TokYO J. MATH.
VoL. 19, No. 1, 1996

Extrinsic Characterizations of Circles in a Complex Projective
Space Imbedded in a Euclidean Space

Bang-Yen CHEN and Sadahiro MAEDA

Michigan State University and Shimane University
(Communicated by T. Ishikawa)

0. Introduction.

It is well-known that a curve on a sphere S? in R? is a geodesic (that is, a great
circle) or a (small) circle if and only if it is a circle as a curve in R3. This can be
considered as an extrinsic characterization of circles on S? in R3.

On the other hand, Adachi, Udagawa and the second author ([1]) investigate
circles in a complex projective space CP"(c) of constant holomorphic sectional curvature
¢. Moreover it is known that CP%c) can be imbedded in R™*? by using the
eigenfunctions associated with the first eigenvalue of the Laplacian. Note that the
imbedding of S? in R? is nothing but the case where n=1.

The main purpose of this paper is to give some extrinsic characterizations of circles
in CP"(c) imbedded in R""*? (cf. Theorems 2, 5 and 6), which can be considered as
generalizations of the above-mentioned well-known result. The notion of finite type
submanifolds introduced by the first author ([2]) plays an important role.

Both authors would like to express their thanks to Professor K. Ogiue for his
valuable suggestion during the preparation of this paper.

1. Preliminaries.

Let (M, {, )) be an n-dimensional Riemannian manifold. A curvey: I - M is called
a helix (parametrized by its arc length s) of order d(<n) if there exist an orthonormal
system {V, =%, V5, - -, V,} along y and positive constants {kq," " -, k4- .} which satisfy
the system of ordinary differential equations

ViVi=—ki Vi +kiViey

for 1<i<d, where V,=V,,,=0 and V, denotes the covariant differentiation along y
with respect to the Riemannian connection V of M. When d=2, the curve y is called
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a circle. The second author and Ohnita ([4]) study helixes y in a non-flat complex space
form M(c), by using continuous functions Ti{(8S)=<V(s), JV{s)) on y for 1<i<j<d,
where {V,: - -, V,} is a system of curvature vectors of y and J is the complex structure
of M(c). The functions t;; are called the complex torsions of y. In particular, 7,, and
7,3 are called the first and the second complex torsions of y, respectively. For simplisity
we denote 7,, and 1,3 by 7, and t,, respectively. When y is a circle on a Kaehler
manifold, we only have the first complex torsion 7,. Moreover the complex torsion is
constant along a circle on a Kaehler manifold. In fact, we have

VikV1, IV =XVV 1, IV + V1, IV, V)
=ky - (Va, JV3)—ky -V, IV, >=0.

Using this fact and the fact that an n-dimensional complex projective space CP"(4) is
a base manifold of the principal S*-bundle n : $§2"*1(1) - CP"(4), we can investigate the
circles in a complex projective space.

In this paper, we apply two main tools to provide extrinsic characterizations of
circles in CP"(4). One is the first standard (isometric) imbedding F of CP"(4) into
Euclidean space R""**?). The map F : CP"(4) > R""*2 is defined as

Rn(n +2)

F: CPr(4) ™3l gnnt 2)- 1( 2(n+1) ) totally umbilic

n

The map F has various geometric properties. For instance, the second fundamental
form of Fis parallel and the image of a geodesic of CP"(4) under the map F is a circle
(in the usual sense of Euclidean geometry) with curvature 2 in R"»+2 (see, [6]).

On the other hand, consider the map F: C**! - C"* 1 defined by

(]1) F(z)=z®2=(zi?j)05i,j5n9

where z=(z,, - -, z,)e C** 1. Since it holds that F (xz)=F(z) for ke C satisfying |x|=1,
we may regard F as a mapping of CP"(4) into C**1?, where Zo," " *, 2, are regarded as
homogeneous coordinates in CP"(4) satisfying Z:’= o ZiZi=1. It is well-known that the
map F can be decomposed as

N Rn(n +2)

F: Cpr(4) _minimal Sn("+2)_1(2(n+1)) totally umbilic

n

totally geodesii Cn+ 172 (=R2+ 1)2)

In the following, we mix the map F : CP"(4) » R*"*2 and the map F : CP"(4) » C»+ 17

The other is the notion of finite type submanifolds introduced by the first author
more than a decade ago. Here we review this notion briefly. A Riemannian submanifold
M (not necessarily compact) of R™ is said to be of finite type if each component of its
position vector X : M — R™ can be written as a finite sum of eigenfunctions of the
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Laplacian A of M, that is,

k
(1.2) X=X,+ ) X,
i=1

where X, is a constant vector and AX;=4,X;, i=1,2, -, k. Here we denote the iso-
metric immersion of M into R™ by the same letter X. If, in particular, all eigenvalues
{A1, Ay s Au} are mutually different, then M is said to be of k-type. The decomposi-
tion (1.2) is called the spectral decomposition of the isometric immersion X (cf. [2], for
details).

