Extrinsic Characterizations of Circles in a Complex Projective Space Imbedded in a Euclidean Space

Bang-Yen CHEN and Sadahiro MAEDA

Michigan State University and Shimane University (Communicated by T. Ishikawa)

0. Introduction.

It is well-known that a curve on a sphere S^2 in R^3 is a geodesic (that is, a great circle) or a (small) circle if and only if it is a circle as a curve in R^3 . This can be considered as an *extrinsic* characterization of circles on S^2 in R^3 .

On the other hand, Adachi, Udagawa and the second author ([1]) investigate circles in a complex projective space $CP^n(c)$ of constant holomorphic sectional curvature c. Moreover it is known that $CP^n(c)$ can be imbedded in $R^{n(n+2)}$ by using the eigenfunctions associated with the first eigenvalue of the Laplacian. Note that the imbedding of S^2 in R^3 is nothing but the case where n=1.

The main purpose of this paper is to give some *extrinsic* characterizations of circles in $\mathbb{C}P^n(c)$ imbedded in $\mathbb{R}^{n(n+2)}$ (cf. Theorems 2, 5 and 6), which can be considered as generalizations of the above-mentioned well-known result. The notion of finite type submanifolds introduced by the first author ([2]) plays an important role.

Both authors would like to express their thanks to Professor K. Ogiue for his valuable suggestion during the preparation of this paper.

1. Preliminaries.

Let (M, \langle , \rangle) be an *n*-dimensional Riemannian manifold. A curve $\gamma: I \to M$ is called a *helix* (parametrized by its arc length s) of order $d(\leq n)$ if there exist an orthonormal system $\{V_1 = \dot{\gamma}, V_2, \cdots, V_d\}$ along γ and positive constants $\{k_1, \cdots, k_{d-1}\}$ which satisfy the system of ordinary differential equations

$$\nabla_{\dot{\gamma}} V_i \! = - k_{i-1} V_{i-1} \! + \! k_i V_{i+1}$$

for $1 \le i \le d$, where $V_0 = V_{d+1} = 0$ and $\nabla_{\dot{\gamma}}$ denotes the covariant differentiation along γ with respect to the Riemannian connection ∇ of M. When d = 2, the curve γ is called

a circle. The second author and Ohnita ([4]) study helixes γ in a non-flat complex space form M(c), by using continuous functions $\tau_{ij}(s) = \langle V_i(s), JV_j(s) \rangle$ on γ for $1 \le i < j \le d$, where $\{V_1, \dots, V_d\}$ is a system of curvature vectors of γ and J is the complex structure of M(c). The functions τ_{ij} are called the complex torsions of γ . In particular, τ_{12} and τ_{23} are called the first and the second complex torsions of γ , respectively. For simplisity we denote τ_{12} and τ_{23} by τ_1 and τ_2 , respectively. When γ is a circle on a Kaehler manifold, we only have the first complex torsion τ_1 . Moreover the complex torsion is constant along a circle on a Kaehler manifold. In fact, we have

$$\begin{split} \nabla_{\vec{\gamma}} \langle V_1, J V_2 \rangle &= \langle \nabla_{\vec{\gamma}} V_1, J V_2 \rangle + \langle V_1, J \nabla_{\vec{\gamma}} V_2 \rangle \\ &= k_1 \cdot \langle V_2, J V_2 \rangle - k_1 \cdot \langle V_1, J V_1 \rangle = 0 \; . \end{split}$$

Using this fact and the fact that an *n*-dimensional complex projective space $\mathbb{C}P^n(4)$ is a base manifold of the principal S^1 -bundle $\pi: S^{2n+1}(1) \to \mathbb{C}P^n(4)$, we can investigate the circles in a complex projective space.

In this paper, we apply two main tools to provide extrinsic characterizations of circles in $\mathbb{C}P^n(4)$. One is the first standard (isometric) imbedding F of $\mathbb{C}P^n(4)$ into Euclidean space $\mathbb{R}^{n(n+2)}$. The map $F: \mathbb{C}P^n(4) \to \mathbb{R}^{n(n+2)}$ is defined as

$$F: CP^{n}(4) \xrightarrow{\text{minimal}} S^{n(n+2)-1}\left(\frac{2(n+1)}{n}\right) \xrightarrow{\text{totally umbilic}} R^{n(n+2)}.$$

The map F has various geometric properties. For instance, the second fundamental form of F is parallel and the image of a geodesic of $\mathbb{C}P^n(4)$ under the map F is a circle (in the usual sense of Euclidean geometry) with curvature 2 in $\mathbb{R}^{n(n+2)}$ (see, [6]).

On the other hand, consider the map $\tilde{F}: C^{n+1} \to C^{(n+1)^2}$ defined by

(1.1)
$$\widetilde{F}(z) = z \otimes \overline{z} = (z_i \overline{z_j})_{0 \le i, j \le n},$$

where $z = (z_0, \dots, z_n) \in C^{n+1}$. Since it holds that $\tilde{F}(\kappa z) = \tilde{F}(z)$ for $\kappa \in C$ satisfying $|\kappa| = 1$, we may regard \tilde{F} as a mapping of $CP^n(4)$ into $C^{(n+1)^2}$, where z_0, \dots, z_n are regarded as homogeneous coordinates in $CP^n(4)$ satisfying $\sum_{i=0}^n z_i \overline{z_i} = 1$. It is well-known that the map \tilde{F} can be decomposed as

$$\widetilde{F}: CP^{n}(4) \xrightarrow{\text{minimal}} S^{n(n+2)-1}\left(\frac{2(n+1)}{n}\right) \xrightarrow{\text{totally umbilic}} R^{n(n+2)}$$

$$\xrightarrow{\text{totally geodesic}} C^{(n+1)^{2}} \left(=R^{2(n+1)^{2}}\right).$$

In the following, we mix the map $F: \mathbb{C}P^n(4) \to \mathbb{R}^{n(n+2)}$ and the map $\widetilde{F}: \mathbb{C}P^n(4) \to \mathbb{C}^{(n+1)^2}$.

The other is the notion of finite type submanifolds introduced by the first author more than a decade ago. Here we review this notion briefly. A Riemannian submanifold M (not necessarily compact) of R^m is said to be of *finite type* if each component of its position vector $X: M \to R^m$ can be written as a finite sum of eigenfunctions of the

Laplacian Δ of M, that is,

(1.2)
$$X = X_0 + \sum_{i=1}^k X_i,$$

where X_0 is a constant vector and $\Delta X_i = \lambda_i X_i$, $i = 1, 2, \dots, k$. Here we denote the isometric immersion of M into R^m by the same letter X. If, in particular, all eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ are mutually different, then M is said to be of k-type. The decomposition (1.2) is called the spectral decomposition of the isometric immersion X (cf. [2], for details).

In terms of the theory of finite type submanifolds, a well-known result of Takahashi ([7]) can be restated as follows: A submanifold of R^m is of 1-type if and only if it is either a minimal submanifold of R^m or a minimal submanifold of a hypersphere of R^m .

Let M be a finite type submanifold whose spectral decomposition is given by (1.2). If we define a polynomial P by

$$(1.3) P(t) = \prod_{i=1}^{k} (t - \lambda_i),$$

then $P(\Delta)(X-X_0)=0$. The polynomial P is called the *minimal polynomial* of the finite type submanifold M. It is proved in [2, 3] that if M is compact and if there exists a constant vector X_0 and nontrivial polynomial P such that $P(\Delta)(X-X_0)=0$, then M is of finite type (see, [2]). By virtue of this characterization we can algebraically deal with finite type submanifolds. If M is non-compact, then the existence of a nontrivial polynomial P satisfying $P(\Delta)(X-X_0)=0$ does not imply that M is of finite type in general. However, if M is 1-dimensional, then the existence of the polynomial P satisfying the above condition guarantees that M is of finite type (see, [3]).

