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Abstract. If (X, $d$) is a measurable space, $(9_{n})_{n\epsilon N}$ is an increasing sequence of nonempty sets 9. of
probability measures and $g_{n}$ is a $sub-\sigma- field$ of $d$ which is sufficient for the statistical experiment (X, $d,9_{n}$),
$n\in N$ , then the terminal $\sigma- field$ of the sequenoe $(9_{n})_{n\in N}$ contains a $\sigma- field$ which is sufficient for $\bigcup_{n\epsilon N}g_{n}$ .

1. Introduction.

D. Landers has shown in [4], that the terminal $\sigma- fieldVa_{\infty}$ of a sequence $(\mathscr{B}_{n})_{n\in N}$

of $sub-\sigma- fields$ of a given $\sigma- field\mathscr{A}$ is minimal sufficient for a class $\mathcal{P}$ of probability
measures on $\mathscr{A}$ , if $\mathscr{B}_{n}$ is minimal sufficient for $\mathscr{P}_{n}$ , where $\mathscr{P}_{n}\subset \mathscr{P},$ $n\in N$ , are subsets
such that $\mathscr{P}_{n}\subset \mathcal{P}_{n+1},$ $n\in N$ , and $\mathscr{P}=\bigcup_{n\in N}\mathcal{P}_{n}$ . If the assumption ofminimality is dropped
and $\mathscr{A}$ is countably generated, the terminal $\sigma- field$ is sufficient ([4], p. 204, Proposition
9). If $\mathscr{B}_{n}$ is sufficient for $\mathscr{P}_{n}$ but not necessarily minimal sufficient and $\mathscr{A}$ is not countably
generated, $va_{\infty}$ is not sufficient in general ([4], p. 203, Example 8). We show in this
paper, that in any case $\mathscr{B}_{\infty}$ contains a $sub-\sigma- field$ which is sufficient for $\mathcal{P}$ , if $\mathscr{B}_{n}$ is
sufficient for $\mathcal{P}_{n}$ .

2. Notations.

A statistical experiment is a triple (X, $\mathscr{A},$
$\mathcal{P}$), where (X, $\mathscr{A}$) is a measurable space

and $\mathscr{P}$ is a nonempty set of probability measures on (X, $\mathscr{A}$). The system of all
$\mathscr{A}$-measurable subsets of $X$, which are P-null sets, for all $P\in \mathcal{P}$ , is denoted by $\Lambda^{\prime}(\mathcal{P})$ .
If $g$ is a system of subsets of $X$, the $\sigma- field$ generated by 8 is denoted by $S(\ovalbox{\tt\small REJECT})$ . If
$g,$

$h:X\rightarrow R$ are $\mathscr{A}$-measurable functions we write $g=h[\mathscr{P}]$ if $P\{x\in X|g(x)\neq h(x)\}=0$ ,
for every $P\in \mathscr{P}$ . For $\mathscr{A}$-measurable subsets $A_{1},$ $A_{2}$ of $X$ we write $A_{1}=A_{2}[\mathcal{P}]$ instead
$of1_{A_{1}}=1_{A_{2}}[\mathscr{P}]$ . If $\mathscr{B}$ and $\mathscr{C}$ are $sub-\sigma- fields$ of $\mathscr{A},$ $\mathscr{B}\subset \mathscr{C}[\mathscr{P}]$ means that for every $ B\in$ es
there is a set $C\in \mathscr{C}$ such that $B=C[\mathscr{P}]$ . It is easy to see that $S(\mathscr{C}\cup \mathscr{N}(\mathscr{P}))$ consists
exactly of those sets $A\in \mathscr{A}$ for which there is a set $C\in \mathscr{C}$ such that $A=C[\mathscr{P}]$ . Hence
$\mathscr{B}\subset \mathscr{C}[\mathscr{P}]$ is equivalent to $\mathscr{B}\subset S(\mathscr{C}\cup \mathscr{N}(\mathscr{P}))$ . A $sub-\sigma- field\mathscr{B}\subset \mathscr{A}$ is called sufficient
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for (X, $\mathscr{A},$ $\mathcal{P}$), if for every bounded .#-measurable function $f:X\rightarrow R$ there is
$\mathscr{B}$-measurable function $g:X\rightarrow R$ such that $g$ is a version of the conditional expectatie
$E_{P}(g|\mathscr{B})$ , for all $P\in \mathscr{P}$ .