In terms of the theory of finite type submanifolds, a well-known result of Takahashi
([7]) can be restated as follows: A submanifold of R™ is of 1-type if and only if it is
either a minimal submanifold of R™ or a minimal submanifold of a hypersphere of R™.

Let M be a finite type submanifold whose spectral decomposition is given by (1.2).
If we define a polynomial P by

k
(1.3) PO=IT(~4),

then P(A)(X — X )=0. The polynomial P is called the minimal polynomial of the finite
type submanifold M. It is proved in [2, 3] that if M is compact and if there exists a
constant vector X o and nontrivial polynomial P such that P(A)YX —X,)=0, then M
is of finite type (see, [2]). By virtue of this characterization we can algebraically deal
with finite type submanifolds. If M is non-compact, then the existence of a nontrivial
polynomial P satisfying P(A)(X —X,)=0 does not imply that M is of finite type in
general. However, if M is 1-dimensional, then the existence of the polynomial P satisfy-
ing the above condition guarantees that M is of finite type (see, [3]).

Finally we review the fundamental results about circles in CP". Let N be the
outward unit normal on the unit sphere $2"*1(1) « R?"*? = C"*!. We denote by J the
natural complex structure on C"*!, In the following we mix the complex structures of
C"*! and CP"(4). The relation between the Riemannian connection V of CP*(4) and
the Riemannian connection V of $2"*1(1) is given by (see, [5])

(1.4) VY=V, Y+<(X,JYYJN

for any vector fields X and Y on CP"(4), where {, } is the natural metric on C**!. For
the sake of simplicity, we identify a vector field on CP"(4) with its horizontal lift on
S2n + 1(1)

In order to prove Theorem 1 in section 2, we recall the following results (for
details, see [1]).

PROPOSITION 1. Let y be a circle with the complex torsion t in CP"(4) satisfying
V;9=kY and V;Y= —kj. Then a horizontal lift § of y in S*"*'(1) is a helix of order 2,
3 or 5 in S$?"*1(1) according as t=0, t=+1 or 1#0, +1, respectively. Moreover
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satisfies the differential equations
(Vii=kY,
V,Y=—kj+1JN,

(1.5) 1 VIN=—1Y+ /1-12Z,
Viz=—/1—-12IN+EkW,
~V,;W=——kZ,

where Z=1/\/1—1* - (Jy+1Y) and W=1/\/1 —1% - (JY —19).

PROPOSITION 2. Let y be a circle with the complex torsion t in CP"(4) satisfying
V;p=kY and V;Y= —k}. If a horizontal lift 3 of y on S***1(1) satisfies the initial condi-
tions 5(0)=x, §(0)=u and §(0)+$(0)=kv, then ¥ is expressed as follows:

(1) When 1=0,

Lok ~cos(/k*+1s) sin(\/k*+15s)
(1.6) 7(s)= k2+1(kx+v)+ a1 (x—kv)+ \/m u.

2) Whent=+1,

1 . . o . .
1.7 S(Q) = ais 4 2 Bis + L Bi J ’
(1.7) W)= e+ a Y xd (—e  gu
where a+ = Fk and af= —1.
(3) When t#0, +1,
(18) :}‘)‘(s)=Aeais+Bebis+ Cecis,
where a+b+c¢=0, ab+bc+ca= —k?>—1, abc= —tk and
1
A=——{—(1 +bc)x+aJu+kv},
(a—b)(c—a){ ( ) J
B= 1 {—(Q1+ca)x+bJu+ kv}
" (b—c)a—b) ’
1
C=———{—(+ab)x+cJu+kv} .
(c—a)(b—c){ (1+ab)x + cJu+kv}

2. The image F(y) of a circle y.

THEOREM 1. Let F be the first standard imbedding of CP"(4) into R""*?. Then the
image F(y) of a circle y in CP"(4) with complex torsion t is of 1-type, 2-type or 3-type
in R"*2 qgccording as 1= +1,t=00rt#+1,0.
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PROOF. Let y be a circle with the complex torsion 7 in CP"(4) and ¥ a horizontal
lift of y on $2"*1(1). Our discussion is divided into three cases.

Case 1: t=+1. Itfollowsfrom (1.7) that 7 lies on the linear subspace C* spanned
by {x, Jx, u, Ju}. Since {x, u)={_x, Ju) =0, without loss of generality we may regard
x, uin C? as x=(1,0), u=(0, 1). Then ¥ is expressed as y=(z,, z;), Where
_
T 1402

(_eais+eﬂiS) .