Finally we review the fundamental results about circles in $\mathbb{C}P^n$. Let N be the outward unit normal on the unit sphere $S^{2n+1}(1) \subset \mathbb{R}^{2n+2} = \mathbb{C}^{n+1}$. We denote by J the natural complex structure on \mathbb{C}^{n+1} . In the following we mix the complex structures of \mathbb{C}^{n+1} and $\mathbb{C}P^n(4)$. The relation between the Riemannian connection ∇ of $\mathbb{C}P^n(4)$ and the Riemannian connection $\widetilde{\nabla}$ of $S^{2n+1}(1)$ is given by (see, $\lceil 5 \rceil$)

(1.4)
$$\tilde{\nabla}_X Y = \nabla_X Y + \langle X, JY \rangle JN$$

for any vector fields X and Y on $\mathbb{C}P^n(4)$, where \langle , \rangle is the natural metric on \mathbb{C}^{n+1} . For the sake of simplicity, we identify a vector field on $\mathbb{C}P^n(4)$ with its horizontal lift on $S^{2n+1}(1)$.

In order to prove Theorem 1 in section 2, we recall the following results (for details, see [1]).

PROPOSITION 1. Let γ be a circle with the complex torsion τ in $CP^n(4)$ satisfying $\nabla_{\dot{\gamma}}\dot{\gamma} = kY$ and $\nabla_{\dot{\gamma}}Y = -k\dot{\gamma}$. Then a horizontal lift $\tilde{\gamma}$ of γ in $S^{2n+1}(1)$ is a helix of order 2, 3 or 5 in $S^{2n+1}(1)$ according as $\tau = 0$, $\tau = \pm 1$ or $\tau \neq 0$, ± 1 , respectively. Moreover $\tilde{\gamma}$

satisfies the differential equations

(1.5)
$$\begin{cases} \tilde{\nabla}_{\dot{\gamma}} \dot{\gamma} = kY, \\ \tilde{\nabla}_{\dot{\gamma}} Y = -k \dot{\gamma} + \tau J N, \\ \tilde{\nabla}_{\dot{\gamma}} J N = -\tau Y + \sqrt{1 - \tau^2} Z, \\ \tilde{\nabla}_{\dot{\gamma}} Z = -\sqrt{1 - \tau^2} J N + kW, \\ \tilde{\nabla}_{\dot{\gamma}} W = -kZ, \end{cases}$$

where
$$Z = 1/\sqrt{1-\tau^2} \cdot (J\dot{\gamma} + \tau Y)$$
 and $W = 1/\sqrt{1-\tau^2} \cdot (JY - \tau \dot{\gamma})$.

PROPOSITION 2. Let γ be a circle with the complex torsion τ in $CP^n(4)$ satisfying $\nabla_{\dot{\gamma}}\dot{\gamma}=kY$ and $\nabla_{\dot{\gamma}}Y=-k\dot{\gamma}$. If a horizontal lift $\tilde{\gamma}$ of γ on $S^{2n+1}(1)$ satisfies the initial conditions $\tilde{\gamma}(0)=x$, $\dot{\tilde{\gamma}}(0)=u$ and $\ddot{\tilde{\gamma}}(0)+\tilde{\gamma}(0)=kv$, then $\tilde{\gamma}$ is expressed as follows:

(1) When $\tau = 0$,

(1.6)
$$\tilde{\gamma}(s) = \frac{k}{k^2 + 1}(kx + v) + \frac{\cos(\sqrt{k^2 + 1}s)}{k^2 + 1}(x - kv) + \frac{\sin(\sqrt{k^2 + 1}s)}{\sqrt{k^2 + 1}}u.$$

(2) When $\tau = \pm 1$,

(1.7)
$$\tilde{\gamma}(s) = \frac{1}{1+\alpha^2} (e^{\alpha is} + \alpha^2 e^{\beta is}) x + \frac{\alpha}{1+\alpha^2} (-e^{\alpha is} + e^{\beta is}) Ju,$$

where $\alpha + \beta = \mp k$ and $\alpha\beta = -1$.

(3) When $\tau \neq 0, \pm 1$,

(1.8)
$$\tilde{\gamma}(s) = Ae^{ais} + Be^{bis} + Ce^{cis}.$$

where a+b+c=0, $ab+bc+ca=-k^2-1$, $abc=-\tau k$ and

$$A = \frac{1}{(a-b)(c-a)} \left\{ -(1+bc)x + aJu + kv \right\},$$

$$B = \frac{1}{(b-c)(a-b)} \left\{ -(1+ca)x + bJu + kv \right\},$$

$$C = \frac{1}{(c-a)(b-c)} \left\{ -(1+ab)x + cJu + kv \right\}.$$

2. The image $F(\gamma)$ of a circle γ .

THEOREM 1. Let F be the first standard imbedding of $CP^n(4)$ into $R^{n(n+2)}$. Then the image $F(\gamma)$ of a circle γ in $CP^n(4)$ with complex torsion τ is of 1-type, 2-type or 3-type in $R^{n(n+2)}$ according as $\tau = \pm 1$, $\tau = 0$ or $\tau \neq \pm 1$, 0.

PROOF. Let γ be a circle with the complex torsion τ in $\mathbb{C}P^n(4)$ and $\tilde{\gamma}$ a horizontal lift of γ on $S^{2n+1}(1)$. Our discussion is divided into three cases.

Case 1: $\tau = \pm 1$. It follows from (1.7) that $\tilde{\gamma}$ lies on the linear subspace C^2 spanned by $\{x, Jx, u, Ju\}$. Since $\langle x, u \rangle = \langle x, Ju \rangle = 0$, without loss of generality we may regard x, u in C^2 as x = (1, 0), u = (0, 1). Then $\tilde{\gamma}$ is expressed as $\tilde{\gamma} = (z_0, z_1)$, where

$$z_0 = \frac{1}{1+\alpha^2} (e^{\alpha is} + \alpha^2 e^{\beta is}), \qquad z_1 = \frac{i\alpha}{1+\alpha^2} (-e^{\alpha is} + e^{\beta is}).$$

Hence

$$|z_0|^2 = \frac{1}{(1+\alpha^2)^2} (1+\alpha^4 + 2\alpha^2 \cos(\alpha - \beta)s),$$

$$z_0 \overline{z_1} = -\frac{i\alpha}{(1+\alpha^2)^2} (-1 + e^{(\alpha - \beta)is} - \alpha^2 e^{(\beta - \alpha)is} + \alpha^2),$$

$$|z_1|^2 = \frac{2\alpha^2}{(1+\alpha^2)^2} (1 - \cos(\alpha - \beta)s).$$

Since $F(\gamma) = \tilde{\gamma} \otimes \overline{\tilde{\gamma}}$, the above calculation shows that $F(\gamma)$ is of 1-type (with eigenfunction $e^{(\alpha-\beta)is}$) in $C^{(n+1)^2}$.

Case 2: $\tau=0$. Since $\langle u, Jv \rangle = \tau=0$, without loss of generality we may regard three vectors x, u and v as: x=(1,0,0), u=(0,1,0), v=(0,0,1) in C^3 . Then (1.6) implies that $\tilde{\gamma}=(1/l^2)(z_0,z_1,z_2)$, where $z_0=k^2+\cos ls$, $z_1=l\cdot\sin ls$, $z_2=k(1-\cos ls)$ and $l^2=k^2+1$. Hence a calculation yields that $F(\gamma)=\tilde{\gamma}\otimes\tilde{\gamma}$ is of 2-type (with eigenfunctions e^{lis} and e^{2lis}) in $C^{(n+1)^2}$.