3. Results.

We need three auxiliary results:

LEMMA 1. Let $(X,\mathscr{A})$ be a measurable space, $\mathscr{B}\subset \mathscr{A}$ be a $\sigma- field$ and $(\mathscr{P}_{n})_{n\in N}$ ,
an increasing sequence of nonempty classes of probability measures on (X, $\mathscr{A}$). If as
sufficient for every statistical experiment (X, $\mathscr{A},$ $\mathscr{P}_{n}$) then it is sufficient for (X, $\mathscr{A},$ $9$

where $\mathscr{P}=\bigcup_{n=1}^{\infty}\mathscr{P}_{n}$ .
$PR\infty F$ . $[4]$ , p. 206, Lemma 4. $|$

LEMMA 2. Let (X, $\mathscr{A},9$) be a statistical experiment and let $(g_{n})_{n\in N}$ be a sequen
of sufficient $sub-\sigma- fields$ of $\mathscr{A}$ such that

$\mathscr{B}_{n+1}\subset \mathscr{B}_{n}$ $[\mathscr{P}]$ $\forall n\in N$ .
Then the terminal $\sigma- field$

$g_{\infty}=\bigcap_{n=1}^{\infty}s(\bigcup_{m=n}^{\infty}g_{m})$

is sufficient.
$PR\infty F$ . Let $\ovalbox{\tt\small REJECT}_{n}:=S(\mathscr{B}_{n}\cup \mathscr{N}(\mathscr{P}))$ , for all $n\in N$ . Then $\ovalbox{\tt\small REJECT}_{n+1}\subset\ovalbox{\tt\small REJECT}_{n}$ , for all $n\in N$, an

$\mathscr{B}_{\infty}\subset\tilde{\mathscr{B}}_{\infty}:=\bigcap_{n=1}^{\infty}\ovalbox{\tt\small REJECT}_{n}$ .

A result of Burkholder ([2], p. 1197, Corollary 2) yields the sufficiency of $\ovalbox{\tt\small REJECT}_{\infty}$ . Henc
if $f$ is a bounded real valued measurable function on $X$, there exists a $\ovalbox{\tt\small REJECT}_{\infty}$-measurab
and bounded function $g$ on $X$which is a version of the conditional expectation $E_{P}(f|\ovalbox{\tt\small REJECT}($

simultaneously for all $P\in \mathcal{P}$ . By definition of $\ovalbox{\tt\small REJECT}_{\infty}$ , for every $n\in N$ there is a $g_{n}$-measurab
real valued function $g_{n}$ satisfying $g_{n}=g[\mathscr{P}]$ (comp. [5], p. 56, Lemma 1.10.3). Since

$g=g_{*}:=\lim_{n\rightarrow}\sup_{\infty}g_{n}$
$[\mathscr{P}]$ ,

$g_{*}$ is a $\mathscr{B}_{\infty}$ -measurable version of $E_{P}(f|\ovalbox{\tt\small REJECT}_{\infty}),$ $P\in \mathscr{P}$ , and consequently $g_{s}$

$\bigcap_{P\in 9}E_{P}(f|\mathscr{B}_{\infty})$ . $|$

LEMMA 3. Let (X, $\mathscr{A},\mathcal{P}$) be a statistical experiment and let es, $\mathscr{C}$ be $sub-\sigma- fields$