1 . .
7= eazs+a2eﬂls , z
0= ),z

Hence
.

2 __
2ol =T a2

(1 +a*+2a2cos(x—pP)s),
20Z, = _ (—14e@ Pis _g2eB=ais 4 42)
(1 +a?)?
2a?
(1+a?)?
Since F(y)=7 ® 7, the above calculation shows that F(y) is of 1-type (with eigenfunction
e® B)is) in C(n + 1)2.

Case 2: t=0. Since {u, Jv) =1 =0, without loss of generality we may regard three
vectors x, u and v as: x=(1,0,0), u=(0, 1,0), v=(0, 0, 1) in C3. Then (1.6) implies that
5=(1/P)(2¢, 21 2;), Where zo=k?+cosls, z, =1+sinls, z,=k(1 —cosls) and I>=k*+1.
Hence a calculation yields that F(y)=7®7 is of 2-type (with eigenfunctions " and
ezlis) in Ct 1)2.

Case 3: 1#0, +1. We set cos B={Ju,v)=—1 so that f#0 (mod=n/2). Then
without loss of generality we may regard three vectors x, u and v as x=(1,0,0), u=
(0, —i-sinp, —i-cospB) and v=(0, 0, 1) in C3. So (1.8) implies that
1

?= (ZOS le Zz),

(@a—b)b—c)c—a)

(1 —cos(ax—B)s) .

|Z1|2=

where
2o = —(b—c)(1+bc)—(c —a)(1 + ca)e®™ — (a—b)1 + ab)e™ ,
z, =sin B{a(b —c)e** + b(c — a)e’™ + c(a— b) e} ,
z, =cos B{a(b— c)e*s + b(c — a)e*™ + c(a— b) e}
+k{(b—c)e"* +(c—a)e’ +(a—Db)e} .

Thus by a direct calculation, we see that the curve F(y)=5®7% in C®*1* is of 3-type
(with eigenfunctions @9, ¢~ 9is gnd ¢~ ), m

REMARK. Proposition 2 and Theorem 1 imply the following: Let y be a circle in
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CP"(4) and 5 a horizontal lift of y on $?"*!(1). Then
(1) 7 is of 1-type in C**! if and only if  ®7 is of 2-type in C** 17,
(2) 7 is of 2-type in C**! if and only if }®7 is of 1-type in C**1*,
(3) 7 is of 3-type in C**! if and only if  ®7 is of 3-type in C**1?,

3. Circles with complex torsion 7= +1.

The purpose of this section is to prove the following.

THEOREM 2. Let y be a curve in CP"(4). Then v is a geodesic or a circle with the
complex torsion t=1 or —1 in CP"(4) if and only if F(y) is of 1-type in R"®*?,

PrROOF. Let ¥ be a horizontal lift of y on S2"*1(1). We set j=z=(zq, * -, z,)€C"* 1.
First of all we recall that F(y)is of k-type in C*V* if and only if there exist a,," - -, @, € R
and ne C"* 1V’ satisfying

3.D ACzZR®2)+a, A" '(z@®2D)+ - +a,_ 1 Az®@ )+ a(z®2)+n=0,

where A= —d/ds? and s is the arc-length of y. We denote by V and V the Riemannian
connections of $2"*1(1) and C"*!, respectively. Let H be the mean curvature vector of
% in C"*! and h be the mean curvature vector of 5 in $2**1(1). We denote by D the
normal connection of § in C"*! and we put t=d/ds. Then we have

(3.2) H=h—z, Vz=t, Vit=H and DH=Dh.

It follows from (3.1) and (3.2) that F(y) is of 1-type if and only if there exist ne C**1*
and a, € R satisfying

(3.3) HRzZ+z@H+2t®t=n+a,:z®3).
Differentiating (3.3) in the direction of ¢ with respect to V and using (3.2), we obtain
(3.4) —Aut®Z+DhRi+HRQi+t@H—z@ Agt

+z@DAh+2H@®i+2t@H=0a,t®z+z®1),

where Ay is the shape operator of  with respect to H in C**!.

On the other hand, from the Frenet formula for 5 in $2"**(1) we can set V,t=k,v
and V,o= —k,t+k,w, where k, and k, are functions on 3. Hence, by using D,h =Dyk,v),
we get

(3.5) Dth=kllv+k1kzw .
Since A,= —1Id, we obtain
(3.6) Agt=(k?+1)t.

We here remark that Agt=Axt and D,i=D,h. From (3.4), (3.5) and (3.6) we obtain
the following equation for 7:
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3.7) ’1v®2+k1k2w®z'+3H®t'+3t®I7
+Kz@+kikz@W=(a, +kI+1)t®Z+z®1).