Case 3: $\tau \neq 0$, ± 1 . We set $\cos \beta = \langle Ju, v \rangle = -\tau$ so that $\beta \neq 0 \pmod{\pi/2}$. Then without loss of generality we may regard three vectors x, u and v as x = (1, 0, 0), $u = (0, -i \cdot \sin \beta, -i \cdot \cos \beta)$ and v = (0, 0, 1) in C^3 . So (1.8) implies that

$$\tilde{\gamma} = \frac{1}{(a-b)(b-c)(c-a)}(z_0, z_1, z_2),$$

where

$$\begin{split} z_0 &= -(b-c)(1+bc) - (c-a)(1+ca)e^{bis} - (a-b)(1+ab)e^{cis} \;, \\ z_1 &= \sin\beta \big\{ a(b-c)e^{ais} + b(c-a)e^{bis} + c(a-b)e^{cis} \big\} \;, \\ z_2 &= \cos\beta \big\{ a(b-c)e^{ais} + b(c-a)e^{bis} + c(a-b)e^{cis} \big\} \\ &\quad + k \big\{ (b-c)e^{ais} + (c-a)e^{bis} + (a-b)e^{cis} \big\} \;. \end{split}$$

Thus by a direct calculation, we see that the curve $F(\gamma) = \tilde{\gamma} \otimes \overline{\tilde{\gamma}}$ in $C^{(n+1)^2}$ is of 3-type (with eigenfunctions $e^{(a-b)is}$, $e^{(b-c)is}$ and $e^{(c-a)is}$).

REMARK. Proposition 2 and Theorem 1 imply the following: Let γ be a circle in

 $CP^{n}(4)$ and $\tilde{\gamma}$ a horizontal lift of γ on $S^{2n+1}(1)$. Then

- (1) $\tilde{\gamma}$ is of 1-type in C^{n+1} if and only if $\tilde{\gamma} \otimes \overline{\tilde{\gamma}}$ is of 2-type in $C^{(n+1)^2}$.
- (2) $\tilde{\gamma}$ is of 2-type in C^{n+1} if and only if $\tilde{\gamma} \otimes \overline{\tilde{\gamma}}$ is of 1-type in $C^{(n+1)^2}$.
- (3) $\tilde{\gamma}$ is of 3-type in C^{n+1} if and only if $\tilde{\gamma} \otimes \overline{\tilde{\gamma}}$ is of 3-type in $C^{(n+1)^2}$.

3. Circles with complex torsion $\tau = \pm 1$.

The purpose of this section is to prove the following.

THEOREM 2. Let γ be a curve in $CP^n(4)$. Then γ is a geodesic or a circle with the complex torsion $\tau = 1$ or -1 in $CP^n(4)$ if and only if $F(\gamma)$ is of 1-type in $R^{n(n+2)}$.

PROOF. Let $\tilde{\gamma}$ be a horizontal lift of γ on $S^{2n+1}(1)$. We set $\tilde{\gamma} = z = (z_0, \dots, z_n) \in C^{n+1}$. First of all we recall that $F(\gamma)$ is of k-type in $C^{(n+1)^2}$ if and only if there exist $a_1, \dots, a_k \in R$ and $\eta \in C^{(n+1)^2}$ satisfying

(3.1)
$$\Delta^{k}(z \otimes \bar{z}) + a_{1}\Delta^{k-1}(z \otimes \bar{z}) + \cdots + a_{k-1}\Delta(z \otimes \bar{z}) + a_{k}(z \otimes \bar{z}) + \eta = 0,$$

where $\Delta = -d/ds^2$ and s is the arc-length of γ . We denote by $\tilde{\nabla}$ and $\bar{\nabla}$ the Riemannian connections of $S^{2n+1}(1)$ and C^{n+1} , respectively. Let H be the mean curvature vector of $\tilde{\gamma}$ in C^{n+1} and h be the mean curvature vector of $\tilde{\gamma}$ in $S^{2n+1}(1)$. We denote by D the normal connection of $\tilde{\gamma}$ in C^{n+1} and we put t = d/ds. Then we have

(3.2)
$$H = h - z$$
, $\nabla_t z = t$, $\nabla_t t = H$ and $D_t H = D_t h$.

It follows from (3.1) and (3.2) that $F(\gamma)$ is of 1-type if and only if there exist $\eta \in C^{(n+1)^2}$ and $a_1 \in R$ satisfying

$$(3.3) H \otimes \bar{z} + z \otimes \bar{H} + 2t \otimes \bar{t} = \eta + a_1(z \otimes \bar{z}).$$

Differentiating (3.3) in the direction of t with respect to ∇ and using (3.2), we obtain

$$(3.4) -A_H t \otimes \bar{z} + D_t h \otimes \bar{z} + H \otimes \bar{t} + t \otimes \bar{H} - z \otimes A_{\bar{H}} t + z \otimes D_t \bar{h} + 2H \otimes \bar{t} + 2t \otimes \bar{H} = a_1(t \otimes \bar{z} + z \otimes \bar{t}),$$

where A_H is the shape operator of $\tilde{\gamma}$ with respect to H in C^{n+1} .

On the other hand, from the Frenet formula for $\tilde{\gamma}$ in $S^{2n+1}(1)$ we can set $\tilde{\nabla}_t t = k_1 v$ and $\tilde{\nabla}_t v = -k_1 t + k_2 w$, where k_1 and k_2 are functions on $\tilde{\gamma}$. Hence, by using $D_t h = D_t(k_1 v)$, we get

$$(3.5) D_1 h = k_1' v + k_1 k_2 w.$$

Since $A_z = -Id$, we obtain

$$(3.6) A_H t = (k_1^2 + 1)t.$$

We here remark that $A_H t = \overline{A_H t}$ and $D_t \overline{h} = \overline{D_t h}$. From (3.4), (3.5) and (3.6) we obtain the following equation for $\tilde{\gamma}$:

(3.7)
$$k'_1 v \otimes \bar{z} + k_1 k_2 w \otimes \bar{z} + 3H \otimes \bar{t} + 3t \otimes \bar{H}$$
$$+ k'_1 z \otimes \bar{v} + k_1 k_2 z \otimes \bar{w} = (a_1 + k_1^2 + 1)(t \otimes \bar{z} + z \otimes \bar{t}) .$$

For simplicity we choose orthonormal vectors e_1 , e_2 , e_3 and e_4 in C^{n+1} as follows: Put $p = \tilde{\gamma}(0) = z(0) = (1, 0, \dots, 0) = e_1 \in C^{n+1}$ and $u(=t(0)) = (0, 1, \dots, 0) = e_2$. Since $\tilde{\nabla}_t t = k_1 v$, (1.4) implies that v is horizontal, that is, $(e_1$ -component of v) = 0. So we may choose e_3 in such a way that the vector v is expressed as

$$v = (i\cos\beta)e_2 + (\sin\beta)e_3$$

at p, where $\beta = \langle Ju, v \rangle$. We set $w = (ai, bi, c + di, e, 0, \dots, 0)$. We choose e_4 such that $e \in R$. It follows from $\langle w, v \rangle = 0$ that $b \cos \beta + c \sin \beta = 0$. So at p, w is expressed as

$$w = aie_1 + (i\mu \cdot \sin \beta)e_2 + (-\mu \cdot \cos \beta + di)e_3 + e \cdot e_4,$$

where $a, \mu, d, e \in R$. Moreover, we have

$$H = h - z = k_1 v - e_1 = (ik_1 \cos \beta)e_2 + (k_1 \sin \beta)e_3 - e_1$$

at p. Substituting these equalities into (3.7), we obtain

$$(3.8) k'_1 \{ i \cos \beta (e_2 \otimes e_1 - e_1 \otimes e_2) + \sin \beta (e_1 \otimes e_3 + e_3 \otimes e_1) \}$$

$$+ k_1 k_2 \{ i \mu \sin \beta (e_2 \otimes e_1 - e_1 \otimes e_2) - \mu \cos \beta (e_3 \otimes e_1 + e_1 \otimes e_3)$$

$$+ di(e_3 \otimes e_1 - e_1 \otimes e_3) + e(e_4 \otimes e_1 + e_1 \otimes e_4) \}$$

$$+ 3k_1 \sin \beta (e_2 \otimes e_3 + e_3 \otimes e_2) = (a_1 + k_1^2 + 4)(e_1 \otimes e_2 + e_2 \otimes e_1) .$$

Taking the $(e_1 \otimes e_2 + e_2 \otimes e_1)$ -component of (3.8), we get $a_1 + k_1^2 + 4 = 0$ at p. Since p can be chosen arbitrarily on $\tilde{\gamma}$, k_1 is constant on $\tilde{\gamma}$.

