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Abstract. A mixed problem for some hyperbolic equation with small parameter ¢ under the presence
of a restoring term |u|*u and a reduced problem for a parabolic type are considered. Several ¢ weighted
energy estimates can be obtained by the method of difference quotients. It is shown that the solution u, of
the mixed problem converges, uniformly on any finite time interval, to the solution u of the problem for the
parabolic equation in an appropriate Hilbert space as ¢—0.

Introduction.

Let Q<= R"” be a bounded domain with smooth boundary Q2. We now consider the
mixed problem

0.1) &2u, — M(||Vu||2)Au+Su,+ p| u|*u=0, >0, xeQ,
0.2) w0, X)=up(x), u(0,x)=u,,(x), xe,
(0.3) u(t, X) |,p=0,  1=0.

Here ¢ is a positive parameter with 0<e<1. 6>0, u>0 and a>0 are given constants.
M(s) is a positive C*'-function on [0, 00). u=u(t, x) is an unknown real valued function
on [0, c0) x Q2. A is the Laplace operator in R”.

If ¢ is a fixed positive number, then Hosoya and Yamada [5] obtained the global
solutions and decay properties for the equation of this kind. Their method depends on
a kind of monotonicity of the so called restoring term u|u|*u. For the related results,
see [4], [6], [7], [8] and the references therein.

Our purpose of this article is to study the behavior of the solution u, for the mixed
problem (0.1)—(0.3) as e—0. For the equation (0.1) with an inhomogeneous term instead
of u|u|*u in one space dimension, the singular limit was proved by Esham and Weinacht
[2] in a classical sense on some local time interval. They prescribed initial data u,,
which was not uniform with respect to ¢ and required ‘‘boundary initial layer correctors”
to obtain the uniform convergence in space and time. On the other hand, with regard
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to the e-uniformity of the initial data u,,, the singular limit on any compact interval of
time is known in Matsuyama [10]. In [10] we discussed a singular perturbation problem
of “hyperbolic-parabolic type” for a class of damped nonlinear wave equations with a
special type of quasilinear term as well as a cubic nonlinearity by constructing the stable
set in three space dimensions. That is to say, we treated the equation (0.1) with
M(s)=a+2bs for s>0 and a cubic blowing-up term uu>. Here a>0, >0 and p<0
are given constants. However, it seems that the singular perturbation problem for a
wider class of quasilinear wave equations is difficult to discuss globally in time by the
method of [10] in general space dimensions, while, for the equation (0.1) with 6>0
and u>0, we can use a kind of monotonicity of the term u|u|*« and expect the global
existence of the solution u,. Therefore, by virtue of the presence of such a restoring
term u|u|*u we will see more easily the ¢ dependency of the solution u, to the problem
(0.1)~(0.3) than that of the blowing-up case [10]. If M(s)=1 and the initial data {u,, u,,}
satisfies u,, € H3 (), u,, € L*(Q), then there is a work of Benaouda and Madonne-Tort
[1]. On the other hand, in the case of M(s)# 1, we cannot expect such a regularity of
initial data, since, in general, the problem (0.1)-(0.3) is not possibly globally solvable.
Therefore, it is necessary for the present problem to enhance the regularity of the initial
data to some extent. In the same way as [10], we derive ¢ weighted energy estimates
of the equation (0.1) by using the method of difference quotients and evaluate the
difference of the solutions in an appropriate Hilbert space.

We formulate the singular limit problem for the equation (0.1) precisely. Formally,
letting é—0, we can consider the reduced problem

0.4) Su,— M(||Vul3)Au+ p|ul"u=0, >0, xeQ,
0.5) u(0, x) =uy(x), xeQ,
(0.6) ut,x) |,p,=0, 1=0.

This suggests that the solution #, of the mixed problem (0.1)+0.3) converges to the
solution u of the mixed problem (0.4)~0.6) as ¢—0. Let n be an integer with 1 <n<3.
Then it is known in [10] that the mixed problem (0.4)—~0.6) has a unique global strong
solution under the additional assumptions. However, since we shall discuss in general
space dimensions, we cannot apply the result of [10] to the problem (0.4)—0.6). So we
shall prove the global solvability of the problem (0.4)0.6) by the Galerkin method.

Throughout this paper we impose the following assumptions on M, a, u,, 4, and u,:

(A.1) MeC'0, ) and M(s)>my>0 for s>0,

(A2) O0<a<2/(n—4)ifn>5and O<a<w if n=1,2,3,4,

(A.3) ug,e HY(R2) n H¥(Q) and u,, € H}(RQ),

(A4) uy,eHY Q) H*(Q).

