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0. Introduction.

In the previous paper [2], we investigated the image of the homology representation
Hy: [X, X]1-End(H (X)) for a complex X of the form S" U e"*? U e"** where [X, X ]
denotes the set of homotopy classes of self-maps of X. This problem was equivalent to
characterizing a triple of integers (d,, d,, d3) which can be obtained from a self-map
as its degrees.

In this paper we investigate the case (d,, d,, d;)=(0, 0, 0), namely, homologically
trivial self-maps of X. The homotopy groups =, 4(4) and 7, 5(4), A=8"Ue"*2, play
an important role for our purpose. Then some differences exist between the case n=2
and the others, so we concentrate on the case n=3 in this paper. Our method is to
construct short exact sequences containing Hy'(0) in the category of sets with
distinguished elements. If X is a suspended complex, this category turns out to be the
category of groups, so the results become more clear. Here we state some results from
our theorems. Let X be a complex as above.

(1) If Sq*(e™)#0 (n=6), or Sq2(e™ #0 and Sq*(e”) #0 (n=4, 5), then homological-
ly trivial self-maps of X are also homotopically trivial.

(2) If Sq*(e™y=0 and Sq*(e"*2)#0 (n=4), then the same conclusion as (1) holds
with an exceptional case in which there exists only one homotopically non-trivial but
homologically trivial self-map.

(3) For n=3, the set of homologically trivial self-maps contains countablly infinite
many homotopically non-trivial ones.

(4) Let ¢ be an n-dimensional real vector bundle over CP? and T(¢) be the Thom
complex of ¢ (n=5). Suppose the second Stiefel-Whitney class w,(£)=0. Then, for
self-maps of T(¢), homological triviality is equal to homotopical triviality.

Throughout this paper we use the same notations as ones in [2] for generators of
homotopy groups of spheres, and the following:

A=S"ve"?, X=Aue"*, and Y=X/S"=S"t2ue""*,
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where attaching maps are a, f, y respectively,
i: appropriate inclusion maps,
h,: Hurewicz homomorphism at dimension m.

1. The fundamental sequence.

Let us consider a part of Puppe sequence associated with the cofibering A > X—-Y
together with the homology representation, namely the following diagram:

0 — Hom(H,(S"*%), Hy(X))— Hom(H(X), H,(X)) — Hom(H,(4), H,(X))
T husa I Hy I H,
[ZA4, X] — [s"*4, X] — [X, X] — [4, X]
Then this gives the exact sequence
0 —> hy4(0)/[ZA4, X 12— Hx '(0)— H;'(0), (1-1)
because we have the following diagram:

X — XVvS,ts — Sp+aVSuis

N

Sn +4 2Av Sn+4—
where the arrows denote the well-known natural maps respectively.

LEmMMA 1.1. If Za#0, then Hy(0) is trivial. If Za=0, then H3'(0) contains only
one non-trivial map which is given by the composite:

A———>A/S"=S"+2 'Sn+1 NG » A .
Mu+1 Mn i

PROOF. Analogously to (1-1), from the cofibering
S"—Ad—»S"t2
we obtain a short exact sequence
Tt 1(S™) — T4 o(S™) —> H'(0)— 0.
Since Xa#0 is equivalent to 7w, 1(S")Eoc‘= 7,4+ 2(S™), the proof is completed. O

LeMMA 1.2. If Sa=0, then the map in Lemma 1.1 has an extension contained in
Hx Y(0) if and only if y=0.

ProoF. It is clear that the extendability satisfying the condition is equivalent to
i 44(Mulw+17) =0 where i, denotes the inclusion S” — A. On the other hand, i, is injective
because 07, , 4(4, S™) =an, . 3(S"**) for n 2 3 and we have the following diagram forn=2:
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n5(S?) —> ms(A)
inj. X l z
ng(S3) — ng(ZA)=mng(S3 v S?) inj. O
From Lemmas 1.1 and 1.2 we obtain:

LemMma 1.3. In the sequence (1-1), we have that the image of the map Hx'(0)—

H7Y0) contains only one non-trivial map for the case Zo=0=y, and is trivial for the
other cases.

REMARK. Since the condition y=0 gives a map X—S"*? of degree 1, a non-trivial
map contained in Hy *(0) is given by the composite:

X— stz 8"l 85" X,
Next we consider the following diagram of exact sequences:
Tyrs(X, A) —> Tpsald) — k() —0
@] | e (1-2)
[ZA4,4] — [Z4,X] —O

First of all, we note the following homotopy excision theorem in the case n=3.

