Tokyo J. MATH.
VoL. 17, No. 2, 1994

The Primes for Which an Abelian Cubic Polynomial Splits

James G. HUARD, Blair K. SPEARMAN
and Kenneth S. WILLIAMS*

Canisius College, Okanagan University College and Carleton University
(Communicated by T. Nagano)

Abstract. Let X3+ 4X+ B be an irreducible abelian cubic polynomial in Z[ X]. We determine explicitly
integers a,, * * -, a,, F such that, except for finitely many primes p,

x3+ Ax+ B=0 (mod p) has three solutions < p=a,, * -, a, (mod F) .

Let X3+ AX+ B be an irreducible abelian cubic polynomial in Z[X]. We are
interested in determining those primes p for which the congruence

x3+ Ax+ B=0 (mod p)

has exactly three solutions, that is, those primes p for which X3+ 4X + B splits com-
pletely into distinct linear factors modulo p. As X3+ AX + B is abelian, it is known
from class field theory (see for example [6]) that, apart from a finite number of exceptions,
the primes p which split X3+ 4X + B modulo p lie in certain congruence classes modulo
the conductor of X*+ AX+ B. In this note we determine these congruence classes
explicitly as well as the exceptional primes.

Let N, (A4, B) denote the number of solutions x (modp) of the congruence
x3+ Ax+ B=0 (mod p) and let K= K(A4, B) denote the largest positive integer such that
K?|4 and K3|B. Since

N,(4/K?, B/K3), if plK,
NP(A,B)={1"/ / -if;i(

it suffices to determine the primes p for which N, (4, B)=3 under the simplifying
assumption :

Y] K(4,B)=1.

The irreducible polynomial X3+ AX + B is abelian if and only if its discriminant is a
perfect square, that is, if and only if
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) —443-27B*=C?

for some positive integer C (see [4: Example 2, p. 308]). We see from (2) that 4 <0,
B=C (mod 2) and 4=0 or 2 (mod 3). Clearly B#0 as X3+ AX + Bis irreducible. From
(1) and (2) it is easy to show that exactly one of the following occurs:

3 (i) 314,
(3)(ii) 3|4,31B,
(3) (iii) 324, 3%||B.

If (3) (i) holds then 3{C. If (3) (ii) holds then 3%|C and, if 3%||C, 3 divides exactly one
of B+(C/9). If (3) (iii) holds then 33||C and 3 divides exactly one of (B/9) +(C/27). It is
convenient to define the integer b=5b(A4, B)=0, 1, 2 by

b=0, if 3{4 or 3|4, 3{B, 3%|C,
4 1b=1, if 3|4, 3{B, 3%||C, 3|B—(C/9) or 3%|4, 3%|B, 3|(B/9)+(C/27),
b=2, if 3|4, 3B, 3%||C, 3|B+(C/9) or 32%|4, 32|B, 3|(B/9)—(C/27).

We note that
) b#0 < 3|4, 3{/B, 32 |C or 3%|4, 3%|B.

In order to state our main result we need the notion of a cubic residue symbol.
An Eisenstein integer 0 is a complex number of the form §=x+ yw, where x and y are
rational integers and w=(—1 +\/?3 )/2 is a complex cube root of unity. Equivalently
6 is of the form (a, +a,/—3)/2, where a, and a, are rational integers with a,=a,
(mod 2). The complex conjugate of @ is denoted by 8. The norm N(6) of 0 is the rational
integer 08. The Eisenstein integer 0 is called a unit if N(§)=1. The only units are +1,
+, +®?2. An Eisenstein integer. 0 is said to be primary if §= —1 (mod 3). For each
Eisenstein integer 0 not divisible by \/—3 there is a unique unit #=7(6) such that 70
is primary. The Eisenstein primes (up to multiplication by a unit) are \/—3, rational
primes of the form 3n+ 2, and Eisenstein integers with norm equal to a rational prime
of the form 3n+ 1. Each nonzero Eisenstein integer can be written uniquely as a product
of a unit, a nonnegative integral power of the Eisenstein prime \/—3, and nonnegative
integral powers of primary Eisenstein primes. If n is an Eisenstein prime with N(n) #3,
and 0 is an Eisenstein integer not divisible by =, then the cubic residue symbol [6/n],
is defined to be the unique cuberoot of unity such that

ON®=1B3 =[0/n], (mod 7) .