For simplicity we choose orthonormal vectors e,, e,, e; and e, in C"** as follows: Put
p=%0)=2(0)=(1,0, - -,0)=e; eC"** and u(=t(0)=(0, 1, - -, 0)=e,. Since Vi=kv,
(1.4) implies that v is horizontal, that is, (e;-component of v)=0. So we may choose
e, in such a way that the vector v is expressed as

v=(icos B)e, +(sin fe,

at p, where = {Ju, v)>. We set w=(ai, bi, c+di, ¢,0,- - -, 0). We choose e, such that ee R.
It follows from {w, v> =0 that bcos B+ csin f=0. So at p, w is expressed as

w=aie, +(in*sin f)e, +(—pu-cos f+di)es+e-e,,
where a, u, d, ee R. Moreover, we have

H=h—z=k,v—e, =(ik, cos B)e, +(k, sin f)e;—e,
at p. Substituting these equalities into (3.7), we obtain

(3.8) K {icos Ble,®e; —e, ®e,)+sin fle; ®es+es ®ey)}
+kyk,{ipsin (e, @ e; —e; ® e;)—pcos fles @ ey +e;, ® e3)
+difes ®e; —e; @e3)+e(e,®e; +e; ®ey)}
+3k,sinfle,@e;+e;Rey)=(a; +ki+4)(e;®e,+e,Pey).

Taking the (e; ® e, +¢e, ® e;)-component of (3.8), we get a, +k%+4=0 at p. Since p
can be chosen arbitrarily on J, k, is constant on .

First we consider the case where k, =0 on 7, that is, § is a horizontal great circle
in §2"*1(1), so that y is a geodesic in CP"(4). Hence F(y) is of 1-type in Cr+D? (cf.
section 1).

Next we consider the case where k, #0 on 7. By taking the (e, ®e; +e; ®e,)-
component of (3.8), we obtain k;k,e=0, that is, k,e=0. If k,=0 on 7, then ¥ is a
horizontal small circle of S2"*1(1), so that 7 is of 1-type in C"* . Thus F(y) is of 2-type
in C"*1? (see, Remark in Section 2). This is a contradiction. So, without loss of
generality we may assume that k, #0 at p. (Hence the continuity of k, guarantees that
there exists a positive number s, satisfying k, #0 on /o= {sl — 50 <5<S$o}). Thus e=0.
On the other hand, by taking the (e, ® e; +e3; ® e,)-component of (3.8), we get sin #=0.
Also, by taking the (e; ® e; + €3 ® e,)-component and the (e; ®e; —e; @ e;)-component
of (3.8), we get u=d=0. Hence w=aie,, so that w= tJz at p. Therefore w= +Jz on
I,, that is, the curve j satisfies V,t=k,v, Vo= —k 1+ k,Jz on I,. Since Jz is a vertical
vector, the curve y in CP"(4) is a circle on I, with curvature k,. By the assumption we
can see that the complex torsion 7 of y is 1 or —1 (see, Theorem 1). So (1.5) implies
that k,=|7|=1 on I,. Hence the continuity of k, tells us that w(s)=Jz(s) for any s
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(— oo <s<o0). Therefore the above discussion asserts that the curve 7 is a circle with
the complex torsion 1=1 or —1 in CP"(4). |

REMARK. We can restate Theorem 2 as follows:

THEOREM 2'. Let y be a curve in CP"(4). Then y is a geodesic or a circle with the
complex torsion t=1 or —1 in CP"(4) if and only if F(y) is a circle in R***?,

4. Circles with complex torsion 7=0.

In this section we study the class of curves y in CP"(4) satisfying that F(y) is of
2-type in C"*+ 17,
First we establish the following.

THEOREM 3. Let y be a curve in CP"(4). If F(y) is of 2-type in R"™*? then the
first curvature k| of y is constant along y.

Proor. It follows from (3.1) and (3.2) that F(y) is of 2-type if and only if there
exist ne C"*V* and a,, a, € R satisfying
(4.1) —{VdAp) ®Z+2@ V (At) +0(t, Ax) @+ 2R 0 (t, Aut)}
~ YAt ®T+1® Agh) +6H® H—(Ap 4t @ Z+2® Ap.at)
+(D?H®z+z®DIH)+4(D,HR®{+t® D,H)
+a,(H®Z+z@H+2t®@ 1 +a,(z®2)+n=0,
where ¢ is the second fundamental form of ¥ (which is a horizontal lift of y) in C**1.