LEMMA 1.4.
ann+ S(X’ A)=B—nn+4(Sn+3) ’

B_ﬂn+5(Dn+4’ S"+3) (ng3),
Tt oX, 4) {B_nv(Dﬁ, SH+{B 1,1} (n=2),

where B is the characteristic map for the n+4-cell of X and [ , ], denotes the relative
Whitehead product.

LEMMA 1.5. If Za=0, then we have
[Z4, AJZB={m,+1(A)0} + {m,+3(4A)ZV} ,
where X3 =0+4 2y in the decomposition:
T a(S™F 1V ST o, (ST 7 o(STHY)
PROOF. Since Za=0 means £4=S"*1v S"*3, the proof is easy. O
LEMMA 1.6. If Za#0, then we have

[ZA4 A]Z,B——{O (n23),
’ | ns(A)B’  for some B’ of ne(S?) (n=2).
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PrROOF. Since Xa #0 gives y=0 because of Sq2sq?=0, 2B is decomposed such as
sS4 58"t 1 554 for some B': S"**—»S"*1 Hence we have

Tpry(A)B'=[24, A]ZB .

Thus the lemma follows from =, ;(4)=0 (n=3). O

Especially, from Lemmas 1.1 and 1.6 we obtain:

PROPOSITION 1.7. For n=3 and a#0, there exists an exact sequence

0—> h,4(0) — Hy '(0)— 0.

ReEMARK. In Prop. 1.7, if X is a suspended complex, the arrow in the middle of
the sequence means an isomorphism of two groups.

Now, we investigate 7« , 4(4) to use the diagram (1-2).

2. The case n=3.

First we note the following well-known lemma.
LEeMMA 2.1. If a=0, there exists an isomorphism:

Tt a(S™) + Ty 4 4(S"72) (nz4),
n7(33)+n7(55)+{[l3, ’5]} (n=3).

Next, suppose a #0 (i.e. x=#,) and consider a part of the homotopy exact sequence
of the pair (4, S"):

715”+4(A) ~ {

T+ 5(4, S") T’ Ty +a(S") —— M1 4(4) —’J“* T+ a(4, S")—d—’ Ta43(S") . (2-1)

. i
Here we quote the well-known facts about homotopy groups of spheres (cf. [3]):
no(S%)~Z[2Z[vsns], [1sis]=vsns, nsv6=0,
ng(S*)~Z/2Z[v4n,]+Z/[2Z[n4vs] , Navs=2Z(wne)=[Ma, 141,
n+(S*)~Z[2Z[wns] ONe=MN3Vs, MN3Z0=0.

Then, by applying the homotopy excision theorem to n,(A4,S") in (2-1), we can
calculate d,, d,, and obtain:

PROPOSITION 2.2. If a#0, then we have

{0} (nz6),
7zn+4(14)'\' Z/2Z (n=4, 5) s
Z (n=3),

where Z/2Z is generated by v,n, . 3.
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Now, to obtain 4,.1,(0) we have to determine the subgroup B, , (S"*?) of 7, , 4(4)
in the case n=4, 5 (see (1-2)).

LEMMA 2.3. Suppose a#0 and n=4, 5. If Sq*(e™)#0 in H (X, Z/2Z), then
Brn s a(S™* )= iy (Valla+ 3), and if Sq*(e")=0, then Brm,, 4(S"*)=0.

PrOOF. Since a#0 implies y=0 as stated in the proof of Lemma 1.6, there exists
B’ of m,,3(S™ such that i (f’)=p. Let f’ be the element Nvs for n=35 and Nv,+miw
for n=4. Then from i (Zwn,)=0, we obtain Bm,,,(S"*?)=0 for an even N and
B, a(S"3)=1i,(Vshn+3) for an odd N. Thus the proof is completed because Sg*(e™
corresponds to N mod?2. |

By combining Lemmas 1.4, 2.3 and Prop. 2.2 with the diagram (1-2), we obtain:

PROPOSITION 2.4. If a#0, then h, },(0) is equal to {0} for n=6, to Z for n=3, to
{0} for n=4, 5 and Sq*(e™ #0, and to Z/2Z for n=4, 5 and Sq*(e")=0.

Next we suppose a#0 (n=3) and put B=p,+y in the decomposition
Tps 3(A)~ 7,4 3(S™ + 7,4 3(S"2). Then, by making use of (2-1), easy calculation gives a
generator of fr, . (S"*3) as follows:

LEMMA 2.5. In the case n=6, Bn,, (S"*3) is {0} for y=0, and is generated by
Mn+2Mn+3 for '},760

In the case n=5, we put B, =Nvs for an integer N. Then Bry(S®) is {0} for an even
N and y=0, and is generated by vsng for an odd N and y=0, by n-ng for an even N and
y#0, and by vsng +nng for an odd N and y #0.