Then we can state the singular limit of the mixed problem (0.1)—~0.3).

THEOREM. Assume that (A.1)—(A.4), 6 >0 and u>0. Suppose that there exist no>0



SINGULAR LIMIT OF WAVE EQUATIONS 199

(depending on supg .. l|Viollz, SUPo<.<1lltsellz, and supo<,<illtopllar2) and n,>0
(depending on ||Vu,l , and ||ugll,+2), independent of e, such that

0.7) Oiugl(llAqu|z+ IVusall2) <o,
0.8) | Auoll, <ny and
(0.9) Ug, = U strongly in H3(Q) n H*(Q)

as €—0. Then, for any finite time interval [0, T the solution u, of the mixed problem
(0.1)-(0.3) converges to the solution u of the mixed problem (0.4)—(0.6) strongly in
L0, T; H}(Q)) as e—0. Furthermore u, converges to u’ strongly in L*((0, T) x Q) as
e—0.

Our plan in this paper is as follows. In section 1 we derive ¢ weighted energy
estimates following the results of Hosoya and Yamada [5]. In section 2 we give the
global solvability of the mixed problem (0.4)—(0.5). In section 3 we show some energy
estimates playing an important role in our argument and prove Theorem.

We conclude this section by stating several notations. Throughout this paper the
functions considered are all real valued and the notations for their norms are adopted
as usual ones (see, e.g., Lions [9]). Let (-, -) denote the scalar product in L*(Q). ||lu|,
stands for the usual L?(Q) norm of ue LP(Q) and ||u|, , means H?*(2) norm of ue H*(Q).
max{M(k); 0<k<s?} and max{|M'(k)|; 0<k<s?} are denoted by M, and M,,
respectively. We often suppress the space variable x when no confusion arises. Also we
often abbreviate (d/df)u,(t), (d?/dt*)u,(¢) and (d/dt)u(t) to u)(?), u;(¢) and u,z) (or u'()),
respectively.

1. The hyperbolic problem.

In this section we shall derive the ¢ weighted energy estimates of the solution for
the mixed problem (0.1)—(0.3) following Hosoya et al. [5].

First we formulate our problem precisely. In [5] it was shown that the mixed
problem (0.1)—(0.3) has a unique global solution.

PROPOSITION 1.1. Assume that (A.1), (A.2), (A.3), 6>0 and u>0. Let ¢ be a fixed
number with 0 <e<1. Then there exists a number 1y >0 (depending on supg <, <1 || Vig,ll 2,
SUPo<s<1llU1cll2 and supo <, <1 lltoella+2) such that, if

sup {l|Aug,ll,+ Vsl 2} <no »
O<ex1
then the problem (0.1)~0.3) has a unique solution u/t, x) which satisfies

(1.1) u,€ C([0, ) ; Hp(2)) n C,\([0, ) ; H*(Q)),
(1.2) u, € C([0, ) ; L)) 0 C,([0, o0) ; H(Q)) ,
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(1.3) u; € C,([0, ) ; L*(Q)),
where the subscript “‘w”’ means the weak continuity with respect to t.

LEMMA 1.2. Letuyt, x) be as in Proposition 1.1. Then there exists a positive constant
C, (depending on supg <, <1 ||Vio,|l 2, SUPo <. <1 llus.ll2 and supo <, < 1 Uoclla+ 2) independent
of € such that

t
(1.4) 2w+ IVu )N + lu DNz 13 +J lu(DllZds < C?
0

for all t>0.
Proor. Multiplying Eq. (0.1) by «/(¢), we have

(1.5) 22(u(2), wl()) + M(|Vu ()| D(Vu0), Vul2)
+ u(l (1) 'u (), u (1)) + 6w, (DI3=0.
We integrate (1.5) over [0, T] to obtain

g? 1 _ ¢
(1.6) —2—||u£(t)||§+—2*M(||Vue(t)||§)+ ,u2 ||ue(t)||:i§+5j ()1 3ds
0

o+

g2 1 _ u
=7 ||u1a||§+7M(||VUOe||§)+m lluocllzt3 te[0, T],

where M(s)= [, M(r)dr. By (A.2) and Sobolev’s lemma, H?(Q) is imbedded in L**%(Q).
Then the right hand side of (1.6) is bounded by a positive constant independent of .
Since we have the assumption (A.1), (1.4) easily follows. This ends the proof of Lemma

1.2. O

We next derive the ¢ weighted higher order derivatives of u,.