$\mathscr{A}$ such that $\mathscr{N}(\mathscr{P})\subset \mathscr{C}$ . Then

$\mathscr{C}\cap S(9\cup \mathscr{N}(\mathscr{P}))=S((\mathscr{C}\cap \mathscr{B})\cup \mathscr{N}(\mathscr{P}))$ .
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PROOF. $\mathscr{C}\cap S(\mathscr{B}\cup \mathscr{N}(\mathscr{P}))$ is a $\sigma- field$ which contains $\mathscr{C}\cap \mathscr{B}$ and $\mathscr{N}(\mathscr{P})$ . Hence
$\mathscr{C}\cap S(\mathscr{B}u\mathscr{N}(\mathscr{P}))\supset S((\mathscr{C}\cap \mathscr{B})\cup \mathscr{N}(\mathscr{P}))$ . Conversely let $C$ be an element of $\mathscr{C}\cap$

$S(\mathscr{B}\cup \mathscr{N}(\mathscr{P}))$ . Then there is a set $B\in \mathscr{B}$ such that $C=B[\mathscr{P}]$ . Hence $ C\Delta B\in$

$\mathscr{N}(\mathscr{P})\subset \mathscr{C},$ $\Delta$ denoting the symmetric difference, and so $B=C\Delta(C\Delta B)$ is an element
of $\mathscr{C}\cap \mathscr{B}$ . This shows $C\in S((\mathscr{C}\cap \mathscr{B})\cup \mathscr{N}(\mathscr{P}))$ . $\square $

THEOREM 1. Let (X, $\mathscr{A}$) be a measurable space, let, for all $n\in N,$ $\mathscr{B}_{n}$ be a $sub-\sigma- field$

of $\mathscr{A}$ which is sufficient for the statistical experiment (X, $\mathscr{A},$ $\mathscr{P}_{n}$), where $(\mathscr{P}_{n})_{n\in N}$ is an
increasing sequence of nonempty classes of probability measures on (X, $\mathscr{A}$). Let
$\mathscr{P}:=\bigcup_{n=1}^{\infty}\mathscr{P}_{n}$ . Then the terminal $\sigma- field\mathscr{B}_{\infty}:=\bigcap_{n=1}^{\infty}S(\bigcup_{m\geq n}\mathscr{B}_{m})$ contains a $sub-\sigma- field$

$\mathscr{B}_{*}$ which is sufficient for (X, $\mathscr{A},$
$\mathscr{P}$).

PROOF. For all $n\in N,$ $k\geq n$ and $m\geq k$ let

$\mathscr{B}(n,k,m):=\overline{\bigcap_{i=k}}S(\mathscr{B}_{i}\cup \mathscr{N}(\mathscr{P}_{n}))\cap \mathscr{B}_{m}m1$

(the empty intersection is understood to be the $\sigma- field\mathscr{A}$ , hence $\mathscr{B}(n,k,k)=\mathscr{B}_{k}$). If
$i\geq k\geq n$ then $\mathscr{B}_{i}$ is sufficient for $\mathscr{P}_{n}$ , since $\mathscr{P}_{n}\subset \mathscr{P}_{i}$ . Burkholder (comp. [2], p. 1196,
Theorem 4) has proved, that $\mathscr{B}(n, k, m)$ is therefore sufficient for $\mathscr{P}_{n}$ . We have

$\mathscr{B}(n, k,m+1)\subset\bigcap_{i=k}^{m}S(\mathscr{B}_{i}\cup\Lambda^{\prime}(\mathscr{P}_{n}))=S(\mathscr{B}(n,k, m)\cup \mathscr{N}(\mathscr{P}_{n}))$ ,

for all $m\geq k$, where the last equality follows from Lemma 3, applied to the $\sigma- fields$

$\mathscr{C}:=\bigcap_{i=k}^{m-1}S(\mathscr{B}_{i}\cup \mathscr{N}(\mathscr{P}_{n}))$ and $\mathscr{B}=\mathscr{B}_{m}$ . Hence $(\mathscr{B}(n,k,m))_{m\geq k}$ is a $\mathscr{P}_{n}$-essentially
decreasing sequence of sufficient subfields. By Lemma 2 the terminal $\sigma- field$