First we consider the case where $k_1 \equiv 0$ on $\tilde{\gamma}$, that is, $\tilde{\gamma}$ is a horizontal great circle in $S^{2n+1}(1)$, so that γ is a geodesic in $CP^n(4)$. Hence $F(\gamma)$ is of 1-type in $C^{(n+1)^2}$ (cf. section 1).

Next we consider the case where $k_1 \neq 0$ on $\tilde{\gamma}$. By taking the $(e_4 \otimes e_1 + e_1 \otimes e_4)$ -component of (3.8), we obtain $k_1k_2e=0$, that is, $k_2e=0$. If $k_2\equiv 0$ on $\tilde{\gamma}$, then $\tilde{\gamma}$ is a horizontal small circle of $S^{2n+1}(1)$, so that $\tilde{\gamma}$ is of 1-type in C^{n+1} . Thus $F(\gamma)$ is of 2-type in $C^{(n+1)^2}$ (see, Remark in Section 2). This is a contradiction. So, without loss of generality we may assume that $k_2 \neq 0$ at p. (Hence the continuity of k_2 guarantees that there exists a positive number s_0 satisfying $k_2 \neq 0$ on $I_0 = \{s \mid -s_0 < s < s_0\}$). Thus e=0. On the other hand, by taking the $(e_2 \otimes e_3 + e_3 \otimes e_2)$ -component of (3.8), we get $\sin \beta = 0$. Also, by taking the $(e_1 \otimes e_3 + e_3 \otimes e_1)$ -component and the $(e_3 \otimes e_1 - e_1 \otimes e_3)$ -component of (3.8), we get $\mu = d = 0$. Hence $w = aie_1$, so that $w = \pm Jz$ at p. Therefore $w = \pm Jz$ on I_0 , that is, the curve $\tilde{\gamma}$ satisfies $\tilde{\nabla}_t t = k_1 v$, $\tilde{\nabla}_t v = -k_1 t \pm k_2 Jz$ on I_0 . Since Jz is a vertical vector, the curve γ in $CP^n(4)$ is a circle on I_0 with curvature k_1 . By the assumption we can see that the complex torsion τ of γ is 1 or -1 (see, Theorem 1). So (1.5) implies that $k_2 = |\tau| = 1$ on I_0 . Hence the continuity of k_2 tells us that w(s) = Jz(s) for any s

 $(-\infty < s < \infty)$. Therefore the above discussion asserts that the curve γ is a circle with the complex torsion $\tau = 1$ or -1 in $\mathbb{C}P^n(4)$.

REMARK. We can restate Theorem 2 as follows:

THEOREM 2'. Let γ be a curve in $\mathbb{CP}^n(4)$. Then γ is a geodesic or a circle with the complex torsion $\tau = 1$ or -1 in $\mathbb{CP}^n(4)$ if and only if $F(\gamma)$ is a circle in $\mathbb{R}^{n(n+2)}$.

4. Circles with complex torsion $\tau = 0$.

In this section we study the class of curves γ in $\mathbb{C}P^n(4)$ satisfying that $F(\gamma)$ is of 2-type in $\mathbb{C}^{(n+1)^2}$.

First we establish the following.

THEOREM 3. Let γ be a curve in $CP^n(4)$. If $F(\gamma)$ is of 2-type in $R^{n(n+2)}$, then the first curvature k_1 of γ is constant along γ .

PROOF. It follows from (3.1) and (3.2) that $F(\gamma)$ is of 2-type if and only if there exist $\eta \in C^{(n+1)^2}$ and $a_1, a_2 \in R$ satisfying

$$(4.1) -\{\nabla_{t}(A_{H}t) \otimes \bar{z} + z \otimes \overline{\nabla_{t}(A_{H}t)} + \sigma(t, A_{H}t) \otimes \bar{z} + z \otimes \overline{\sigma(t, A_{H}t)}\}$$

$$-4(A_{H}t \otimes \bar{t} + t \otimes \overline{A_{H}t}) + 6H \otimes \overline{H} - (A_{D_{t}H}t \otimes \bar{z} + z \otimes \overline{A_{D_{t}H}t})$$

$$+(D_{t}^{2}H \otimes \bar{z} + z \otimes \overline{D_{t}^{2}H}) + 4(D_{t}H \otimes \bar{t} + t \otimes \overline{D_{t}H})$$

$$+a_{1}(H \otimes \bar{z} + z \otimes \overline{H} + 2t \otimes \bar{t}) + a_{2}(z \otimes \bar{z}) + \eta = 0 ,$$

where σ is the second fundamental form of $\tilde{\gamma}$ (which is a horizontal lift of γ) in C^{n+1} . By differentiating (4.1) in the direction of t with respect to the Riemannian connection ∇ of C^{n+1} , from (3.2) we get

$$(4.2) \qquad -\{\nabla_{t}^{2}(A_{H}t) \otimes \bar{z} + z \otimes \overline{\nabla_{t}^{2}(A_{H}t)} + \sigma(t, \nabla_{t}(A_{H}t)) \otimes \bar{z} + z \otimes \overline{\sigma(t, \nabla_{t}(A_{H}t))} \\ + 5\nabla_{t}(A_{H}t) \otimes \bar{t} + 5t \otimes \overline{\nabla_{t}(A_{H}t)} \} + (A_{\sigma(t,A_{H}t)}t \otimes \bar{z} + z \otimes \overline{A_{\sigma(t,A_{H}t)}t}) \\ - \{D_{t}(\sigma(t, A_{H}t)) \otimes \bar{z} + z \otimes \overline{D_{t}}(\sigma(t, A_{H}t)) \} - 5\{\sigma(t, A_{H}t) \otimes \bar{t} + t \otimes \overline{\sigma(t, A_{H}t)} \} \\ - 10(A_{H}t \otimes \overline{H} + H \otimes \overline{A_{H}t}) + 10(D_{t}H \otimes \overline{H} + H \otimes \overline{D_{t}H}) \\ - \{\nabla_{t}(A_{D_{t}H}t) \otimes \bar{z} + z \otimes \overline{\nabla_{t}A_{D_{t}H}t}) \} - \{\sigma(t, A_{D_{t}H}t) \otimes \bar{z} + z \otimes \overline{\sigma(t, A_{D_{t}H}t)} \} \\ - 5(A_{D_{t}H}t \otimes \bar{t} + t \otimes \overline{A_{D_{t}H}t}) - (A_{D_{t}^{2}H}t \otimes \bar{z} + z \otimes \overline{A_{D_{t}^{2}H}t}) + (D_{t}^{3}H \otimes \bar{z} + z \otimes \overline{D_{t}^{3}H}) \\ + 5(D_{t}^{2}H \otimes \bar{t} + t \otimes \overline{D_{t}^{2}H}) + a_{1}\{-(A_{H}t \otimes \bar{z} + z \otimes \overline{A_{H}t}) + (D_{t}H \otimes \bar{z} + z \otimes \overline{D_{t}^{3}H}) \\ + 3(H \otimes \bar{t} + t \otimes \bar{H})\} + a_{2}(t \otimes \bar{z} + z \otimes \bar{t}) = 0.$$