The basic properties of the cubic residue symbol, extended multiplicatively to de-
nominators not divisible by ./—3, are given in [3].
Before stating and proving our main result, we introduce some notation. If g is a
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rational integer, the integers a’ and a” are given uniquely by
a=3a'+a", a’'=-—1,0,1.

As usual ¢ denotes Euler’s phi function.
We prove the following theorem.

THEOREM. Let X3+ AX+ BeZ[X] be an irreducible abelian cubic polynomial in
Z[X] satisfying (1). Let C be the positive integer given by (2). Let A denote the Eisenstein
integer

(6) A=4(BB+C)+3Bw=4%(C+3B/-3)
of norm N(A)= —A3.

(i) We have
7 /=3r)4, where 3°[|A3.

Let © be the (possibly empty) product of primary Eisenstein primes such that
ANGS—=3)13) is cubefree. Then there is a unique product p of primary Eisenstein
primes such that

@® N(p)= I1 g and pN(p)| H(/=3)7%).

g(prime) = 1(mod 3)
ql4,q9|B

(ii) With b as defined in (4), we set

©) F=3N(p),

where

0 o E

Then F+#1 and there are ¢(F)/3 integers a satisfying

(11) 1<a<F, GCD(a, F)=1, [a/p];=aw®*" .

(iii) Let ay, -, aypys be the §(F)/3 integers satisfying (11). Then, except for
finitely many primes p, we have

(12)  x3+Ax+ B=0(mod p) has 3 solutions <> p=a,, -, Aygys (mod F) .

The exceptional primes are those primes p (#3) such that p|C, p{F together with the
prime 3 if 3*|C.

We note that as an exceptional prime p divides C, it divides the discriminant of
the polynomial X3+ AX + B and so N,(4, B)#3.
Before proving this theorem we give two illustrative examples.
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ExaMPLE 1. We consider the irreducible abelian cubic X3—21X—17. Here
A=-21=-3-7, B=—17 and by (2) C=171=32-19. From (4), (8), (10), (9) we see
respectively that b=1, p=1, a=2, F=9. By (11) the ¢(F)/3=2 integers a,, a, are the
solutions a of

1<a<9, GCD(a,9=1, w*=1.

The following table

shows that a, =1, a, =8. By Theorem (iii) the only exceptional prime is p=19, so that
for a prime p# 19 we have

x3—21x—17=0 (mod p) has 3 solutions <> p=1,8 (mod9).

ExAMPLE 2. We consider the irreducible abelian cubic X3—21X+35. Here
A=-21=-3-7, B=35=5-7 and by (2) C=63=3-7. Thus from (6) we have
A=1%(63+105,/—3). By (7) we see that (/—3)3||1. Further, as

A _—35+7,/—3_w2<1+3,/—3)(1—3./—3)2
/=3)° 2 3 2 ’
we see by (8) that t=1 and p=4(1—3,/—3). From (4), (10), (9) we deduce respectively

b=2,0=2, F=3%2-7=63. By (11) the ¢(F)/3 =12 integers a,, - - -, a,, are the solutions
a of

2a’a’’

1<a<63, GCD(a,63)=1,

a
[%(1 —3J?3)]3‘w

Clearly we have

1, if a=+1(mod9),
0¥ =1w, if a=+2(@mod9),
w?, if a=+4(@mod9),
and, as N(p)=7 and w=2 (mod p), we have
1, if a=+1
[ﬁ] ={w, if a=+3(@mod7),
3 =42

p w2, if a
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Thus the required @’s must satisfy

{asil (mod9)} or {az +2 (mod9)} or {as +4 (m'od9)}
a=+1 (mod 7) a=+3 (mod 7) a=+2(mod7) )"
Hence a, =1, a,=5, a; =8, a,=11, as=23, ag=25, a;=38, ag=40, ag=52, a,,=>355,
a,,=>58, a,, =62. By Theorem (iii) there are no exceptional primes. Thus for all primes
p we have
x3—-21x+35=0 (mod p) has 3 solutions
< p=1,5,8,11,23, 25, 38, 40, 52, 55, 58, 62 (mod 63) .

