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§1. Introduction.

In the ‘analytic theory of partition function, the double series

0 00 1
(1.1) f@=3 Y —e 2"  (Ret>0)
m=1n=1 M
plays an important role. It is well-known that S (@) satisfies the functional equation:
4 1 1 (4 1 1
1.2 —————logt=fl — | ———1——log—.
(1-2) fO) =5 loge f(r) 12 4 °8%

This remarkable equation has been proved by various methods (cf. Chandrasekharan
[1, p. 170] or Schoenfeld [5]).

In this paper, we shall consider a multiple series that is a generalization of (1.1)
in a totally real number field and prove that it satisfies a functional equation.

Let X be a totally real number field of degree n, K@ (g=1, - - -, n) the conjugates
of K. Let d be the differente ideal of K, D=N (0) (norm of d) the absolute value of the
discriminant of K, and R the regulator of K.

If 4 is a number of K, then we denote by u@ the conjugates of u in K@ g=1,---,n).
We define n-dimensional vector p=(u®, - - -, u™). More generally, we shall often use
n-dimensional complex vector &= (&, - - -, &,). For such & we put

so=% &, NO=T1¢,.

Let 7,, - - -, 7, be complex numbers with positive real parts. Let a and b be the
fractional ideals of K. For such a, b and T1s ", Ty, We define the series M(t ; a, b) as
follows: '

1
(1.3) M(z;a,b)= Y Y. exp{—2nS(uv| 1)},
mwe<a |N()]| veb
[(IMEJY] v#0
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where the outer sum is taken over all non-zero principal ideals (u) contained in a and

the inner sum is taken over all non-zero numbers of b. M(t : a, b) is well-defined, since

the inner sum of (1.3) is independent of the choice of the generators of the ideal (u).
To state our result we need another series:

{(s, @)= D, !

— (s=o0+it;0>1),
ca INWIP
s INGI

where the sum has the same meaning as the outer sum in (1.3). This series {(s, a) has
the analytic continuation over the whole s-plane (see Lemma 2.2 below).
The purpose of this paper is to prove the following

THEOREM. If we put

2, i
&(t;a,b)=M(7; a, b)—;%@l ceeg)t
__ZiR_log(tl ) 20, b)

N(a)\/D n!N(@)/D
then we have
(1.4) N(ab)!2®(z ; a, b)=N(a*b*)'?d(z " ; b*, a*),
where a*=(ad)~! and b*=(bd) 1.

Before proving our Theorem, we shall consider, in §2, the functions {(s, 4 ; a),
which are slightly different from the zeta functions {(s, 4 ; C) studied by Hecke in [2].
We shall state some properties of the {(s, 4; a) in Lemmas 2.2, 2.3 and 2.4, which will
be used for the proof of our Theorem.

In §3, we shall begin by applying the transformation formula of Hecke-Rademacher
to M(t ; a, b) and we shall obtain the representation of M(z; a, b) as the series of the
complex integrals:

1
(1.5) M(t;a,b)=) —— | Hys, t;a,b)ds.
7 27 )y

The integrands H (s, T ; a, b) are the products of the gamma function, the {(s, 4 ; a) and
some elementary functions (see (3.7) below). Using Lemmas 2.2 and 2.4, we shall have
the estimate of H,(s, 7 ; a, b), by which we shall be able to change the path of integration
in (1.5). Then the functional equation satisfied by H (s, 7; a, b) (Lemma 3.3) will give
the equation as follows:

M(t; a,b)=(DN(ab))"'M(t"!; b*, a*)+R(7; a,b),

where R(z ; a, b) is the sum of the residues of H (s, 7; a, b). Finally we shall calculate
R(t ; a, b) and then we shall complete the proof of Theorem.
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§2. Zeta functions with Gréssencharacters.

Let &y, -+, ¢,_, be the fundamental units of K. Let e (g=1,---,n;j=1,---,
n—1) the numbers satisfying the following equations:

Y. =0  (j=1,---,n—1),
q=1

n {1 (J=k) (j',k=1,"',""‘1)'

edlog| e |=
2 e logldl =1 (k)
For rational integers m,, - - -, m,_, we put
n—1
(21) Uq=Uq(m1,"',m,,_1)=27C Z egi)mj (q=1"“an)'
Jj=1

Here we note that
2.2) Z v,=0.
q=1

Now we define the Grdssencharacter A to be the function over complex vectors

€=(€1, T, én):
AQ=TT1&17".
q=1
Let C be a class of the ideal numbers. Following Hecke [2], we put

(s 2; 0= Y 2O

@ INWFP
0#veC

(c>1),

where the sum is taken over non-zero integral ideal numbers v in C not associated with
each other. (For the details of Grossencharacters and ideal numbers, see Hecke [2] or
Rademacher [4]).