As a matter of course the following vectors are scalar multiples of t:

$$\nabla_t^2(A_H t) \,, \, \nabla_t(A_H t) \,, \, A_{\sigma(t,A_H t)} t \,, \, A_H t \,, \, \nabla_t(A_{D_t H} t) \,, \, A_{D_t H} t \,, \, A_{D_t^2 H} t \,.$$

Also, from (3.2) and (3.5) we get $D_t H \perp z$ so that $D_t^l H \perp z$ for $l = 1, 2, \cdots$. Furthermore,

it follows from (3.2), (3.5) and (3.6) that

$$\begin{split} &\sigma(t,A_Ht) = (k_1^2+1)H = (k_1^2+1)k_1v - (k_1^2+1)z \;, \\ &D_t(\sigma(t,A_Ht)) = 2k_1k_1'(k_1v-z) + (k_1^2+1)D_tH \;, \\ &\sigma(t,\nabla_t(A_Ht)) = 2k_1k_1'\sigma(t,t) = 2k_1k_1'(k_1v-z) \;, \\ &\sigma(t,A_{D,H}t) = k_1k_1'H = k_1k_1'(k_1v-z) \;. \end{split}$$

Therefore by taking the $(z \otimes \bar{z} + \bar{z} \otimes z)$ -component of (4.2) we have

$$-2k_1k_1'+2k_1k_1'+k_1k_1'=0,$$

so that k_1 is constant along $\tilde{\gamma}$. This is equivalent to saying that the first curvature of $\gamma(=k_1)$ is constant along γ (cf. (1.4)).

The main purpose of this section is to prove the following.

THEOREM 4. Let γ be a curve in $\mathbb{C}P^n(4)$. Then the first complex torsion τ_1 of γ is zero and $F(\gamma)$ is of 2-type in $\mathbb{R}^{n(n+2)}$ if and only if γ is either

- (1) a circle which lies on some totally geodesic $RP^2(1)$ in $CP^n(4)$, or
- (2) a helix of order 4 which lies on some totally geodesic $\mathbb{CP}^2(4)$ in $\mathbb{CP}^n(4)$ and satisfies

(4.3)
$$\nabla_{t} t = k_{1} v , \qquad \nabla_{t} v = -k_{1} t + k_{2} J v , \\
\nabla_{t} (J v) = -k_{2} v + k_{1} (-J t) , \qquad \nabla_{t} (-J t) = -k_{1} J v ,$$

where ∇ is the Riemannian connection of $CP^n(4)$, $t = \dot{\gamma}$, $\langle t, Jv \rangle = 0$ and $9k_1^2 + 2k_2^2 = 18$.

PROOF. Let $\tilde{\gamma}$ be a horizontal lift of γ on $S^{2n+1}(1)$. We denote by k_1 and k_2 the first and the second curvatures of $\tilde{\gamma}$, respectively.

First, we consider the case where $k_2 \equiv 0$ on $\tilde{\gamma}$. In this case, γ is of case (1) in our Theorem (cf. Theorem 1 and [1]). So, we may assume that $k_2 \neq 0$ at p = z(0), so that $k_2(s) \neq 0$ ($-s_0 < s < s_0$) for some $s_0 > 0$. Now we shall prove that k_2 is constant.

It follows from Theorem 3 that the first curvature k_1 is constant so that $\nabla_t(A_H t) = 0$. Therefore, by a direct calculation, (4.2) becomes

$$(4.4) K(t \otimes \bar{z} + z \otimes \bar{t}) + k_1 k_2 (a_1 - k_1^2 - 1)(w \otimes \bar{z} + z \otimes \bar{w})$$

$$+ k_1 (3a_1 - 15k_1^2 - 15)(v \otimes \bar{t} + t \otimes \bar{v}) - (3a_1 - 15k_1^2 - 15)(z \otimes \bar{t} + t \otimes \bar{z})$$

$$+ 10k_1^2 k_2 (w \otimes \bar{v} + v \otimes \bar{w}) - 10k_1 k_2 (w \otimes \bar{z} + z \otimes \bar{w})$$

$$+ 5(D_t^2 H \otimes \bar{t} + t \otimes \overline{D_t^2 H}) + (D_t^3 H \otimes \bar{z} + z \otimes \overline{D_t^3 H}) = 0 ,$$

where $K = (k_1^2 + 1)^2 + k_1^2 k_2^2 - a_1(k_1^2 + 1) + a_2$.

By assumption, $\{z, t, v\}$ is a totally real orthonormal frame along $\tilde{\gamma}$. It follows from $\tilde{\nabla}_t v = -k_1 t + k_2 w$ that $D_t v = k_2 w$. Here D is the normal connection of $\tilde{\gamma}$ in C^{n+1} . Since $\tau = \langle t, Jv \rangle = 0$, without loss of generality we define canonical basis e_1 , e_2 , e_3 in C^{n+1}

as: $e_1 = z(0) = \tilde{\gamma}(0)$, $e_2 = t(0)$, $e_3 = v(0)$. We set $w = aJz + \mu Jt + cJv + fe_4$, where $\{z, t, v, e_4\}$ is a totally real orthonormal frame along $\tilde{\gamma}$. Here a, μ and c are real-valued functions on $\tilde{\gamma}$, since w is perpendicular to z, t and v. Note that in general f(=) the coefficient of e_4) is a complex-valued function. But without loss of generality we may choose $e_4 \in C^{n+1}$ in such a way that $f(0) \in R$. Hence at the point $p = \tilde{\gamma}(0)$ we get

$$\bar{w} = -aJz - \mu Jt - cJu + fe_{\Delta}$$
 and $\bar{v} = v$

so that

$$w \otimes \bar{v} + v \otimes \bar{w} = a(Jz \otimes v - v \otimes Jz) + \mu(Jt \otimes v - v \otimes Jt) + f(e_4 \otimes v + v \otimes e_4).$$

By taking the $(e_4 \otimes v + v \otimes e_4)$ -component of (4.4), we obtain f(0) = 0, so that $f \equiv 0$, because p is an arbitrary point on $\tilde{\gamma}$. Therefore the vector w on $\tilde{\gamma}$ is expressed as

$$w = aJz + \mu Jt + cJv .$$

Consequently, we have

$$w \otimes \bar{v} + v \otimes \bar{w} = a(Jz \otimes v - v \otimes Jz) + \mu(Jt \otimes v - v \otimes Jt),$$

$$w \otimes \bar{z} + z \otimes \bar{w} = \mu(Jt \otimes z - z \otimes Jt) + c(Jv \otimes z - z \otimes Jv)$$

at p. Moreover, D_t^2H , $D_t^3H\perp z$, t. Thus by taking the $(t\otimes z+z\otimes t)$ -component of (4.4), we get

$$K-(3a_1-15k_1^2-15)=0$$
.

Since k_1 , a_1 , a_2 are constant, we see that k_2 is constant along $\tilde{\gamma}$. Now from

$$\nabla v = \nabla v = -k_1 t + k_2 w$$
.

we get

$$J\bar{\nabla}_t v = -k_1 Jt - ak_2 z - \mu k_2 t - ck_2 v ,$$

which implies

$$\bar{\nabla}_{t}w = a'Jz + \mu'Jt + c'Jv + aJt + \mu k_{1}Jv - \mu Jz - c^{2}k_{2}v - ck_{1}Jt - cak_{2}z - c\mu k_{2}t \ .$$

Hence

(4.5)
$$D_t w = (a' - \mu)Jz + (\mu' + a - ck_1)Jt - c^2k_2v + (c' + \mu k_1)Jv.$$

Since k_1 and k_2 are constant, Equation (3.5) shows

(4.6)
$$D_t H = k_1 k_2 w$$
 and $D_t^2 H = k_1 k_2 D_t w$.