Proor oF THEOREM. We begin by noting the following easily proved consequences
of (1), (2) and (6). ' '

(13) If p is a prime #3 then p2{A.
(14) If p is a prime such that p|,1 then ps£2 (mod 3) .
(15) If p is a prime such that p|4 then p#2 (mod 3).
(16) If p is a prime #3 then

pl4, p|B < p|i.

an If p is a prime #3 then

A, p)( B < there exists an Eisenstein prime n dividing p
such that n{4, #|A .

p

We also note that A is not the cube of an Eisenstein integer, otherwise,
H(C+3B/=3)=((g+hy=3)’,
for some integers g and A, so that
A=(—g>—3h)/4, B=(g*h—h*)/4, C=(g°—9gh>)/4,
and thus
X34+ AX+B=(X—h)(X*+hX+(h*>—g?)/4),

contradicting that X3+ AX + B is irreducible in Z[X].

Proof of (i). Suppose (,/—3)*||4. Then (/—3)*||7 and so (/—3)**| 4, that is
3*||N(A)= — A3, showing that x=c, as required.
We now prove (8). We let u denote the product of primary Eisenstein primes such

that A/((\/—3)°w) is a unit, say,

(18) M =3 \’_3)c=(—1)°a>e, a=0,1, e=0,1,2.
u
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We first prove that e=5b. We consider the Eisenstein integer A, =4(x+y./—3) given
by

($(C+3B/-3), if 3{4,
1 C .
(19) Ay=A(J=3)=] ?(_B+3V‘3)’ if 3|4,

From (18) we have

(20) A=(—'0(/=3)u,

and as u is a product of primary Eisenstein integers we have
2D u=+1 (mod3),

and

(22) Ai=(—1D’w°u= +w° (mod 3).

Then, as 3{x, we have

e
(23) e=1 < 3|x+y, 3{y

e=2 < 3|x—y, 3{y,
and appealing to (4) and (19) we obtain e=5 as asserted. By the definition of t we have

73|p and p/t? is cubefree. We let F; denote the largest positive integer dividing u/t3,
and set

29 - p=pFy).
Clearly p is a product of primary Eisenstein primes, and
(25) A=(—=D)0’/=3)u, p=F,pi3.

We show that p is the unique Eisenstein integer satisfying (8). This will be done in four
steps:

@) N(p)=F, ,

®) F= I g,
q(prin;ﬂf qll (Bmod3)

© pN(p) | A((/=3)c3),

(d) p is the unique product of primary Eisenstein primes having property (8) .
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Proof of (a). From (25) we have N(u)=FZN(p)N(t)>. As N(u) is a cube, F7N(p)
is also a cube. Clearly F, is cubefree, so that to prove N(p)=F, it suffices to prove that
N(p) is cubefree. Suppose not. Then there exists a prime p such that

P’ N(p) IN(w)= — 433,
so that p|A and p#3. Hence, by (15), we have p=1 (mod 3), say p=nna, where n and
7 are conjugate Eisenstein primes. Then n3ﬁ3|pﬁ, and as p is not divisible by a rational
integer, we have n3 [p or 3 | p, contradicting that p is cubefree. Thus we have F; = N(p),
which is (a), and by (25)
(26) u=pN(p)t>.

Proof of (b). We begin by showing that F, = N(p) is squarefree. Suppose not.
Then, by an argument similar to that in the proof of (a), there is an Eisenstein prime
n such that n2|p. Hence n*|pN(p), contradicting that F,p is cubefree. Next we show
that for any prime p, we have

plA, p|B, p=1(mod3) < p|N(p),

completing the proof of (b) as F, is squarefree.
We have appealing to (13), (16), (20) and (26)

PlA, p|B, p=1 (mod 3)

= pl|A, p3f A

=3 some Eisenstein prime = dividing p with n|l, 7:31’ A

= 7|pN(p) |

= p|N(p)®

= p|N(p) ,
and appealing to (14), (16), (20), (26)

p|N(p)=plu, p#3=plA=p=1 (mod 3), p|4, p|B.
This completes the proof of (b). From (9) and (b) we see that
(27) F=3°F, .

Proof of (c). From (18) we have u|4/(,/—3)". But by (26) u=pN(p)c® so that
pN(p)| 2/((/—3)°?), which is (c).