LEMMA 2.6. In the case n=4, we put B, = Nv,+mZw for integers N and m. Then
Brs(S7) is

(1) for an even N and an even m, {0} if y=0 and generated by nen, if y#0,

(2) for an even N and an odd m, generated by n,vs if y=0 and n,vs+nen, if y#0,

(3) for an odd N and an even m, generated by v,n, if y=0 and v4n;+nen, if y#0,

(4) for an odd N and an odd m, generated by vun,+n4vs if y=0 and vsn,+

NaVs+net, if ¥ #0.

LEMMA 2.7. In the case n=3, we put B, =maw for an integer m. Then Br(S°®) is
(1) for m=0 mod2, {0} if y=0 and generated by nsne if y #O0,
(2) for m=1 mod2, generated by wng if y=0 and by wne+nsne if v #0.

These lemmas and Lemma 1.4 give rise to:

PROPOSITION 2.8. Suppose a=0 (n=3). Then h, }4(0) is equal to

(1) for n26, Z)2Z if Sq*(e"*?*)=0 and {0} if Sq*(e"*2)#0,

Q) for n=5, Z2Z+Z/2Z if Sq*(e”)=Sq*(e’)=0 and Z/2Z otherwise,

() forn=4, ZRZ+Z2Z+Z/2Z if N=m=0 mod2 and Z[2Z +Z/2Z otherwise
(see Lemma 2.6),
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(4) for n=3, ZRZ+Z/2Z+Z if m=0 mod2 and y=0, and Z/2Z + Z otherwise
(see Lemma 2.7).

Finally we calculate [2A4, A]Xf in the case o =0, which is equal to
K= s 1(A)Z1 O Ty s s(A)ZY) + 1,4 5(S™F )2y
for =B, +7 in the direct sum decomposition
Tt 3(A)~ Ty 4 3(ST) 47,4 5(S"H2)
By (2-1) we can easily obtain:

LEMMA 2.9. If a=0 and n#4, then K, is isomorphic to {0} for y=0 and to the
torsion subgroup of , . 4(A) for y#O0.

LEMMA 2.10. If a=0 and n=4, then K, is as follows:

(1) for y=0 and Sq*(e*)=0, K,={0},

(2) for y=0 and Sq*(e*)#0, Ky ={n4vs},

(3) for y#0 and Sq*(e*)=0, Ky={van,} +{nens},

4) for y#0 and Sq*(e*)#0, Ky ={v,ns} + {nsvs} + {n:ns}-

Now we state the theorems.

THEOREM A. Suppose a#0 (Sq*(e™)#0).

(1) Hx'(0)={0} for n=6, or n=4, 5 and Sq*(e") #0.

(2) There exists a one-one correspondence Z[2Z—Hyx'(0) for n=4, 5 and
Sg*e™)=0.

(3) There exists an exact sequence 0—Z— Hx *(0)—0 for n=3.

THEOREM B. Suppose a=0 and y#0 (Sq*(e")=0 and Sq*(e"*?)+0).

(1) Hx'(0)={0} for n=5, or n=4 with the exception of the case N=m=0 mod2.

(2) There exists a one-one correspondence Z/2Z— Hx '(0) for n=4 and N=m=0
mod 2.

(3) There exists a one-one correspondence Z— Hy *(0) for n=3, namely, integer k
corresponds to the composite:

X- 57 S3vSioX.

k[la’ 15]

THEOREM C. Suppose a=y=0 (Sq*(e")=Sq*(e"*2)=0). Then there exist the
Sfollowing exact sequences:

(1) 0-Z/2Z—-Hx'(0)>Z/2Z—0 for n=6, or n=4, 5 and Sq*(e") #0.

(2) 0-Z/2Z+7Z/2Z—-Hx'(0)>Z/2Z—0 for n=5 and Sq*(e®)=0, or n=4 and
N=0 and m=1 mod2.

(3) 0-Z)2Z+Z]2Z+Z[2Z—Hx'(0)>Z/2Z—0 for n=4 and N=m=0 mod2.

4) 0-Z+Z/2Z—-Hx'(0)>Z/2Z—0 for n=3 and m=1 mod2.
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(5) 0-Z+Z/2Z+Z2Z—Hx*(0)>Z/2Z—0 for n=3 and m=0 mod?2.
Here N, m are the same ones as stated in Lemmas 2.6 and 2.7.