From (4.5) and (4.6) we see at the point $p = \tilde{\gamma}(0)$ that

$$(4.7) D_t^2 H \otimes \overline{t} + t \otimes \overline{D_t^2 H} = k_1 k_2 \{ (a' - \mu)(Jz \otimes t - t \otimes Jz)$$

$$-c^2 k_2 (v \otimes t + t \otimes v) + (c' + \mu k_1)(Jv \otimes t - t \otimes Jv) \}.$$

Now, by taking the $(t \otimes v + v \otimes t)$ -component of (4.4), from (4.7) we have at p that

$$(4.8) k_1(3a_1 - 15k_1^2 - 15) - c^2k_1k_2^2 = 0.$$

Since p is an arbitrary fixed point and moreover k_1 and k_2 are nonzero constants, the function c is constant on $\tilde{\gamma}$. Similarly, by taking the $(Jt \otimes v - v \otimes Jt)$ -component of (4.4) and using (4.7), we find $\mu \equiv 0$. Thus

$$w = aJz + cJv ,$$

which implies that a is constant, because $a^2 + c^2 = 1$. Hence

$$\overline{\nabla}_t w = aJt + cJ\nabla_t v$$
,

which yields that

$$\begin{split} \tilde{\nabla}_t w &= \bar{\nabla}_t w = aJt + cJ\bar{\nabla}_t v \\ &= aJt + c(-k_1Jt - ak_2z - ck_2v) \\ &= (a - ck_1)Jt - c^2k_2v - cak_2z \ . \end{split}$$

Since $\tilde{\nabla}_{r}w \perp z$, ca=0. Moreover, from Frenet formula we may put

$$\tilde{\nabla}_t w = -k_2 v + k_3 w_2 .$$

Then we obtain

(4.9)
$$k_3 w_2 = (a - ck_1)Jt + a^2k_2v.$$

Since $k_3w_2 \perp v$, we know that a=0 and $k_3=k_1$. So (4.9) asserts that w=Jv. This implies

$$\tilde{\nabla}_t w = -k_2 v + k_1 (-Jt) .$$

The following is trivial:

$$\nabla \cdot (-Jt) = \nabla \cdot (-Jt) = -JH = -k \cdot Jv + Jz$$
.

Since Jz is a vertical vector, the above discussion shows that our curve γ satisfies the differential equations (4.3). Moreover the above computation yields

$$\begin{split} D_t^2 H &= k_1 k_2' w_2 - k_1 k_2^2 v + k_1 k_2 k_3 w_2 \\ &= -k_1 k_2^2 v - k_1^2 k_2 J t \; . \end{split}$$

Hence

$$\begin{split} D_t^3 H &= -\,k_1 k_2^2 (\overline{\nabla}_t v)^\perp - k_1^2 k_2 (JH)^\perp \\ &= -\,k_1 k_2^3 w - k_1^2 k_2 (k_1 J v - J z) \\ &= -\,k_1 k_2 (k_1^2 + k_2^2) J v + k_1^2 k_2 J z \;. \end{split}$$

Therefore by taking the $(Jv \otimes z - z \otimes Jv)$ -component and the $(v \otimes t + t \otimes v)$ -component

of (4.4) at p, we obtain

$$a_1 = 11 + 2k_1^2 + k_2^2$$
 and $k_1(3a_1 - 15k_1^2 - 15) - 5k_1k_2^2 = 0$,

respectively.

From these equations we conclude that $9k_1^2 + 2k_2^2 = 18$.

Next, we investigate the solutions of (4.3).

PROPOSITION 3. Let $\tilde{\gamma}(s) = \tilde{\gamma}(s; k) = (Ae^{i\alpha s}, Be^{i\beta s}, Ce^{i\epsilon s})$ be a curve in C^3 , where

$$A = \sqrt{\frac{4 - k^2 - \sqrt{(2 - k^2)(8 - k^2)}}{2(8 - k^2)}}, \qquad B = \frac{2}{\sqrt{8 - k^2}},$$

$$C = \sqrt{\frac{4 - k^2 + \sqrt{(2 - k^2)(8 - k^2)}}{2(8 - k^2)}},$$

$$\alpha = (\sqrt{2 - k^2} + \sqrt{8 - k^2})/\sqrt{2}, \qquad \beta = \sqrt{2 - k^2}/\sqrt{2},$$

$$\varepsilon = (\sqrt{2 - k^2} - \sqrt{8 - k^2})/\sqrt{2}$$

and $0 < k < \sqrt{2}$. Then $\tilde{\gamma}$ is a horizontal curve (with arc-length parameter s) on $S^5(1)$. Moreover $\pi(\tilde{\gamma})$ is a helix in $CP^2(4)$ with the first curvature k and with the first complex torsion 0 satisfying (4.3), where $\pi: S^5(1) \to CP^2(4)$ is the Hopf fibration.

Sketch of the proof. A direct computation yields

$$\begin{split} &\langle \tilde{\gamma}, \tilde{\gamma} \rangle = A^2 + B^2 + C^2 = 1 , \\ &\langle \dot{\tilde{\gamma}}, \dot{\tilde{\gamma}} \rangle = \alpha^2 A^2 + \beta^2 B^2 + \varepsilon^2 C^2 = 1 , \\ &\langle \dot{\tilde{\gamma}}, J \tilde{\gamma} \rangle = \alpha A^2 + \beta B^2 + \varepsilon C^2 = 0 . \end{split}$$

Hence $\tilde{\gamma}$ is a horizontal curve with arc-length parameter s in $S^5(1)$. In addition, a long calculation yields that $\pi(\tilde{\gamma})$ is a helix with the first curvature k and with the complex torsion 0 in $CP^2(4)$ satisfying (4.3). Here t and v are expressed as

$$t = i(\alpha A e^{i\alpha s}, \beta B e^{i\beta s}, \varepsilon C e^{i\varepsilon s}),$$

$$v = (1/k)((1 - \alpha^2) A e^{i\alpha s}, (1 - \beta^2) B e^{i\beta s}, (1 - \varepsilon^2) C e^{i\varepsilon s}).$$

Finally, needless to say, we note that $F(\gamma)(=F(\tilde{\gamma}))$ is of 2-type in C^9 with eigen-functions $e^{i(\alpha-\beta)s}$ and $e^{i(\epsilon-\alpha)s}$.

As an immediate consequence of Theorem 4, we obtain the following.

THEOREM 5. Let γ be a curve in $\mathbb{CP}^n(4)$. Then γ is a circle with complex torsion 0 in $\mathbb{CP}^n(4)$ if and only if γ lies on totally geodesic $\mathbb{RP}^n(1)$ in $\mathbb{CP}^n(4)$ and $F(\gamma)$ is of 2-type in $\mathbb{RP}^{n(n+2)}$.

PROOF. Since $\gamma \subset RP^n(1)$, each complex torsion of γ is zero. In particular the first complex torsion τ_1 of γ is zero. So our curve satisfies the assumption of Theorem 4. Note that (4.3) implies that the helix γ of case (2) does not lie on $RP^n(1)$. Therefore the result follows.

5. Circles with complex torsion $\tau \neq 0, \pm 1$.

The purpose of this section is to characterize circles with complex torsion $\tau \neq 0, \pm 1$ in $\mathbb{C}P^n$. First we give the following.

PROPOSITION 4. Let γ be a curve in $CP^n(4)$ satisfying that $F(\gamma)$ is of 3-type in $R^{n(n+2)}$. If the first curvature k_1 of γ is constant, then the second curvature k_2 of a horizontal lift $\tilde{\gamma}$ of γ on $S^{2n+1}(1)$ is constant. Moreover, if the first complex torsion τ_1 of γ is constant, then the second curvature of γ is also constant.