By differentiating (4.1) in the direction of ¢ with respect to the Riemannian connection
V of C**1, from (3.2) we get

(42 —{VNAx)®Z+z@ Vi (Axt)+0(t, V,(Aut) ® 242 ® a(t, V,(A41))
+5V(Apt) ® T+ 5t ® Vi(Aut)} +(Ast arnt ® 2+ 2 ® A sprnt)
—{Dy(0(t, Aut) ® 2+ 2 ® D(0(t, Axt)} — 5{o(t, Aut) @ T+t R a(t, Ag1)}
—10(Agt® H+ H® Axt)+10(D,H ® H+ H ® D,H)
—{VdAput) ®Z+2z RV, Ap,ut)} —{0(t, Apgt) ® Z+2z R a(t, Ap ut)}
—5(Apat @I+t ® Ap ) — (Appt ®Z+2® Appgt) +(D?H ® 7+2z @ D H)
+5(D?H®i+1®D?H)+a,{—(Agt ® 7+ 2z ® Aut)+(D,H ® 7+ z ® D,H)
+3HRI+t1QH)}+a,(tQz+z®1)=0.

As a matter of course the following vectors are scalar multiples of ¢:

| VHAgt), Vi(Axt) s Aggamnt > Aut s V{Aput), Apyt, Apgt .
Also, from (3.2) and (3.5) we get D,H 1z sothat D!H 1Lz for I=1,2,- - -. Furthermore,
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it follows from (3.2), (3.5) and (3.6) that
o(t, Agt)=(k3 + ) H=(k? + 1)k,v—(k}+ 1)z,
D(a(t, Agt)) =2k ky(k,v—z)+(k?+1)D,H ,
o(t, V(Ayt)) =2k k' a(t, t) =2k, Kk (k,v—2),
o(t, Ap yt) =k, k1 H =k k\(k,v—2) .
Therefore by taking the (z ® Z+ Z ® z)-component of (4.2) we have
— 2k, k' + 2k k' + k, Kk} =0,
so that k, is constant along j. This is equivalent to saying that the first curvature of
y(=k,) is constant along vy (cf. (1.4)). : O
The main purpose of this section is to prove the following.

THEOREM 4. Let y be a curve in CP™(4). Then the first complex torsion t, of 7y is
zero and F(y) is of 2-type in R™"*2) if and only if y is either

(1) a circle which lies on some totally geodesic RP*(1) in CP"(4), or

(2) a helix of order 4 which lies on some totally geodesic CP*(4) in CP"(4) and

satisfies

V,t=klv, VIU=_k1t+k2JU,
V,(Jo)= —kyo+ky(—Jt), V{—Jt)=—kJv,

where V is the Riemannian connection of CP"(4), t=%, {t, Jv)=0 and 9k? + 2k3=18.

PROOF. Let $ be a horizontal lift of y on S2"*1(1). We denote by k; and k, the
first and the second curvatures of ¥, respectively.

First, we consider the case where k,=0 on j. In this case, y is of case (1) in our
Theorem (cf. Theorem 1 and [1]). So, we may assume that k,#0 at p=2z(0), so that
k,(s)#0 (—sqo <s<s,) for some s,>0. Now we shall prove that k, is constant.

It follows from Theorem 3 that the first curvature k, is constant so that V(4,t)=0.
Therefore, by a direct calculation, (4.2) becomes

4.3)

(B4) K(t®Zi+z®D+kky(a,—ki—1D)w®Z+z®W)
+k,(3a, —15k2 - 15 v @I+t ®0)—(Ba, — 15k —-15)z R I+t ® 2)
+10k2k,(W® T+ 0v Q@ W) — 10k k,(WR Z+2 @ W)
+5(D?H®i+t®DIH)+(D}H®z+:z® D3H)=0,
where K=(k?+1)>+k?k2—a,(k}+1)+a, .
By assumption, {z, t, v} is a totally real orthonormal frame along 3. It follows from

V.v=—k,t+k,w that Dp=k,w. Here D is the normal connection of $ in C***. Since
1={t, Jv) =0, without loss of generality we define canonical basis e,, e,, 5 in C"*!
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as: e; =2z(0)=%(0), e, =10), e3=0(0). We set w=aJz+uJt+cJv+fe,, where {z,t,v, e,}
is a totally real orthonormal frame along 5. Here a, u and ¢ are real-valued functions
on ¥, since w is perpendicular to z, ¢ and v. Note that in general f(=the coefficient of
e4) 1s a complex-valued function. But without loss of generality we may choose e, € C**1
in such a way that f(0) e R. Hence at the point p=%(0) we get

w=—aJz—uJt—cJu+fe, and ©v=v
so that
WRI+v®W=a(JzQ®v—v@J2)+u(Jt@v—v®Jt)+fle,Rv+v®e,).