Proof of (d). Suppose that p; is a product of primary Eisenstein primes such
that

p1N(p,) | '1/((\/_3)%3) > N(p,)=F; .
As




474 JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

A=(~1yo*(/=3)pN(p)?

we have

p1N(p)|pN(p),  N(p,)=N(p),

so that P1|P, say, p=kp;. As N(p)=N(p,), k is a unit, and so as both p and p, are
products of primary Eisenstein primes we have p=p,. This completes the proof of (d).
Proof of (ii). We first prove that Fs 1. Suppose on the contrary that F=1. Then,
by (9), we see that x=0 and N(p)=1. As a=0, by (10), we have =0 and so by (4)
either (I) 314,
or (1) 3|4, 3)(B, 33|C.

As N(p)=1, by (8), we see that

either (III) there are no primes g=1(mod 3)dividing 4,
or  (IV) there are primes ¢ =1 (mod 3) dividing 4 none of which divide B .

Recall that 4 <0 and that by (15) A4 has no prime divisors =2 (mod 3). Also recall that
C>0.

If (I) and (IIT) hold then 4= —1. By (2) we see that B=0, C=2, which contra-
dicts B#0.

If (IT) and (III) hold then 4= — 3. By (2) we see that B= + 1, C=9, which contra-
dicts 33|C.

If (I) and (IV) hold then A= —gq, - - - g,, where the g; are s (> 1) primes=1 (mod 3)
which do not divide B. We have g;=m;7;, where n; and 7, are distinct conjugate primary
Eisenstein primes. Now |

n?7; | g2 | A% | 3(C+3B/—3)x$(C—3B./-3)
and
n, ;{GCD((C+3B,/-3), 3(C-3B,/-3)),
so we can choose 7; without loss of generality such that =} H(C +3B./—3). Hence
3(C+3B/—3)=¢en} --- =2, 3(C—-3B/-3)=ér} --- &3,

where ¢ is a unit. As the z; are primary and $(C+3B,/—3)=+1 (mod 3) we have
¢=+1 (mod 3) so that e=+1. Set @=n, --- n,.. Then

A=—0Q0, B=gQ*—0%3 /=3,
and thus )

€

3./-3

X34+ AX+B=X?—QO0X+ (Q3-03%)
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Q—-Q ' Q—-Q 1 ~ =
=<X—e( ))<X2+s( Q)X——(QZ+QQ+QZ)),
V=3 V=3 3
which contradicts that X3+ AX + B is irreducible.
If (Il) and (IV) hold then A= —3¢q, - - q,, where the ¢; are s (=1) primes =1
(mod 3) which do not divide B. Arguing as in the previous case, we see that

A=-3Q0, 3(C+3B./-3)=¢(/-3)’Q3, 3(C-3B/-3=—e(J-3)’Q3,
where e=+1 and Q=mn, - - n,. Hence B= —¢(Q23*+Q?3) and so
X34+ AX+B=X3-3QQX—¢(Q3+0Q3)
' =(X—e(Q+ Q)X +e(Q+ QX+ (Q*— Q0+ Q?),
which contradicts that X3+ AX + B is irreducible.
This completes the proof that F31. Then, from (8), (9) and (10), we see that
¢(F)=0 (mod 3).
Next we suppose that there are ¢ integers satisfying (11), say a,, - - -, a,, and show

that = ¢(F)/3. Let G denote the multiplicative group of reduced residue classes modulo

Fand H the multiplicative group of cube roots of unity. We consider the homomorphism
0 : G- H given by

00 =[k/pls0**",

where k denotes the residue class modulo F of the integer k coprime with F. If =0,
6 is onto since p #1 is cubefree. If 5#0, 0 is onto since for v=3F,; = 1, 0(F)=w?F1£1.
Hence t=card{a,, - - -, 4,} =|ker 0|=|G|/| H|= ¢(F)/3 as asserted.

This completes the proof of (ii).