$\mathscr{B}(n,k):=\bigcap_{i=k}^{\infty}s(\bigcup_{j\geq i}\mathscr{B}(n, k,j))$

is sufficient for $\mathscr{P}_{n}$ , for every $k\geq n$ . Next observe that $(\mathscr{B}(n, k))_{k\geq n}$ is increasing: By
definition one has

$\mathscr{B}(n,k,m)\subset \mathscr{B}(n,k+1,m)$ $\forall n\in N,$ $k\geq n,$ $m\geq k+1$ ,

and consequently

$\mathscr{B}(n,k)=\bigcap_{i=k+1}^{\infty}s(\bigcup_{j\geq i}\mathscr{B}(n,k,j))$

$\subset\bigcap_{i=k+1}^{\infty}s(\bigcup_{j\geq i}\mathscr{B}(n,k+1,j))=\mathscr{B}(n,k+1)$ ,

for all $n\in N,$ $k\geq n$ (note that $\mathscr{B}(n, k)=\bigcap_{i=i}^{\infty}S(\bigcup_{j\geq i}\mathscr{B}(n,k,j))$ for any $l\geq k$ , since
$S(\bigcup_{j\geq i}\mathscr{B}(n, k,j))_{i\geq k}$ is decreasing). Again by one of Burkholder’s theorems ([2], $p$ .
1196, Theorem 3) the upper envelope
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$\mathscr{B}(n):=s(\bigcup_{k=n}^{\infty}\mathscr{B}(n,k))$

is sufficient for $\mathscr{P}_{n}$ . Finally observe that $(\mathscr{B}(n))_{n\in N}$ is a decreasing sequence. To $ pro\tau$

this let $n\in N$ . $\mathscr{P}_{n}\subset \mathscr{P}_{n+1}$ implies $A^{\prime}(\mathscr{P}_{n})\supset \mathscr{N}(\mathscr{P}_{n+1})$ . This yields

$\mathscr{B}(n,k,m)\supset \mathscr{B}(n+1,k,m)$ $\forall k\geq n+1$ , $m\geq k$ ,

and it follows immediately that

$\mathscr{B}(n,k)\supset \mathscr{B}(n+1,k)$ $\forall k\geq n+1$ .
This implies

$\mathscr{B}(n)=s(\bigcup_{k=n+1}^{\infty}g(n,k))\supset s(\bigcup_{k=n+1}^{\infty}g(n+1,k))=g(n+1)$ ,

where the first equality is valid since $\mathscr{B}(n,k)_{k\geq n}$ is increasing. Now $\mathscr{B}_{*}=\bigcap_{n=1}^{\infty}\mathscr{B}(n)$

sufficient for $\mathscr{P}_{n}$ and every $n\in N$ (again [2], p. 1196, Theorem 3). Lemma 1 yields tl
sufficiency of $as_{*}$ for (X, $\mathscr{A},\mathscr{P}$).

$es_{\infty}$ contains $\mathscr{B}_{*}$ , since $\mathscr{B}_{j}$ contains $\mathscr{B}(n,k,j)$ if $j\geq k\geq n$ and henoe

$\mathscr{B}(n,k)\subset\bigcap_{i=k}^{\infty}s(\bigcup_{j=i}^{\infty}\mathscr{B}_{j})=\mathscr{B}_{\infty}$ $\forall k\geq n$ .