By taking the (e, ® v+v® e4)-component of (4.4), we obtain f(0)=0, so that f=0,
because p is an arbitrary point on j. Therefore the vector w on j is expressed as

w=aJz+uJt+cJv.
Consequently, we have
WRI+v®W=a(JzQv—v@J2)+u(Jt@v—v® Jit),
WRZ+z@QW=u(Jt®@z—z@Jt)+c(Jv®z—z® Jv)

at p. Moreover, D?H, D3H 1 z, t. Thus by taking the t ® z+2z® t)-component of (4.4),
we get

K —(3a, —15k2—15)=0.
Since k,, a,, a, are constant, we see that k, is constant along 5. Now from
Vo=Vo=—kit+k,w,
we get
JV,o=—k,Jt—ak,z— puk,t —ck,v,
which implies
V,w=a’Jz+/1’Jt+c'Jv+aJt+,uk1Jv—qu—czkzv—clitécakzz—cukzt )
Hence ‘
4.5) Dw=(a'—wJz+ W +a—ck,)Jt—c?kw+(c' + pk,)Jv .
Since k, and k, are constant, Equation (3.5) shows

(4.6) DtH= k1k2W and Dle = klkthw .

‘From (4.5) and (4.6) we see at the point p=7%(0) that

4.7 D’H®i+t®DIH =k k,{(a —p)Jz®@t—t ® Jz)
— k(0@ t+t R v)+(¢' + pk N @t —t ® Jv)} .
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Now, by taking the (t ® v+ v ® t)-component of (4.4), from (4.7) we have at p that
(4.8) k,(3a, —15k? —15)—c%k,k%2=0.

Since p is an arbitrary fixed point and moreover k, and k, are nonzero constants, the
function ¢ is constant on j. Similarly, by taking the (Jt® v—v® Jt)-component of
(4.4) and using (4.7), we find u=0. Thus

w=aJz+cJv,

which implies that a is constant, because a?+c%=1. Hence

Viw=aJt+cJV,v,
~ which yields that
Vow=V,w=alt+cJV,v
=aJt+c(—k,Jt—ak,z —ck,v)
=(a—ck,)Jt—c?k,v—cak,z .
Since V,w L z, ca=0. Moreover, from Frenet formula we may put
Vow=—ko+k;w, .
Then we obtain
4.9 kyw,=(a—ck,)Jt+a%k,v .
Since k3w, L v, we know that a=0 and ky=k,. So (4.9) asserts that w=Jv. This implies
Vow= —k,o+k,(—Jt).
The following is trivial:
V(=Jt)=V,(=Jt)= —JH= —k,Jv+Jz.

Since Jz is a vertical vector, the above discussion shows that our curve y satisfies the
differential equations (4.3). Moreover the above computation yields

D?H =k k,w, —k,k3v+k kksw,
= —k,kv—k3k,Jt.
Hence
D}H = —k,k3(V,v)* —k?k,(JH)*
= —kk3w—kiky(k Jv—Jz)
= —kky(k2+k2)Jv+kik,Jz .
Therefore by taking the (Jv ® z—z ® Jv)-component and the (v ® ¢+t ® v)-component
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of (4.4) at p, we obtain
a,=11+2k?+k% and k;(3a,—15k?—-15)—5k,k3=0,

respectively.
From these equations we conclude that 9k2 +2k3=18. O

Next, we investigate the solutions of (4.3).

PROPOSITION 3. Let 5(s)=7%(s ; k)=(Ae'™, Be'’s, Ce'**) be a curve in C*, where

A=\/4-—k2—\ﬂ2—k2)(8—k2) B 2

b

28—k 5 12

b4

\/4—k2+\/(2—k2)(8—k2)
C=
2(8—k?3)

a=(/2—k*+8—k)/ /2, B=2-K/J2,
e=(/2—k*—/8—k) /2
and 0<k<\/_2_ . Then % is a horizontal curve (with arc-length parameter s) on S*(1).

Moreover n(3) is a helix in CP?(4) with the first curvature k and with the first complex
torsion 0 satisfying (4.3), where n : S>(1) » CP?(4) is the Hopf fibration.

SKETCH OF THE PROOF. A direct computation yields

GF,¥y=A*+B*+C?*=1,
(3, 9>=a?A2+ B?B*+e*C*=1,
{3, I3 =aA?+ BB2 +C2=0.

Hence 7 is a horizontal curve with arc-length parameter s in S°(1). In addition, a long
calculation yields that n(3) is a helix with the first curvature k£ and with the complex
torsion 0 in CP2%(4) satisfying (4.3). Here ¢ and v are expressed as

t =i(xde™, BBe's, eCe™),
v= (l/k)((l - aZ)Aeias’ (1 ——BZ)Bews, (1 _ 82) Ceiss) .

Finally, needless to say, we note that F(y) = F(7)) is of 2-type in C® with eigen-functions
ei(a—ﬁ)s and ei(a—a)s. D

As an immediate consequence of Theorem 4, we obtain the following.