LEMMA 1.3. Let u,t, x) be as in Lemma 1.2. Then there exists a positive constant
No depending on supPo <, <1l|Vioell2, SUPo<.<1ll#1.ll2 and supo <, < 1lluo.lla 2 such that, if

sup {l|Aug,ll>+ IVuy,ll2} <m0,
O<egx<1

then

(1.7) lAu (Dl +ellVu, (D .<C,  forall t=0,
t

(1.8) J Vu(s)|2ds<C;  forall t>0
0

with some positive constants C, and C; independent of e.

PrROOF. Let
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Z(n=e*|Vu (013 + M»IVu D11 D) A (D13 -

Then, using the idea of Yosida approximations, we can apply the same derivation as
in [S, Lemma 3.3] to Eq. (0.1) to obtain

(1.9) ze<z)+? f " |Vui(s)) s

CZ t t
SZS(0)+2—(;J |Au(s)[|3** 2ds +2C, M, J 1A%, ()13 V;(s) | s
0 0

and

2

5 t
(1.10) e28(Vu (1), Vu (D) + -5 IV (D13 +mod J | As(s) ]| 3ds
0

t
SHa+azéf IVu(s)3ds
0

where H, is defined by

2

o
(111) Hs=825(vu1aa Vu08)+_2—— ”VuOEH% .

Now we set

2

W)= Z.(t) + £28(Vul(0), Vi (D) +‘37 Va1

Then we will derive the following estimates:

5 t t
(1.12) Wg(t)+jj IVu;(s)ll3ds < WE(O)+J E(5)|Au,(s)lI3ds  and
0 0
(1.13) Cofe? Vi, (D15 + | Au ()13} < W (D)
for some positive constant C,, where E,(s) is defined by
Ci 4C,M
(1.149) E(8)=—5 18u )13+ —— [ Aus)l| —mod .

For the derivation of (1.12) and (1.13), noting the definition of W (t) we add (1.9)
to (1.10) to obtain
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1) WO+ f Vi) I35+ mod f " Aus)l3ds
0 0
W@+ f |Au )3+ 2ds +2C, M, f o 1A )3 V26l s
+e25 f i) 13ds
0
W+ f 1A (5) 3+ 2ds+i‘C—jSM—‘f; I Aue(5)13ds

5 t t
+ J IVu ()]l 2ds + 6 I IVu(s)ll3ds .
0 0

Hence the desired estimate (1.12) is equivalent to (1.15).

We note that M(||Vu,(£)||3) >m,. Then it is easy to see that

(1.16) Z ()= 2|\ Vu) (D3 +moll Au (D3 .
We observe here that
(1.17) e28(Vuy (1), Vu(0)) = —&25|| V(D) || Vi, ()l »
et 02
> Ty IV (D3 5 I Vu (D113

2 2

£ o
z—— IV ()13 — IV (D113 -

Hence from (1.16) and (1.17) we deduce that

2

(1.18) W (1) z% V()13 +moll Auge) |13 .

If we choose C, so that C,=min{1/2, m}, then (1.13) can be obtained.
We are ready to deduce ¢ weighted energy estimates. Take the initial data {u,, #,,}
satisfying

C? 4C,M myo
(1.19) oi“‘Zl{z_é lAug, 13 +—2—2 ”Aum"%}ﬁ 2 and
(1.20) sup {C} ( W (0) )¢+ 4C,M, Ws(O)}< myd
) O<ex1 26 Co 5 CO . 2 )

We will show
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C? 4C,M myo
1.21) sup {—1 1Au, ()13 +—2— IlAue(t)||§}< >
o<e<1 [ 20 o
for all 1>0. Suppose that there exists some positive number ¢* such that
C? 4 o
(1.22) 2—; 1A (5)]13* + Cng lau@I3<222 on [0,1*)  and
C?2 4C,M d
(129 S 1A E+ T A 3= "0

Then it follows from (1.12) with r=¢* and (1.22) that
t*

(1.24) W(t*)+ %J IVu(s)l|Zds < W(0) .

0

Furthermore using (1.13) we have

Wi _ WO
Co Co

Therefore, combining (1.24) with (1.25) we get

4C,M,

(1.25) lAu,(t%))3 <

C? 2 O\ 4C, M, W.(0 o
(1:26) L JAugl3+ nAua(t*)n%<Cl(W€())+ My WO mod

T 25\ G, ) Co 2
which contradicts (1.23).