We quote from Hecke [2] some properties of {(s, 4 ; C):

LemMma 2.1. (1) (s, A; C) has the analytic continuation over the whole s-plane and
satisfies the functional equation as follows:

I(s; AXDR="Y2L(s, 45 O)y= MO (1 —5; IADn~ " =921 —s, T; C),

where C' is the class of ideal numbers such that CC' 5(8)=Db and I'(s; 1) is the product
of the gamma function:

I(s; A)= li[l r(s-l-zivq)_
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(2) If A+#1, then
I'(s; (s, 4; C)

is an entire function.
(3) IfA=1, then
I'(s; 1){(s,1; C)

is @ meromorphic function with two simple poles at s=0 and 1.
(4) (s, 1; C) is regular in the whole s-plane except at s=1, where {(s, 1 ; C) has a
simple pole with the residue

n—1
Res{(s,1; O)= R .
s=1 / D
Proor. (Hecke [2].) O
Now we consider the series
Us,A;0)= ) A (c>1),

oxmea | N()I®

where the sum is taken over all non-zero principal ideals () contained in a. This series
is well-defined, since A(¢)=1 for any unit ¢ of K.

Let C=C(a"!) be the class of ideal numbers containing a™* =(&)"!. Since ¥ in C
is an integer of K if and only if ¥ is the product of & ! and a number y in a, we have

M) s M)
=A N 1).
5 mor @ @ G iN@r 7P

Hence the equation

(2.3) (s, A; Cla™ )= )" 'N(a){(s, 1; a)

holds in the whole s-plane. Moreover, replacing a in (2.3) by a*=(ad)~ 1 we have
M65)

2.4 , A C(ad))=————((s, 4; a*).

(24 {(s (ab)) D'N(ay {(s, 45 a*)

By (2.3), (2.4) and Lemma 2.1, we easily obtain the following
LemMMA 2.2. (1) (s, A; a) has the analytic continuation over the whole s-plane and
satisfies the functional equation as follows:

nn(s—l/Z)
(2.5) I(s; s, A; ) =————T(1—s; D){(1—s,1; a%).

N(a)/D

(2) IfA#1, then
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I'(s; A){(s, 45 a)

is an entire function.
(3) IfA=1, then

I'(s; 1)(s,1; a)

is a meromorphic function with two simple poles at s=0 and 1.
(4) (s, 1; a) is regular in the whole s-plane except at s=1, where {(s, 1 ; a) has a
simple pole with the residue
n—1 R
Res{(s, 1; a)=2———.
s=1 N(a)/D
From now on, we write :

{(s,a)={(s,1; a),

which is the function stated in §1 above.
Further we note that {(s, a) has a zero point of order n—1 at s=0.

LemMma 2.3. (1) We have
(2.6) t@=10, a)= —(n—1)!R/2 .
(2) If we expand {(1 +s, a) for small s as follows:

2.7 {1 +s, a)=W2(% —1—+c(a)+0(|s|) R
then

2" nR 1, .
(2.8) c(a)= N@J/D { > (IOg(2n)+v)+FC “)0, a )} s

where y is Euler’s constant.

PrROOF. The functional equation (2.5) gives
g+ 1/2) I(—s /2)n
N(a),/D T((1+s)/2y

For small s we have the following expansions of the functions in the right-hand side
of (2.9):

2.9 {(1+s,a0)=

{(—s,a%).
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n*=14+nslogn+---,

sY_ (o om0 )

I‘(——E)—- > (1+2ys+ ),

1+s\™ _, _n r i
F( ) ) =7 /2(1 2 F(2>S+ ),

(= )"

t=s,an =D ra-nyg a1 4 Z0

(0. a*
- ("0, a*)s"+ - -

Hence

(2.10) {(1+s,0)= ("0, a *)—

(a)f (n— 1)'

" -1
2 { =1, a*)[nlogn+7y

N(a)\/_ (n—1)!
()b

Comparing (2.10) with (2.7), we have
(2.11) ™10, a*)= —(n—1)'R/2,

which gives (2.6) since the right-hand side of (2.11) is independent of the choice of the
ideal a. From (2.11), (2.10) and the formula

r(i
—\|—=])=—logd4—vy,
" (5)=tozs—

(2.8) follows at once. O
LEMMA 2.4. In the strip —1/2<0=<3, we have
Us, A5 afs— 1) P<(1+|t])*,

where

{1 i =1,
ew—{o if A#1

and the constants implied in this estimation depend on A and a.

ProOOF. This lemma is proved in the same way as that of [4, Hilfssatz 15], so we
omit the proof. a
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§3. Proof of Theorem.