It follows immediately that $\mathscr{B}(n)\subset \mathscr{B}_{\infty}$ is valid, $foralln\in N$ , i.e. $\mathscr{B}_{*}\subset \mathscr{B}_{\infty}$ . $|$

REMARK 1. If the assumptions of Theorem 1 hold and in addition all $sub-\sigma- fiel($

$\mathscr{B}_{n}$ are necessary for (X, $\mathscr{A},\mathcal{P}_{n}$) (i.e. are $\mathscr{P}_{n}$-essentially included in any $sub-\sigma- field$ whit
is sufficient for (X, $\mathscr{A},\mathcal{P}_{n}$)) then the terminal $\sigma- field\mathscr{B}_{\infty}$ of the sequence $(\mathscr{B}_{n})_{n\in N}$

necessary for (X, $\mathscr{A},\mathcal{P}$). This follows immediately from

$s(\bigcup_{n=m}^{\infty}g_{m})\subset \mathscr{C}$ $[\mathscr{P}_{n}]$ ,

which is valid for any sufficient $sub-\sigma- field\mathscr{C}$ of $\mathscr{A}$ and any $n\in N$ . Hence it may 1
deduced from Theorem 1 that minimalsufficiency of $es_{n}$ for (X, $\mathscr{A},\mathscr{P}_{n}$), $n\in N$ , impli
minimalsufficiency of $\mathscr{B}_{\infty}$ . This result is due to D. Landers ([4], p. 202, Theorem 7)

We now give a reformulation of Theorem 1 in terms of weak Blackwell-sufficienc
This is a weak version of a notion of sufficiency which has been introduced by 1
Blackwell in [1].

DEFINITION 1. Let (X, $\mathscr{A},\mathscr{P}$) be a statistical experiment.
1. Let $(\Delta, \mathcal{D})$ be a measurable space. A $\mathscr{P}$-weak Markov kernel from (X, $\mathscr{A}$) $in|$

$(\Delta, \mathcal{D})$ is a function $K:X\times \mathcal{D}\rightarrow R$ such that
(a) $\forall D\in \mathcal{D}:K(x,D)\geq 0[\mathscr{P}]$ ,
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(b) $K(x, \Delta)=1[\mathscr{P}]$ ,

(c) for all sequences $(D_{n})_{n\in N}$ of pairwise disjoint $\mathcal{D}$-measurable subsets of $\Delta$

$K(x,\sum_{n=1}^{\infty}D_{n})=\sum_{n=1}^{\infty}K(x, D_{n})$ $[\mathscr{P}]$

holds true,
(d) $\forall D\in \mathcal{D}:x\mapsto K(x, D)$ is $\mathscr{A}$-measurable.

2. A $sub-\sigma- field\mathscr{B}$ of $\mathscr{A}$ is called weakly Blackwell sufficient if there is a $\mathscr{P}$-weak
Markov kernel $K$ from (X, $\mathscr{B}$) into (X, $\mathscr{A}$) such that

$\int P(dx)K(x,A)=P(A)$ $\forall A\in \mathscr{A}$ , $P\in \mathscr{P}$ .

THEOREM 2. Let (X, $\mathscr{A},$ $\mathcal{P}$) be a statistical experiment and $\mathscr{B}$ be a $sub-\sigma- field$ of $\mathscr{A}$ .
Then

va is weakly Blackwell sufficient
$\Leftrightarrow g$ contains a $sub-\sigma- field$ which is sufficient for (X, $\mathscr{A},$ $\mathcal{P}$).

$PR\infty F$ . This is shown in [3]. $\square $

COROLLARY 1. Let (X, $\mathscr{A}$) be a measurable space, $(\mathscr{P}_{n})_{n\in N}$ an increasing sequence
ofnonempty classes ofprobability measures. For every $n\in N$ let $\mathscr{B}_{n}$ be a $sub-\sigma- field$ which
is weakly Blackwell sufficient for $\mathscr{P}_{n}$ . Then the terminal $\sigma- field\mathscr{B}_{\infty}:=\bigcap_{n=1}^{\infty}S(\bigcup_{m=n}^{\infty}\mathscr{B}_{m})$

is weakly Blackwell sufficient for $1:=\bigcup_{n=1}^{\infty}\mathscr{P}_{n}$ .
$PR\infty F$ . This follows immediately from Theorem 1 and Theorem 2. $\square $
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