If ||Aug,ll, and (|Vu,,||, are sufficiently small, one can see that (1.19) and (1.20) are
valid. Hence (1.7) follows from (1.21). If we use (1.12) and (1.21), then (1.8) is also
valid. This completes the proof of Lemma 1.3. 0l

2. The parabolic problem.

In this section we describe the unique global solvability of the parabolic equation
by using the Galerkin method. The proof of the global existence is the routine work
of Hosoya et al. [S]. So we shall only describe the key estimates.

Let {4;}32, be a sequence of eigenvalues for

—Aw=Aw in Q and w=0 on 09Q.

Let w;e H{(2) n H?*(2) be the corresponding eigenfunction to 4; and take {w;};2, as
a completely orthonormal system in L2(£2). We construct approximate solution u,,
(m=1,2, ---)in the form

D= 3. gm0,
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where g;,, (j=1,2, - - -, m) are determined by
(2.1) O(um(), wy) + MV (DI 2NV (2), Vi)
+ 1| up(0) (1), w))=0,  (j=1,2,---,m),

with the initial condition

(22) U O)=uom= Y (up, wj)wj > u, in H(Q) N H*(Q) as m— oo .
i=1

J

Then the system (2.1) has a unique C°-class solution u,(f) on some interval [0, T,,),
since the second term in the left hand side of (2.1) is locally Lipschitz continuous. Note
that u,,(7) is absolutely continuous. So (2.1) holds a.e. in [0, 7,,). On the other hand,
u,,(?) can be extended to [0, c0). In fact we have the following lemmas.

First we have

LeMMA 2.1. Let u,(f) be a solution of (2.1), (2.2). Then there exists a positive
constant C, depending on ||Vu,l|, and ||ugl .+, Such that

t
(2.3) f le'(s)13ds + [ Vu@)lI3 + lu@®lzE3 < CF
0

for all t>0.

Now we set W(?) as
0
(24) W) = M(|IVu@) 1) Au()13 + Va1 -

Then we have the following.

LEMMA 2.2. Let u,(t) be as in Lemma 2.1. Then we have the following estimates
d
2.5) i W) < EQ)|| Au, (D)3 and

(2.6) mo || Aun (D112 < W(1) < Cs[| Au, (D113

for some constant C3>0, where E(s) is defined by

2M M 2uC, M 2C, u?
@7 E)=""20 A (013 +—”—5‘——‘~ 1 Au()]3+! ++“ | Aup (D122 —mg .

We now have the smallness of initial data u, as follows. Let u,(f) be as in Lemma
3.1 with initial data u, satisfying

2M M

2uC
2.8) = Al + it

M 2C,u?
_5——1 "A“o”aé+1 + cla

my
l| Aug |13 <
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(@+1)/2 2 @
2.9) 2MoM; W(O) | 24CiM, ( W(O)) L 2Cau ( W(0)> Mo

o my 0 my 0 m 2
Then we can show that

DM M 2uC M
@10 o ||Au,,,(t)||§+~“—5‘——1 1Au (D)5 +

2C,u? mg
Au, () |3*<—
5 [l An,(2) 12 >
for all 1>0. Hence we can pass to the limit: m— co. Therefore we get the following
theorem concerning the global existence of the problem (0.4)—(0.6).

THEOREM 2.3. Suppose that (A.1), (A.2), (A4), 6>0 and u>0. Then there exists
a number n, >0 (depending on ||Vu, ||, and ||ugll .+ ) such that, if u, satisfies || Augll, <74,
then the problem (0.4)—(0.6) has a unique solution u(t, x) such that

@2.11) ue L0, oo ; HX(Q) n HA(Q)),
(2.12) uwelL®0, 0 ; LX(2) " L*((0, T)x Q).

3. Proof of Theorem.

In this section we derive several energy estimates of the equations (0.1) and (0.4)
needed for our argument and prove Theorem. In the course of calculations below,
various constants are simply denoted by C and change from line to line.

First we have the following estimates for (0.4).

LEMMA 3.1. Let u(t, x) be a solution of the problem (0.4)—(0.6) with initial data u,
which satisfy the same assumption as in Theorem 2.3. Then, for any T>0 we have the
following estimates

3.1 IVl Loio,1; L2002y + 1 AUl Loo(0,7; 22y < C 5 tel0,T],
d d
(3.2) 2w + |- u() <C, te[0,T].
dt L2o,myxg |l 4t Lo(0,T ; L2(2))
ProoFr. This is an immediate consequence of Theorem 2.3. O

We next derive a series of energy estimates for (0.1).