THEOREM 5. Let y be a curve in CP"(4). Then v is a circle with complex torsion 0
in CP™(4) if and only if y lies on totally geodesic RP"(1) in CP"(4) and F(y) is of 2-type
in R"®*2),
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PROOF. Since y = RP"(1), each complex torsion of y is zero. In particular the first
complex torsion 7, of y is zero. So our curve satisfies the assumption of Theorem 4.
Note that (4.3) implies that the helix y of case (2) does not lie on RP"(1). Therefore the
result follows. 0

S. Circles with complex torsion 7#0, +1.

The purpose of this section is to characterize circles with complex torsion t#0, +1
in CP". First we give the following.

PROPOSITION 4. Lety be a curve in CP"(4) satisfying that F(y) is of 3-type in R*"* ),
If the first curvature k, of vy is constant, then the second curvature k, of a horizontal lift
% of y on §2"*1(1) is constant. Moreover, if the first complex torsion t, of y is constant,
then the second curvature of vy is also constant.

PrOOF. We use the same terminologies as in the proof of Theorem 4. Note that
V.(Axt) =2k, k't =0. By using this equality repeatedly, we obtain from (3.1) and (3.2) that
(5.1 {kI+1P2+k2kDHR®Z+2z @ H)+2k3k,k5(t ®z+2z® T)

—(Appt @2+ 2z® Apgt) + {32(k2 +1)2 + 12k2k3}(t ® 7)
—26(k>+1)D,H®F+t®DH)—(k*+1)(D?H® z+z® D?H)
—30(k? + 1)(H ® H)+20(D,H ® D,H)+ 15(D*H ® H + H ® DZH)
+6(DH®i+t®D3H)+(D*H ® z+z® D*H)

+a, {-8KkiI+1)tRDN—(K?+1)H®z+zQH)+6HR®H
+4D,H®F+t® D,H)+(D?H ® z+z ® D’H)}
+a,{(HR®Z+zQ H)+2(t® 1)} +a3z®2)+n=0.

Now we shall differentiate (5.1) in the direction of ¢ with respect to V and we pay
particular attention to z ® z-term. Then we have

(5.2) 2k H®Z+2@ H), 9:—(0(Apt, ) ® Z+2 @ o(Apet, 1) =0,

by virtue of D{H 1 z, where (%), & ; is the (z® z)-component of (*). From (3.5) we get
D,H =k k,w. So, the Frenet formulas imply

DIH =k, kyw+k k,Dw=k, kyw+k k,V,w=k, khw+k ky(—k,v+ksw,),
so that
D3H =k kyw +k,ky(— kv +kyw,)—k (k3)'v
—k k3(—k t+kow)+ (ki koks) wy + ki koks(—kaw+kaws) .
Hence we get

(5.3) o(t, Aput) = — 3k3k ko H = — (3/2)k3(Kk3) (kyv—2) .
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It follows from (5.2) and (5.3) that
— 4k} (k3) —3k3(k3) =0.

Therefore, the second curvature k, of § is constant, since k, is nonzero constant.
Combining this with (1.4) and using the hypothesis that the first complex torsion 7, of
y is constant, we conclude that the second curvature of y is constant. O

We are now in a position to prove the following.

THEOREM 6. Let y be a curve in CP™(4). Then y is a circle with the complex torsion
1#0, +1 in CP"(4) if and only if y satisfies the following five conditions.

(i) F(y) is of 3-type in R"®*2),

(ii) v lies on some totally geodesic CP?*(4) in CP"(4),

(iii) the first curvature of vy is constant,

(iv) the first complex torsion T, of y is constant but —1<1,(#0)<1, and

(v) the second complex torsion T, of y is zero.

PROOF. Let 3 be a horizontal lift of y on §2"*1(1). We choose a totally real
orthonormal frame {z, t(=%), e} along % in C3. On the other hand from the Frenet
formula for  in $°(1) we may put

Vtt=klv, V,U=—k1t+kzw, v,w=—-k20+k3wz,
Vth= “k3W+k4W3 N VtW3= —k4W2 B

Note that k, and k, are constant (see, Proposition 4). Put cos = {Jt, v)(= —1,). Since
v is horizontal, we get

(5.4) v=(cos B)Jt+(sin f)e .
Since w is perpendicular to z, t and v, we have
w=aJz+(usin f)Jt—(ucos fle+vJe .