Let ¢, - - -, &,_; be the fundamental units of K. We rewrite the inner sum of (1.3)
as follows:

@3.1) . exp{—2nS( uv| 1)}
43
=2 )Zb Y, exp{—2aS(pved - - - et | 7)),
(vycbay,,an-1=—~
v)#£0

where a,, - - -, a,_, run through all rational integers and the outer sum is taken over
all non-zero principal ideals (v) contained in b.

Now we quote the transformation formula of Hecke-Rademacher from Rademacher
[4] as a lemma:

LemMMmA 3.1. Let W,, - -+, W, be complex numbers with positive real parts. Then
we have
(3.2 . > exp{ —2nS(|ef* - - - ennyt | W)}
1, a1 = — oo

1 J' _I(s+ivy) s
R m,, m,. 1=~ 27 Jgya=1 QAW )+ ’

where my, - - -, m,_, run through all rational integers, the v, are the values defined by
(2.1) and the integral in (3.2) is the complex integral taken along the vertical line ¢ =2.

Proor. ([4, Hilfssatz 14].) O

Applying this Lemma with W, =|v@u@ |z (¢=1, - - -, n) to the sum in the right-
hand side of (3.1), we have

2 1
3.3) M(t; a,b)=— Z
R ox(mca [N
&, 1 n I'(s+iv,)
X ~ _
(v)zcb mx.'--,mnz—1=—oo 2mi J2)q=1 (2n7q|v(q)ﬂ(q)|)s+iv“

v)#0

By the well-known estimation of the gamma function, we have for ¢ =2

n I" '] n
(3.4 I1 (2—7(:S¢J;:+£<< H1 (L+]t+v,)¥2exp(—alt+v,]),
=1 a q q=

where
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3.5 o= min (1t/2~—|argtql) (>0).

15qsn

(3.4) easily gives the estimate of M(t ; a, b) as follows:

M(t; a,b)« Y I cxp(—i i lt+v, I)dt .
my, > Mp—1=—00 J - 2 q=1
Since this series is convergent ([3, p. 206]), we see that the series in the right-hand side
of (3.3) is absolutely convergent. Therefore we can change, in (3.3), the order of the
summations over (v), (x) and m,, - - -, m,_,. Moreover, we can invert the order of the
summations over (v), (#) and the integration.
Thus we have

. —l © L r I'(s+ivy)
M(T % b)— R m;.-".mnz—1=—°° 2mi J‘(2)‘1=1 (2ntq)’+ivq
5 ) A(v) ’

x —_—
N 1+s NV K
wes INGT™ @z ING)

where the A are the Grossencharacters. The sum of this right-hand side over rational
integers m,, - -+, m,_, can be regarded as the sum Z , over all Gréssencharacters A.
Therefore we obtain the expression of M(t; a, b) as follows:

2 1 j r I'(s+ivy)

(3.6) M(z; a,b)=—-Y, i @Ryt

" A B)(1+s,4; a)ds.
R % 2mi {(s X(1+s,4; a)ds

Now we shall put

(3.7 His, i 0 B[] 20000 45 B 45,45 )
= q

and prove the following three lemmas on the properties of H (s, t; a, b).

Lemma 3.2. (1) IfA#1, then Hy(s, 7 ; a,b) is an entire function.
(2) H,(s,t; a,b) has three poles, that is, two simple poles at s=1 and —1 and one
double pole at s=0.

PrOOF. We apply the duplication formula of the gamma function to the factors
in the right-hand side of (3.7). Then

2 1 2s+ivg—1 (s+iv ) (s+iv +1)}
H » T s 9b = r 4 r 2
l(s 750 ) R ql;[1 { (zntq)’*'iuq \/1? 2 2
x{(s,7; b)(1+s,4;0),

or, by the definition of I'(s; A),
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1 n 1
(3.8) Hys,7; a,b)=—

11 .
R @ /n) a=1 (mr)'" ™
xI'(s; A)U(s, A; 0) (1 +s; A(1+s,4;a).
If A#1, then it follows from Lemma 2.2, (2) that I'(s; A){(s, A; b) and I'(1+s; A)

{(1+s, A; a) are entire functions. Therefore H,(s, t ; a, b) is an entire function.
The assertion (2) also follows from Lemma 2.2, (3) at once. O

LEMMA 3.3. H,(s, t; a, b) satisfies the functional equation as follows:
H,(s,t; a,b)=(DN(ab)) " *Hz—s,t~1; b*, a¥),
where a* =(ad)”! and b* =(bd)~ 1.
ProoF. We apply the functional equation (2.5) to (3.9). Then we have
2 1 1 nof m O\t
His w3 0.0=4 TraH Ty ql;ll (_r:)
xIT(1—s; 2)(1—s, X; 88 (—s; )(—s, X; a*¥)

(here we use (2.2)). Comparing this expression with (3.8), we obtain the lemma
immediately. v O

LEMMA 3.4. For —3/2<06<2, we have

H;'(S, 754 b)«exp(——;il t I) ’

where o is the number defined by (3.5). The constants implied in this estimate depend on
A, T, a andb.