LeMMA 3.2. Let u/t, x) be as in Lemma 1.3. Then, for any T>0 we have the
following estimates

(3.3) Sup ||Virglleqo, mizzan+ SUP Ak ]|, 1:L2@n<C
O0<eg<1 O<egx<1
(34 SUp [[Vegll 20,1y x 9 < C 5
O0<ex<1
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(3.5) sup &l|VugllLwio,r;L22n < C
O0<e<1
(3.6) sup |lu;ll 20, nyxy=<C -
O<ex<1
ProOOF. This is an immediate consequence of Lemma 1.3. O

We set the nonlinear operator f by f(u)=|u|*u. Then the following estimates are
essential to the proof of main theorem.

LEMMA 3.3. Letu,(t, x) be asin Lemma 1.3. Then we have the following estimates

d
3.7 Sup ||—-u =C,
o<z<1 || dt L*(0,T; L2(£2))
d2
(3.8) sup &2 ——u, =¢
0<e<1 dt L®(0,T; L2(2))
d2
(3.9) Sup || —u, =C
O<egx<1 L2((0,T)xﬂ)

for any T with T>0.

PrOOF. In the sequel we suppress ¢ of u,. In view of Eq. (0.1) and using the
imbedding H?(Q) < LV%(Q) we have :
(3.10) SOl <&2llun(®)ll 2 + M(IVu@ I DN Au() |, + 2 || | u(2) I"u (@)l »

<e2[lu (Dl 2 + MUVu@O ) Au(@)ll 2 + Cllu(®) | el (Ol 20/n-2)

<& |lu (D)2 + ClAu@)|31IVu@dIl 2 ,
from which it is sufficient to prove (3.8).
Now we shall use a method of difference quotients because u, is not smooth enough.
Let A be a positive real number and let ¢+ be a number with 0<t<T—h. For each
function w: [0, T] x 2—R we denote by 7,w(?) the difference quotient (1/A)(w(z+ h)—
w(?)). Then we subtract Eq. (0.1) at ¢+ A4 from Eq. (0.1) at ¢z and take the L?(Q) inner
product of them with 27,u,(7) to obtain

d d
@11y e Znthut(t) 17+ o [M(IVu(t + W) DIty Vu(r) 131+ 26 |t ()13

=M'(|Vu(t+h) 1 )(Vut + ), Vu(t + m) |17, Vu(?) |13
+ 2L, M Vu() | )1(Au(t + h), Tu(1)) — 2u(t, f (w(®)), The (D)) -

Hence from (3.3) we get
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d d
G.12)  &? o lTae (D113 + o [M(||Vu(e + B D)2 Vu(®) 131+ 25t (D113

< CM||Vu(t+ W) 25 Vu(®) 13 + 2CM [t Vu@) |l | Aut + B |2 Taa(D1l 2
+2u| (zhf (1)), T (D) | -
We note here that 7,/ (u(¢)) is bounded by

(3.13) | T f @) < C(ut+h) |+ |u(®) ) Tuu(D) |
because we have
(3.14) | f@)—f)|<C(ul+|v)|u—v]|

for any u, veR. Then the last term in the right hand side of (3.12) is estimated by

(3.15) 2| (Taf (D), Tu (1) | <2p J‘ | T f (D)) | [T4te(2) | dx
2

< Cj (lu(t +h) |+ u(@® D*|tu(@) | ltaut) |dx

< C(Jlu(t + M)l ge + O ZD sl N Trte (DNl 2 5
with 2/g+ 2/r=1, where we have taken g and r such that
(3.16) t,r 2 ittt
qgu 2 n r 2 n

which is possible on account of (A.2). From Sobolev’s inequality, the regularity theory
of elliptic equations and (3.3) it follows that

(3.17) ' ()l ge < Cllu(D)l2,. < CllAu(@®) 2 < C

(3.18) e, < ClltaVu@)ll 2 -

Hence we get

(3.19)  2u| (thf (D), D)) | < C(I| Au(t + B)|15 + | Au(D D I Ta V(D | 2742t (Dl 2
< ClltVu@® | 2l (D 2

