(i)<a;forVie[n]} and [x}, wo]; ={we S, ;
a;<w(i) for Vie [n]}. (i) From x <’ z, there exist i, je [n] such that 1 <i< j<n, z(i)> z(j)
and x=z(j, j). So, from x € [x}, wo];, we have a;<a; < x(i) < x(j). Hence, for any ke [n],
we have aj < z(k). So, we have (i). We can obtain (ii) similarly to (i), and we can easily

see (iii) from (i), (ii). (]
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§3. A sufficient condition for symmetric chain decomposition.

In this section, we show a sufficient condition for an interval of &, to have a
symmetric chain decomposition.

3.1. Main theorem. First, we state the definition of a symmetric chain decom-
position.

DEerFINITION 3.1.1. Let P be a poset and C be a subposet of P. We call that C is
a chain if C is a totally ordered set. Let C be a chain of P. C is called saturated if there
is no ze P\ C such that x <pz<py for some x,yeC and that Cu{z} is a chain.
#C—1 is called the length of C and we define rank of P:=max{#C—1; C is a chain
of P}. If there is no chain C’(# C) of P such that C<C’, then C is called a maximal
chain of P. If every maximal chain of P has the same length, P is called a graded poset,
and then we can define the function p from P to {0, 1, 2, - - -} satisfying p(z)=0 if z is
a minimal element of P and p(x)=p(y)+1 if x uniquely covers y in P. We say that a
graded poset P with rank function p has a symmetric chain decomposition if and only
if there exist saturated chains C,, C,, - - -, C, of P satisfying P= I_[:= , Ci (disjoint union)
and p(x;) + p(y;) =rank of P for all ie[r], where x; is the minimal element of C; and y,
is the maximal element of C; for each ie[r].

Since the direct product of posets with symmetric chain decompositions has a
symmetric chain decomposition, Lem. 2.2.2 and Prop. 2.1.3 imply the following.

PRoOPOSITION 3.1.2. (S,(a’; a), <,) has a symmetric chain decomposition. In par-
ticular, so does (S,, <,) for each pe[4].

Next, we will show the key point of this article.
PROPOSITION 3.1.3. (S,(a’; a), <p) has a symmetric chain decomposition.

PROOF. Since an interval of graded poset is a graded poset, (S,(a’; a), <g)=([x},
x11s, <p) is a graded poset. Also, we can easily see that (S,(a’; a), <,) is a graded poset.
So, from Prop. 2.1.4, (S,(a’; a), <,) is a cover suborder of (S,(a’; a), <p) and their
rank functions are identical. Hence, we can easily see that (S,(a’; a), <p) has a symmetric
chain decomposition because (S,(a’; a), <,) has a symmetric chain decomposition.

J

Then, we have the following proposition.

PROPOSITION 3.1.4. Let X', x€ S,. For pe[4], we put the conditions (t,) and (t}) as
follows: When p=1,4, (t,) IP(x)<I®,(x)+1 for Vie[n—1], (t;) I2,(x)<IPx") for
Vie[n—11. When p=2,3, (t,) I2,(x)<IP(x)+1 for Vie[n—1], (t}) IP(x)<I®2,(x)
for Yie[n—1]. If there exists some pe[4] such that x satisfies (tp), X' satisfies (t,) and
X' <, x, then ([x', x]p, <p) has a symmetric chain decomposition, and its rank generat-
ing function is given by
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ﬁ l+g+q*>+--- +qz$"’(x)—t$"’(x')) .
i=1

PrROOF. We will prove in case p=1. For each ie[n], we put a; : =I"(x)+i,a} : =
IV(x)+1,a:=(as,a;, -, a,) and a' :=(a}, a3, - - -, a,). Then, from the assumptions, we
have 1 <a;<a,_ ,;<---<da)<a,<a,< ' <a,<nand a,—a,>i—1 for Vie[n]. So, a’
and a satisfy the condition of Def. 2.2.1. Hence, we can consider S,(a’; a), and we have
S,(a’; a)=[x', x], =[x', x]p. It follows that ([x’, x]s, <z) has a symmetric chain
decomposition from Prop. 3.1.3. Since rank function of ([x’, x]z, <p) equals the rank
function of (S,(a’; a), <,), we can immediately obtain the rank generating function of
([x', x]p, <p) from Lem. 2.2.2. From Lem. 1.1.2, we can easily see the following. x
satisfies (¢;) <> woxw, satisfies (t,) <> wox ™ !w, satisfies (¢;) <> x ! satisfies (,), x’ sat-
isfies (£1) <> wox'w, satisfies (t3) <> wox’ ™ 'w, satisfies (13) <> x’ ~ ! satisfies (£}), X' <, x <>
WoX'Wo <y WoXWo <> WX’ ~ Wy <3 wox !wg <> x' "1 <, x~!. Hence, we get the other
cases from the following facts: We define bijections g, and g, on (S,, <z) by g,(w): =
woww, and g,(w) :=w~ !, Then, g, and g, are isomorphisms. O

We will state the main theorem after showing two lemmas.