PROOF. We use the same terminologies as in the proof of Theorem 4. Note that $\nabla_t (A_H t) = 2k_1 k'_1 t = 0$. By using this equality repeatedly, we obtain from (3.1) and (3.2) that

$$(5.1) \qquad \{(k_{1}^{2}+1)^{2}+k_{1}^{2}k_{2}^{2}\}(H\otimes\bar{z}+z\otimes\bar{H})+2k_{1}^{2}k_{2}k_{2}(t\otimes\bar{z}+z\otimes\bar{t}) \\ -(A_{D_{t}^{2}H}t\otimes\bar{z}+z\otimes\overline{A_{D_{t}^{2}H}t})+\{32(k_{1}^{2}+1)^{2}+12k_{1}^{2}k_{2}^{2}\}(t\otimes\bar{t}) \\ -26(k_{1}^{2}+1)(D_{t}H\otimes\bar{t}+t\otimes\overline{D_{t}H})-(k_{1}^{2}+1)(D_{t}^{2}H\otimes\bar{z}+z\otimes\overline{D_{t}^{2}H}) \\ -30(k_{1}^{2}+1)(H\otimes\bar{H})+20(D_{t}H\otimes\overline{D_{t}H})+15(D_{t}^{2}H\otimes\bar{H}+H\otimes\overline{D_{t}^{2}H}) \\ +6(D_{t}^{3}H\otimes\bar{t}+t\otimes\overline{D_{t}^{3}H})+(D_{t}^{4}H\otimes\bar{z}+z\otimes\overline{D_{t}^{4}H}) \\ +a_{1}\{-8(k_{1}^{2}+1)(t\otimes\bar{t})-(k_{1}^{2}+1)(H\otimes\bar{z}+z\otimes\bar{H})+6H\otimes\bar{H} \\ +4(D_{t}H\otimes\bar{t}+t\otimes\overline{D_{t}H})+(D_{t}^{2}H\otimes\bar{z}+z\otimes\overline{D_{t}^{2}H})\} \\ +a_{2}\{(H\otimes\bar{z}+z\otimes\bar{H})+2(t\otimes\bar{t})\}+a_{3}(z\otimes\bar{z})+\eta=0 .$$

Now we shall differentiate (5.1) in the direction of t with respect to $\overline{\nabla}$ and we pay particular attention to $z \otimes \overline{z}$ -term. Then we have

$$(5.2) 2k_1^2(k_2^2)'(H\otimes \bar{z}+z\otimes \bar{H})_{z\otimes \bar{z}}-(\sigma(A_{D_t^2}t,t)\otimes \bar{z}+z\otimes \overline{\sigma(A_{D_t^2}t,t)})_{z\otimes \bar{z}}=0\;,$$

by virtue of $D_t^l H \perp z$, where $(*)_{z \otimes \bar{z}}$ is the $(z \otimes \bar{z})$ -component of (*). From (3.5) we get $D_t H = k_1 k_2 w$. So, the Frenet formulas imply

$$D_t^2 H = k_1 k_2' w + k_1 k_2 D_t w = k_1 k_2' w + k_1 k_2 \tilde{\nabla}_t w = k_1 k_2' w + k_1 k_2 (-k_2 v + k_3 w_2) ,$$

so that

$$\begin{split} D_t^3 H &= k_1 k_2'' w + k_1 k_2' (-k_2 v + k_3 w_2) - k_1 (k_2^2)' v \\ &- k_1 k_2^2 (-k_1 t + k_2 w) + (k_1 k_2 k_3)' w_2 + k_1 k_2 k_3 (-k_3 w + k_4 w_3) \; . \end{split}$$

Hence we get

(5.3)
$$\sigma(t, A_{D_t^2 H} t) = -3k_1^2 k_2 k_2' H = -(3/2)k_1^2 (k_2^2)'(k_1 v - z).$$

It follows from (5.2) and (5.3) that

$$-4k_1^2(k_2^2)'-3k_1^2(k_2^2)'=0$$
.

Therefore, the second curvature k_2 of $\tilde{\gamma}$ is constant, since k_1 is nonzero constant. Combining this with (1.4) and using the hypothesis that the first complex torsion τ_1 of γ is constant, we conclude that the second curvature of γ is constant.

We are now in a position to prove the following.

THEOREM 6. Let γ be a curve in $\mathbb{CP}^n(4)$. Then γ is a circle with the complex torsion $\tau \neq 0, \pm 1$ in $\mathbb{CP}^n(4)$ if and only if γ satisfies the following five conditions.

- (i) $F(\gamma)$ is of 3-type in $R^{n(n+2)}$,
- (ii) γ lies on some totally geodesic $\mathbb{CP}^2(4)$ in $\mathbb{CP}^n(4)$,
- (iii) the first curvature of γ is constant,
- (iv) the first complex torsion τ_1 of γ is constant but $-1 < \tau_1 \neq 0 < 1$, and
- (v) the second complex torsion τ_2 of γ is zero.

PROOF. Let $\tilde{\gamma}$ be a horizontal lift of γ on $S^{2n+1}(1)$. We choose a totally real orthonormal frame $\{z, t(=\tilde{\gamma}), e\}$ along $\tilde{\gamma}$ in C^3 . On the other hand from the Frenet formula for $\tilde{\gamma}$ in $S^5(1)$ we may put

$$\begin{split} \tilde{\nabla}_t t &= k_1 v \;, \quad \tilde{\nabla}_t v = -k_1 t + k_2 w \;, \quad \tilde{\nabla}_t w = -k_2 v + k_3 w_2 \;, \\ \tilde{\nabla}_t w_2 &= -k_3 w + k_4 w_3 \;, \qquad \tilde{\nabla}_t w_3 = -k_4 w_2 \;. \end{split}$$

Note that k_1 and k_2 are constant (see, Proposition 4). Put $\cos \beta = \langle Jt, v \rangle (= -\tau_1)$. Since v is horizontal, we get

$$(5.4) v = (\cos \beta)Jt + (\sin \beta)e.$$

Since w is perpendicular to z, t and v, we have

$$w = aJz + (\mu \sin \beta)Jt - (\mu \cos \beta)e + vJe$$
.

By assumption (v) and (1.4), we get $k_2 \langle w, Jv \rangle = 0$. It follows from Proposition 4 that k_2 is nonzero constant. If $k_2 \equiv 0$, then $\tilde{\gamma}$ is of 1-type in C^{n+1} . Hence Theorem 1 implies that $F(\gamma)$ is of 2-type in $C^{(n+1)^2}$, which is a contradiction. Therefore, $\langle w, Jv \rangle = v \sin \beta = 0$ on $\tilde{\gamma}$. Hence the assumption (iv) yields v = 0 on $\tilde{\gamma}$. Hence we have

(5.5)
$$w = aJz + (\mu \sin \beta)Jt - (\mu \cos \beta)e,$$

where a and μ are real-valued functions on $\tilde{\gamma}$ satisfying $a^2 + \mu^2 = 1$. Our next aim is to prove that $\mu \equiv 0$.