C , €2 )
= Iz Vu@lz+—- ITnte (DI -

Also the second term in the right hand side of (3.12) is estimated by

C , €% 5
7 T Vu(2)| 2 + - Taue(DIl2 -
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Hence from (3.12) and (3.19) we have

d d
(3-20) &’ x w113 + T [M(IVu(z+ WD T V)21 + 20 Tuu(D)II3

C
< ClIVu(t+h)| T Va3 + pel ITaVa(DIIZ + &2l Tuu(DI13 -

Multiplying £ to the both hand sides of (3.20) and integrating over [0, 7], we deduce
from the property of the difference quotients, (3.4), (3.5) and (3.6) that

t
(3.21) e*lltyu (D)3 + 2 M(|IVu(t + )13 |, Vu() |3 + 225 f T4, (s) || 3dis
0
t
<Ch)+ C”Thvuniz(o,r;um)) + Ce? j IVu (s + h) | 111, Vu(s) || 3ds
0

t
+84f ITau(s)2ds , 1e(0, T—h),
V]

where C(h)=supg <, [£*||Ts4(0)||3 + > M(||Vu(h)||3)|7,V(0)| 2]. From our hypothesis
of the smallness of the initial data it is easy to see that C(h) is bounded by a positive
constant C independent of ¢ and A. Furthermore we note that |7,Vu|  20,1)x ) are
bounded by a positive constant C independent of ¢ and 4 since we have (3.4) and (3.6).
Then the third term in the right hand side of (3.21) is estimated by

(3.22) Ce? || Vil Loo.1; L2eap 1 TaV Ul 220, 1 x =< C"Tthl”zz‘z((o,T) g <C

because of (3.5). Thus combining (3.21) with (3.22) and using (3.4), we have
t t

(3.23) e*lltu()l3+2ed f leaud(s)3ds < C+e* J lz(s)ll3ds,  te[0, T].
0 0

Therefore, applying Gronwall’s inequality to (3.23) and letting 2—0, we deduce that
e*lu(I3<C  on [0,T],

t
SZJ lus)i’ds<C  on [0,T].
(o]

This ends the proof of Lemma 3.3. O
PROOF OF THEOREM COMPLETED. We are now in a position to prove our main
theorem. At first we subtract Eq. (0.4) from Eq. (0.1) to obtain

2

d“u du du
2 - M(||IVu,l|3)(Au,— Au) + | —5——
i (Ve |1 2)(Au, — Aw) (dt dt)

=[M(IVu[|3) — M(IVull )] Au— p( f () —f W) -

3.24)
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We take the L*(Q2) inner product of (3.24) with 2(x. —u’) to obtain

d
(3.25) T [M(IVu DIV, — Vul 31+ 20|, —u'|13

d
S‘EM(IIV%H%) Ve, — V|| 5+ 2M 1 (I Vit |l 2 + [ Vudl| )| Autl] || Vit — V| o [l — ' |

+2ull f () —f @) Mg — 2’| o + 262 ] || g — 2’|, -
By (3.13) and Hoélder’s inequality we have
(3.26) I/ () —f @)1l 2 < Clleg||Go + el Go) 12t — e,

with 2/g+2/r=1. Here we have chosen ¢ and r as in (3.16). By (3.17), (3.18), (3.3) and
(3.26) we have

(3.27) ILf () —f @), < C(l|Au, |15 + | Aul| D) V. — Vul
<C||\Vu,—Vul, .

Here we note that

d
(3.28) ’Z M([|Vu,|13)

<2M | (Vu, Vi) | =2M | (Autg, ug) | <2M || Au 5 llugll , < C

because of (3.3) and (3.7). Then from (3.27), (3.28) and Poincaré’s inequality it follows
that

d
(3.29) = CM(IVu | Vi, — Vull 31+ 25l u; —u'(13

4

28 " 5 ’ 4
SCIIVua—Vulli+ClIVue—Vullzllué—u'llz+T [ II§+—2—||ue—u I3

2 i 2 284 ny2
<ClIVu,—Vulz +dllu;—u'|l - llee 115 -
Hence using M(lqu,,;II%)Zmo and (3.9) we integrate over [0, 7] to get

t
(3.30) moIIVus—Vu||§+5j llui(s) —u'(s)l| 3ds
0

t
< Ce? + M(||Vu, /| ) Vo, — Vo 13 + CJ IVu(s)—Vu(s)l3ds,  te[0,T].
0o

Therefore we deduce from Gronwall’s inequality that

(3.3 IVu () = Vu(0)|13 < Ce* + C|| Vuo, — Vuo |13
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t
(3.32) J luy(s)—u' (9 3ds < Ce* + C||Vuo, — Vo I3
o]

on [0, T]. We thus conclude from (3.31) and (3.32) that
u,—u strongly in L*(0, T ; H}(Q)),
u. >u’  strongly in L3((0, T) x Q)

as ¢—0. This completes the proof of Theorem.
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