Proor. In view of Lemma 3.3, it is sufficient to prove the lemma under the
assumption 0 <0 <2. Then it follows from (3.4), (3.7) and Lemma 2.4 that

H(s,7;a, b)<<(l+|t|)4"+3"/2€XP(—“ 2 lt+o, |><<CXP(—%U|> . O
q=1
By Lemma 3.4 it is clear that
—3/2+iT
J H)s,7;a,b)ds—>0  (|T|—>0),
2+iT

where the integral is taken along the horizontal line from 2 +iT to —3/2+iT. Therefore
by Lemma 3.2 and Cauchy’s formula,
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(3.9 —1— H (s, t; a,b)ds
27 J 2
L[ Heoewnds 6 i,
B 2mi J—32
—l—_— H,(s,7; a,b)ds+R(t; a,b) Gf i=1),
27 J(—32)
where

R(t;a,b)=ResH,+ResH, + Res H,
s=1 s=0

s=-1
is the sum of the residues of H,(s, 7 ; a, b). Combining (3.6), (3.7) and (3.9), we have
1

(3.10) M(t;a,0)=) —— | H,(s, t; a,b)ds
2 27 )
=2-—1~ H(s,7;a,b)ds+R(t; a,b).

% 2mi J-3p2)
On the other hand, we see from Lemma 3.3 that
1
S| Histiabds=0ONa) T [ Hgs et 50, a%ds.
A 2mi J_3)2 A LT J@a2)
Since 7 runs through all Gréssencharacters, the last sum is equal to
Z—l— H,(s,t7'; b* a*)ds=M(z™!; b*, a*).
1 2mi )3
Hence (3.10) gives
3.11) M(t; a,b)=(DN(ab)) " 'M(z~!; b* a*)+R(z; a,b).

Now we shall calculate R(t ; a, b).
First we easily obtain from the expression

2 (s

(3.12) H(s,7; a, b)=—E~ @nFe, oy (s, B)(1 +s, a)
that

_2 2y, _ 2,9 -1
(3.13) E{:eISH =2 P (ty- "1 iels Us, b)—_——n"N(b) \/_5 (ty---7) L.

As for Res,. _, H,, it follows from Lemma 3.3 and (3.13) that
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(3.14) Res H,= lim (s+1)H,(s,7; a,b)

s—+—1

=(DN(ab))"! lim (s+1)H;(—s,7~"; b* a*)
s—+—1
= —(DN(ab)) " *lim (s—1)H,(s, "' ; b*, a*)
s—=1

{(2,b%)

_—7
N®)./D

In order to compute the residue at s=0, we expand the functions in the right-hand
side of (3.12) as follows:

F(s)"=;1n—(1——nys+ -0,

@m)"ty - 1) *=1—slog(@n)'ty -~ t)+ -,

{(s,b)= —B—s" + C""(s b)s"+ - -
2*~1R 1
1+s,0)= —+ca)+-
{(1+s,a)= NG \/— . c(a)
Then
(3.15) ResH,=ny——— 2 c(a)+ M—log@n)

s=0 N(a)\/— N(a) \/B

270,b) 2 iR

n! N(a)\/_ N(a),/D

N A ®(0, b)—{™(0, a*)} + 27'R 1 ceez) .
n!N(a)\/D {0, B0, o) N(a),/D 08(rs 2%

Collecting the values of residues (3.13), (3.14) and (3.15), and puttmg them into
(3.11), we have

(3.16)  M(z; a,b)=(DN(ab))"*M(z ! ; b*, a¥)

log(Tl o 'tn)

R NN -5 I
"N(b)\/_ " NEN/D
2n—1 2n

log(z; - * 1) +——————={{*™(0, ) —{ ™0, a*)} .

B ——
N (a)\/B n! N (a)\/—D_
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If we put
29 -
&(t; a,b)=M(t; a, b)— ~eeg) !
(t; a,b) (t; a,b) N ) \/_ T,)
— 2 log(ty - - '1,)— 210, b)

then we can rewrite (3.16) in a simple form:
&(t; a,b)=(DN(ab)) " 1d(z~*; b*, a¥),
which gives (1.4). Thus we have completed the proof of Theorem.
As a special case of Theorem, we easily obtain

COROLLARY. If we put
®(z; Q)=M(c; a, a*)—n"N(a),/D{(2, a)ry -+ - 7,) "1 —

then
d(1;a)=P(17'; a).
In the case K= and a=Z, we see that

O(c ; Z)=2f@)———Llog,
61 2

where f(7) is the double series (1‘. 1). Hence Corollary gives the functional equation (1.2).
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