Proof of (iii). Let p denote a prime such that p1’3C, and let = be an Eisenstein
prime such that n|p, n{i. By class field theory, or appealing to [2], we know that
N,(A4, B)=3<>[A/n];=1. From (25) we see that

L]
T |3 T 3L T |3 T 13 2 P

As u=pN(p)r>® we have (appealing to the law of cubic reciprocity)
HEESR B
T ;3 LA Y T |3 v B I A v Y I A
b 7L
N(r) 15 p 1 pls p 3

where N(n)=p". Asp”=h=1 for p=1 (mod 3) and p”"= —1, h=2 for p=2 (mod 3), we
have




476 JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

—h h
I:i] =1¢>w""'[£:| =1¢>|:£:| =%’
T 13 P 3 p s
@[—’L:IP =w""'¢>|:£] =w??"
P 13 N £

Since p is not divisible by a rational prime, N(p) is squarefree, and 31’N(p), an easy
calculation shows that the value of the quantity [k/p];@ ~%**", where k is a fixed integer
coprime with

{ N(p), if 3|b
ON(p), if 31b

is determined by the residue class of k modulo F. Hence [4/n];=1 if and only if p=ag;
(mod F) for some i, 1<i<@(F)/3. Thus for a prime p not dividing 3C, we have
N,(4, B)=3 if and only if p=a; (mod F) for some i, 1 <i< ¢(F)/3.

It remains to determine the set of exceptional primes, that is the set E(4, B) given
by

}=3“N(p)=3“F1 =F,

E(A, B)={p (prime) | N, (4, B)#3, p=a, (mod F) for some i, or
N,(A4, B)=3, p#a; (mod F) for any i} .

It suffices to consider the primes p dividing 3C. First we consider the prime 3. We
observe that X3+ AX + B splits modulo 3 if and only if 4= —1 (mod 3), B=0 (mod 3),
that is, if and only if 34, 3|B.
If 5=0 we see from (4) that N;(A4, B)=3 if and only if 3|B. Next, by (11), (29),
(19), and the result '
3

[f] ¥V if ﬁ=_;_(x+y,/—3)si-l (mod 3),
3

we have

3=aq; (mod F) for some z@[i] =l¢>[i:| =1¢>[_3_] =1
P 3 [ k) Ay s

{3|B, if 3/4,
<>
81|C, if 3||4.

If 3Y4 we have 3¢ E(4, B). From (4) we see that if 3|4, then 3{B, so 3€ E(4, B)<
81|C.

If b+#0, then, by (4), we see that N;(A4, B)# 3. Moreover, by (4), (10) and (9), we
have 9|F, so that 3#a; (mod F) for any i. Hence, in this case, we have 81{C and
3¢ E(A, B).

Combining cases we see that




PRIMES SPLITTING ABELIAN CUBICS 477

3e E(4, B)<8l1|C.

Next we consider primes p (#3) dividing C. If p|A (so that p=1 (mod 3)) then
p|B and so p|F showing that ps#a4; (mod F) for any i. Clearly N,(4, B)#3 in this case,
so that p¢ E(A, B).

If pfA then p{F. As p|C we have p|disc(X>+AX+B) and so N,(4, B)#3.
However, we show that [p/p];=w®”?" so that p=a; (mod F) for some i and thus
pe E(A, B). Since p{A, we have GCD(p, A)=1 as N(A)= — 43, and

LG LR
P 3 P 13 P 13 R E P s P13 LP s
=wbp,p,,[%(3B+C)+3Bwj| =wbp,p,,l:%(3B+C):| — P
3 3

p p

as asserted. This completes the proof of the theorem. []

Let L denote the cubic field Q(0), where 0 is any root of the cubic equation
x3+ Ax+ B=0. By a result of Llorente and Nart [5: Theorem 2] the discriminant d(L)
of L is given by

d(L)=3% I1 q.

g(prime) = 1 (mod 3)
ql4,4|B

Further, by the conductor-discriminant formula for a cyclic cubic field [1: Corollary
17.29], we have d(L)=f(L)?, where f(L) is the conductor of L, that is, the conductor
of X3+ AX + B. This shows that F (as in (9)) is the conductor of X3+ AX+ B.

We conclude by remarking that if F is a prime, the set {a;, - * -, a3} consists
precisely of the nonzero cubes modulo F. This is clear, for if F is a prime, we have
a=b=0 and as p is an Eisenstein prime of norm F;, [a;/p];=1 if and only if g; is a
nonzero cube modulo F.

For example consider the irreducible abelian cubic X3—31X+62. We have
A=-31, B=62, C=124, b=0, a=0, F=31, E(A4, B)={2}, so that for p#2

x3—31x+62=0 (mod p) has 3 solutions

<> p=nonzero cube (mod 31)
<p=1,2,4,8,15,16,23,27,29, 30 (mod 31) .
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