From (5.5) we get

$$\overline{\nabla}_t v = \overline{\nabla}_t v = -k_1 t + k_2 w$$

$$= -k_1 t + a k_2 J z + (\mu k_2 \sin \beta) J t - (\mu k_2 \cos \beta) e.$$

On the other hand, (5.4) yields

$$\begin{split} \bar{\nabla}_t v &= \cos \beta J H + \sin \beta \bar{\nabla}_t e \\ &= \cos \beta k_1 J v - \cos \beta J z + \sin \beta \tilde{\nabla}_t e \\ &= -\cos^2 \beta k_1 t + (k_1 \cos \beta \sin \beta) J e - \cos \beta J z + \sin \beta \tilde{\nabla}_t e \;. \end{split}$$

Since the assumption (iv) shows that $\sin \beta \neq 0$, these equalities yield

(5.6)
$$\widetilde{\nabla}_t e = (ak_2 \csc \beta + \cot \beta)Jz - \sin \beta k_1 t + \mu k_2 Jt - (\mu k_2 \cot \beta)e - (k_1 \cos \beta)Je.$$

Similarly we find

$$\overline{\nabla}_t w = \widetilde{\nabla}_t w = -k_2 v + k_3 w_2$$
$$= -(k_2 \cos \beta) J t - (k_2 \sin \beta) e + k_3 w_2$$

as well as

$$\overline{\nabla}_t w = aJt + \mu \sin \beta (k_1 Jv - Jz) - (\mu \cos \beta) \overline{\nabla}_t e + a'Jz + (\mu' \sin \beta)Jt - (\mu' \cos \beta)e.$$

It follows from these relations and (5.6) that

$$\begin{aligned} k_3 w_2 &= \{ a' - \mu \sin \beta - \mu (a k_2 \cot \beta + \cos \beta \cot \beta) \} (Jz) \\ &+ (k_2 \cos \beta + \mu' \sin \beta + a - \mu^2 k_2 \cos \beta) (Jt) \\ &+ (k_2 \sin \beta - \mu' \cos \beta + \mu^2 k_2 \cos \beta \cot \beta) e + k_1 \mu (Je) \;. \end{aligned}$$

Since $\langle v, k_3 w_2 \rangle = 0$, this asserts

$$(5.7) k_2 + a\cos\beta = 0.$$

Hence a and b are constant. Thus from these relations we obtain

(5.8)
$$k_3 w_2 = (1 - k_2^2) \{ -(\mu \csc \beta)(Jz) + a(Jt) + (k_2 \csc \beta)e \} + k_1 \mu Je .$$

This shows that k_3 is constant. It follows from (5.6) and (5.7) that

(5.9)
$$\tilde{\nabla}_t e = (\mu^2 \cot \beta) Jz - (k_1 \sin \beta) t + \mu k_2 Jt + (\mu k_2 \cot \beta) e - (k_1 \cos \beta) Je .$$

Now from (5.5) we have

$$k_3 \tilde{\nabla}_t w_2 = -k_3^2 w + k_3 k_4 w_3$$

= $-k_3^2 a J z - (\mu k_3^2 \sin \beta) J t + (\mu k_3^2 \cos \beta) e + k_3 k_4 w_3$.

On the other hand, since k_3 is constant, (5.8) and (5.9) imply

$$\begin{split} k_3 \tilde{\nabla}_t w_2 &= -(1-k_2^2)\mu \csc\beta Jt - ak_1(1-k_2^2)\cos\beta t \\ &+ ak_1(1-k_2^2)\sin\beta Je - a(1-k_2^2)Jz \\ &+ (1-k_2^2)k_2 \csc\beta \big\{ (\mu^2\cot\beta)(Jz) \\ &- (k_1\sin\beta)t + \mu k_2 Jt - (\mu k_2\cot\beta)e - (k_1\cos\beta)Je \big\} \\ &+ k_1 \mu \big\{ - (\mu^2\cot\beta)z - (k_1\sin\beta)Jt - (\mu k_2)t \\ &- (\mu k_2\cot\beta)Je + (k_1\cos\beta)e \big\} \;. \end{split}$$

Thus we obtain

$$\begin{split} k_3 k_4 w_3 &= -(k_1 \mu^3 \cot \beta) z \\ &+ \left\{ a k_3^2 - a (1 - k_2^2) + \mu^2 \csc \beta k_2 (1 - k_2^2) \cot \beta \right\} J z \\ &- \left\{ a k_1 (1 - k_2^2) \cos \beta - \mu^2 k_1 k_2 - k_1 k_2 (1 - k_2^2) \right\} t \\ &+ \left\{ \mu k_3^2 \sin \beta - (1 - k_2^2) \mu \csc \beta + \mu k_2^2 (1 - k_2^2) \csc \beta - k_1^2 \mu \sin \beta \right\} J t \\ &+ \left\{ -\mu k_2^2 (1 - k_2^2) \csc \beta \cot \beta - \mu k_3^2 \csc \beta + k_1^2 \mu \cos \beta \right\} e \\ &+ \left\{ a k_1 (1 - k_2^2) \sin \beta - k_1 k_2 (1 - k_2^2) \csc \beta \cos \beta - k_1 \mu^2 k_2 \cot \beta \right\} J e \;. \end{split}$$

Since $k_3k_4w_3 \perp z$, it follows that $k_1\mu^3 \cot \beta = 0$, so that, $\mu = 0$. Therefore $w = \pm Jz$. \square

REMARKS. (1) Theorem 6 does not hold if we remove the condition (v). In fact, by a direct calculation we can establish the following:

Proposition 5. Let

$$\tilde{\gamma}(s) = \left(\frac{\sqrt{3}}{3}e^{is}, \frac{\sqrt{14}}{14}e^{2is}, \frac{5\sqrt{42}}{42}e^{-4is/5}\right)$$

be a curve in C^3 . Then $\pi(\tilde{\gamma})$ is a helix with the second complex torsion $\tau_2 = -\sqrt{2}/2$ in $CP^n(4)$ satisfying the conditions (i), (ii), (iii) and (iv) in Theorem 6. The Frenet formula for $\pi(\tilde{\gamma})$ in $CP^n(4)$ is given by

$$\begin{cases} \nabla_{\gamma} u_1 = \frac{3\sqrt{2}}{5} u_2 , \\ \nabla_{\gamma} u_2 = -\frac{3\sqrt{2}}{5} u_1 + \frac{11\sqrt{2}}{10} u_3 , \\ \nabla_{\gamma} u_3 = -\frac{11\sqrt{2}}{10} u_2 + \frac{\sqrt{2}}{2} u_4 , \\ \nabla_{\gamma} u_4 = -\frac{\sqrt{2}}{2} u_3 , \end{cases}$$

where

$$\begin{cases} u_1 = i\left(\frac{\sqrt{3}}{3}e^{is}, \frac{\sqrt{14}}{7}e^{2is}, -\frac{2\sqrt{42}}{21}e^{-4is/5}\right), \\ u_2 = \frac{5\sqrt{2}}{6}\left(0, -\frac{3\sqrt{14}}{14}e^{2is}, \frac{3\sqrt{42}}{70}e^{-4is/5}\right), \\ u_3 = i\left(\frac{\sqrt{3}}{3}e^{is}, -\frac{3\sqrt{14}}{14}e^{2is}, -\frac{\sqrt{42}}{42}e^{-4is/5}\right), \\ u_4 = \left(-\frac{\sqrt{6}}{3}e^{is}, \frac{\sqrt{7}}{14}e^{2is}, \frac{5\sqrt{21}}{42}e^{-4is/5}\right). \end{cases}$$

(2) It is known that every helix in a Euclidean space R^m is a curve of finite type. But the converse is not true. The class of curves of finite type in R^m is too large to classify. We remark that for a circle γ with the complex torsion τ in $CP^n(4)$ the curve $F(\gamma)$ is a helix of order 2, 4 or 6 in $R^{n(n+2)}$ according as $\tau = \pm 1$, $\tau = 0$ or $\tau \neq 0$, ± 1 . Furthermore, the curve $F(\gamma)$ is not necessarily closed when $\tau \neq 0$, ± 1 (see, [1]).

References

- [1] T. Adachi, S. Maeda and S. Udagawa, Circles in a complex projective space, Osaka J. Math. 32 (1995), 709-719.
- [2] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific (1984).
- [3] B. Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc 44 (1991), 117-129.
- [4] S. MAEDA and Y. OHNITA, Helical geodesic immersions into complex space forms, Geom. Dedicata 30 (1989), 93-114.
- [5] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
- [6] S. S. Tai, Minimal imbedding of compact symmetric spaces of rank one, J. Diff. Geom. 2 (1968), 55-66.
- [7] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.

Present Address:

BANG-YEN CHEN

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY,

EAST LANSING, MICHIGAN, 48824-1027 U.S.A.

SADAHIRO MAEDA

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY,

MATSUE, SHIMANE, 690 JAPAN.