By assumption (v) and (1.4), we get k,{w, Ju)=0. It follows from Proposition 4 that
k, is nonzero constant. If k, =0, then 7 is of 1-type in C***. Hence Theorem 1 implies
that F(y) is of 2-type in C**V? which is a contradiction. Therefore, {w, Jv) =vsin =0
on y. Hence the assumption (iv) yields v=0 on 7. Hence we have

(5.5) w=aJz+ (usin B)Jt—(ucos e,

where a and u are real-valued functions on 7 satisfying a? + u2=1. Our next aim is to
prove that u=0.
From (5.5) we get

Vo=V,0=—kt+k,w
= —kt+ak,Jz+(uk, sin )Jt —(uk, cos B)e .
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On the other hand, (5.4) yields
V,v=cos BJH +sin fV,e
=cos fk,Jv—cos BJz+sin fV,e
= —cos? Bk,t+(k, cos Bsin f)Je—cos fJz+sin fV,e .
Since the assumption (iv) shows that sin f#0, these equalities yield
(5.6) V,e=(ak, cosec B+ cot f)Jz —sin Bkt
+ pk,Jt —(uk, cot f)e—(k, cos B)Je .
Similarly we find
Vow=V,w=—k,v+k;w,
= —(k, cos B)Jt—(k, sin f)e + kyw,
as well as .
V.w=aJt+ usin Bk, Jv—Jz)—(ucos B)V,e+a'Jz+ (i sin B)Jt — (i cos P)e .
It follows from these relations and (5.6) that
ksw,={a’'— usin f— u(ak, cot B+ cos f cot f)}(Jz)

+(k, cos B+ ' sin B+ a— u?k, cos B)Jt)

+(k, sin B— i’ cos B+ uk, cos Bcot Ble+k u(Je) .
Since (v, k3w, » =0, this asserts
5.7 k,+acosf=0.
Hence a and b are constant. Thus from these relations we obtain
(5.8) ksw, =(1 —k3){ — (ucosec B)(Jz) + a(Jt)+ (k, cosec f)e} + k,ule .
This shows that k5 is constant. It follows from (5.6) and (5.7) that
(5.9 V.e=(u?cot p)Jz —(k, sin B)t + pk,Jt + (uk, cot B)e—(k, cos B)Je .
Now from (5.5) we have

kyVow, = — k2w + kyk,ws

= —kZaJz —(uk? sin B)Jt + (uk3 cos e+ k3k,ws .

On the other hand, since k5 is constant, (5.8) and (5.9) imply
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k¥, w,= —(1 —k3)ucosec BJt —ak,(1 —k3)cos Bt
+ak,(1—k2)sin pJe—a(1 —k3)Jz
+ (1 —k2)k, cosec B{(u? cot B)Jz)
—(ky sin B)t + uk,Jt — (uk, cot B)e —(k, cos B)Je}
ki — (% cot Bz —(k, sin B)J1—(uky)t
—(uk, cot B)Je+(k, cos fB)e} .
Thus we obtain
kskyawy = —(k p> cot f)z
+ {ak3 —a(1 —k2)+ u* cosec Bk (1 —k3) cot B} Jz
—{ak(1—k3)cos B— p*k k, —kyky(1 —k3)} ¢
+ {uk3 sin B — (1 — k3)u cosec B+ pk3(1 —k3) cosec f—kipusin B} Jt
+ { — uk3(1 — k%) cosec B cot B— uk3 cosec -+ kipcos fle
+ {ak,(1 —k3)sin B—k k(1 —k3)cosec fcos f—k,u*k, cot B} Je .
Since kik,w; Lz, it follows that k,u®cot =0, so that, u=0. Therefore w=+Jz. O

REMARKS. (1) Theorem 6 does not hold if we remove the condition (v). In fact,
by a direct calculation we can establish the following:

PROPOSITION 5. Let

3 .
7<s)=<‘/; e

2

V14 e2is 5/ 42 e—4is/5)

14 > 42

be a curve in C3. Then n(3) is a helix with the second complex torsion 1,= —ﬁ /2 in
CP"(4) satisfying the conditions (i), (ii), (iii) and (iv) in Theorem 6. The Frenet formula
for n(y) in CP"(4) is given by

.

V);u1=3 52 u,,

V,;u2=—3\§E u, + llf us,
J

Vius;=— llf u2¥\/2—5u4,
LV);u4=——\/2?u3,



where

.
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U, =1

(f f W4 /)

21

"y 5/2 (0, _3/14 s 3/ 42 e_ws)’
6 14 70
u3=i< \/? eis o 3\/ 14 e2is — \/4;2 e—4is/5> ,

b b

u =(_\/€eis ﬁe2is 5\/ 21 e—4is/5>.
4 3 7 14 7 42

(2) It is known that every helix in a Euclidean space R™ is a curve of finite type.
But the converse is not true. The class of curves of finite type in R™ is too large to
classify. We remark that for a circle y with the complex torsion 7 in CP*(4) the curve
F(y) is a helix of order 2, 4 or 6 in R"*2 according as t==+1, 7=0 or 7#0, +1.
Furthermore, the curve F(y) is not necessarily closed when 7#0, +1 (see, [1]).
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