LEMMA 3.1.5. For xeS,, we have the following.
(1) x satisfies (t,) (resp. (t,)) <> x satisfies (t3) (resp. (t4)).
(i) x satisfies (t1) (resp. (t3)) <> x satisfies (t3) (resp. (t3)).
PrOOF. (i) From Lem. 1.1.2, we may show only the following case. x satisfies

(z3) = x satisfies (t,). We suppose that there exists i e [n— 1] such that I{(x)> IV, (x) + 1.
Then, we can find k>i+1 satisfying x(i + 1) <x(k) <x(i) and x~'(x(k)+ 1(=:r)<i. In

. . — [P r R | i+1 --- k --- 3) >
this case, we have x ( )1 30 x4 1) x(h) - ) Hence, we have L, (x)>
I$3(x)+ 2. This is a contradiction. We can show (ii) similarly to (i). O

LEMMA 3.1.6. Let X', xe S, with x' <gx. For each p € [4], we have the following.
If x satisfies (t,) or X' satisfies (t,), then X' <, x.

- PROOF. When x satisfies (t,), we have [e, x],=[e, x]; from the fact that e satisfies
(¢5), e <, x and the proof of Prop. 3.1.4. Hence, x' €[e, x]z=[e, x] p- Similarly, we can
show the other case. 0O

Finally, we can obtain the main theorem.

THEOREM 3.1.7. For x',xe€S,, if X' satisfies (t}) or (t3), x satisfies (t,) or (t,) and
X' <, x for some re{l,2, 3,4, B}, then ([x', x]g, <p) has a symmetric chain decomposi-
tion. Also, we put k:=1 if X' satisfies (t;) and x satisfies (t,), k:=4 if X' satisfies (t})
and x satisfies (t,), k:=3 if x' satisfies (t;) and x satisfies (t,), k:=2 if X' satisfies (t})
and x satisfies (t,), then its rank generating function is given by




q-ANALOGUES 319

Y (1+q+g*+ - - + g0 -1y
i=1

REMARKS. (i) Prop. 3.1.4 and Theorem 3.1.7 are the same statement. (ii) Let
w, z€ &, with w <gz. We can easily see the following. If there exists ke [n—1] satisfy-
ing at least one of the following four conditions, then Iw,z’eS,_ x such that
([z, wls, <p) =~ ([z, W]1p <p). (1) x(})=(i) for Vie[k], (2) x(n+1 —i)=y(n+1-1i) for
Vie[k], 3) x~'()=y~'() for Vie[k], (4) x '(n+1—i)=y~(n+1—i) for Vie [k]. (iii)
There are 205 posets which have symmetric chain decompositions in the 213 intervals
of (&,, <p), and we know that 127 intervals in it have symmetric chain decompositions
from Theorem 3.1.7. Also, we can know further 50 intervals have symmetric chain
decompositions from (ii).

3.2. Some corollaries of the main theorem. We can easily obtain the following
from Theorem 3.1.7.

COROLLARY 3.2.1. For xeS,, we have the following.
(1) If x satisfies (t,) or (t,), then ([e, x]g, <p) has a symmetric chain decomposition.
(i) If x satisfies (t1) or (t3), then ([x, wolg, <p) has a symmetric chain decomposition.

ProPOSITION 3.2.2. If xe@, satisfies the following condition (u) or (&), then
(Le, x1p, <p) and ([x, wols, <p) have symmetric chain decompositions.

(w) x()< - <x(k)>--->x(n) for some ke[n],
(74) x(1)> - >x(k)< - - - <x(n) fJor some ke[n].

PROOF. We can see that x satisfies (t3) and (¢,) (resp. (t;) and (t,)) if x satisfies
(u) (resp. (¥)). So, we have this proposition from Cor. 3.2.1. O

CoRroLLARY 3.2.3. For x', x€ S, satisfying x' <, x for some re{1,2,3,4, B}, if x
satisfies (u) or (W) and x satisfies (u) or (W), then ([x', x1g, <p) has a symmetric chain
decomposition.
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