The proofs follow from Lemmas 1.6 and 2.5 for Theorem A, and Lemmas 1.3,
2.5-2.10 and Prop. 2.8 for Theorems B and C.
, If X is a suspended complex, it is well-known that the set [X, X ] becomes a group
and the sequence (1-1) is exact in the category of groups and homomorphisms. For
example, X is always suspended if n=5.

REMARK. In the case n=3 in Theorems B and C, the part of Z is injective because
integer k corresponds to the composite:

X— S’ > S3vSi—X.
k[13,15]

3. Examples.

(1) Generators. We define some self-maps belonging to Hy !(0) as follows:
E=ins19: X—>S""2 58"t 58" 5 X for n23 and a=y=0,
Ypn=ilpsoflpssp: X— S"T4 5 S"+3 58742 , ¥  for 3<n<S5S and a=y=0,
G, =iV lyr3p: X > S" T4 5 8"t3 58" X for n=4,5,

L=ilp: X->S" > A4A->X
for n=3
t,=ionegp: X -8 —>8>83 X
s=invsp: X >S5 85584 X for n=4.
Here i denotes inclusions, p is the pinching map X—X/A4, g is a map of degree 1
at dimension n+2 and A is a generator of n,(A4) referred in Prop. 2.2.
Then these maps represent non-trivial self-maps corresponding to generators of

groups in Theorems.
As an application we have:

(2) Let f be a self-map of X, g one of the self-maps stated in (1), and d,(f) the
degree of f at dimension n+2k (k=0, 1, 2). For any map g, it holds that

(a) gf=0ifd,(f)iseven,and gf =gif d,(f)is odd except thecasesg=¢, andg=¢,.

(b) fg=0ifd,(f)iseven,and fg=gifd,(f)is odd except thecasesg=t, andg=1y,.

(©) fy,=0if d,(f) is even, and fy,=y, if d,(f) is odd.

REMARK. It may be considered as ft, =dy(f)d(f)t;.

(3) Let X be the (n—2)-fold suspension of the complex projective 3-space CP?
(n=3). Then we have that Hy !(0) is isomorphic to {0} (n=6), Z/2Z (n=4, 5) and Z
(n=13) because of Sg2(e™)#0 and Sg*(e™)=0 (n=4, 5).
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(4) Let X be the complex CP"*2/CP"~! (n=2). Then we have that
(a) Hx'(0)={0} if n is odd.
(b) If nis even, there exists an exact sequence

0—2Z2Z — Hz}(0)—> Z/2Z — 0,

because we know that Sg2(e2")=Sq?*(e*"*2)=0 if n is even, Sq*(e*)#0 for n=2, and
Sq%(e?")#0 if n is odd.

(5) Let Aa be the complex S% U e* whose attaching map for the cell e* is given
by an; and £ be an n-dimensional vector bundle over Aa (n=5). Suppose the second
Stiefel-Whitney class w,(£)=0. Then it is clear that £ is characterized by the first
Pontryagin class p,(¢). Since the Thom complex T/(¢) is of the form (S"v S"*2)ue**
with g=J(&)+an,, ,, we know that

(a) For an odd a, Hx '(0)={0}.

(b) For an even a, there exist exact sequences:

0—-Z/2Z - Hx'(0)> Z/2Z -0 (n=6),
0> Z2Z+Z)2Z - H;'(0) > Z2Z -0  (n=5 and p,(¢)=0 mod4),
0—-Z/2Z - Hy'(0) > Z/2Z -0 (n=5 and p,(¢£)=2 mod4).

(6) Let X, be the S%-bundle over S* whose characteristic class is r times of a
generator of n; (SO(3))~Z, and X be the (n—2)-fold suspension X(n—2)X, (n=3). It
always holds that Sg2(e"*2)=0 because of the existence of the projection of the bundle,
and it is clear that Sqg?(e”)=0 for an even r, Sq%(e”)#0 for an odd r and Sg*(e"*?)=0
for n=2, 3. Since f=ri (2(n—2)w), we have that

(@) If r is odd, then Hx!(0)={0} for n=6, Hx'(0)~Z/2Z for n=4,5 and

Hy(0)~Z for n=3.
(b) If r is even, then there exist exact sequences:

0> Z/2Z - Hy'(0) > Z/2Z -0  for n26,
0 Z[2Z+Z/2Z - Hy'(0) > Z/2Z -0  for n=5,
0> ZR2Z+Z2Z+Z/2Z - H;'(0) > Z2Z -0  for n=3,4.
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