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Abstract. If (X,.o) is a measurable space, (2,),.n is an increasing sequence of nonempty sets &, of
probability measures and 4, is a sub-o-field of o which is sufficient for the statistical experiment (X, o, 2,),
neN, then the terminal o-field of the sequence (%,),.n contains a o-field which is sufficient for U,n?

neN“ n*

1. Introduction.

D. Landers has shown in [4], that the terminal o-field & of a sequence (#,),cn
of sub-o-fields of a given o-field & is minimal sufficient for a class 2 of probability
measures on &/, if #, is minimal sufficient for £,, where 2, = 2, neN, are subsets
suchthat?, = 2,,,,neN,and Z=| ), _\Z,. If the assumption of minimality is dropped
and &/ is countably generated, the terminal o-field is sufficient ([4], p. 204, Proposition
9). If 4, is sufficient for 2, but not necessarily minimal sufficient and ./ is not countably
generated, £, is not sufficient in general ([4], p. 203, Example 8). We show in this
paper, that in any case #, contains a sub-o-field which is sufficient for 2, if 4, is
sufficient for 2,.

2. Notations.

A statistical experiment is a triple (X, </, 2), where (X, «/) is a measurable space
and £ is a nonempty set of probability measures on (X,./). The system of all
&/-measurable subsets of X, which are P-null sets, for all Pe 2, is denoted by A" (£).
If & is a system of subsets of X, the o-field generated by & is denoted by S(&). If
g, h: X—R are &/-measurable functions we write g=h [2] if P{xe X|g(x)#h(x)}=0,
for every Pe 2. For «/-measurable subsets 4;, 4, of X we write 4, =4, [#] instead
of 14, =1,,[#]. If # and € are sub-o-fields of o/, # = € [#] means that for every Be #
there is a set Ce¥ such that B=C [£]. It is easy to see that S(% u A (2)) consists
exactly of those sets 4 € o/ for which there is a set Ce € such that 4=C [#]. Hence
R < € [P] is equivalent to Z = S(€ U N (P)). A sub-c-field # < . is called sufficient
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for (X,o,2), if for every bounded /-measurable function f: X—R there is a
%-measurable function g : X—R such that g is a version of the conditional expectation
Ep(g|®#), for all Pe 2.

3. Results.

We need three auxiliary results:

LEMMA 1. Let (X, /) be a measurable space, B = o be a o-field and (?,),.n be
an increasing sequence of nonempty classes of probability measures on (X, ). If B is
sufficient for every statistical experiment (X, ,%P,) then it is sufficient for (X, oL, P),
where =\ )°_, 2,.

PRrROOF. [4], p. 206, Lemma 4. 0O

LEMMA 2. Let (X, o, P) be a statistical experiment and let (#,),.n be a sequence
of sufficient sub-c-fields of </ such that

Boi1 < B, [Z7] VneN.
Then the terminal o-field

B, = ..é, S ("Q ga,,,)

is sufficient.

PrOOF. Let #,:=S(B,u A (P)),forallneN. Then &,,, = &,, for all neN, and
B By=)B,.
n=1

A result of Burkholder ([2], p. 1197, Corollary 2) yields the sufficiency of # . Hence,
if fis a bounded real valued measurable function on X, there exists a #_-measurable
and bounded function g on X which is a version of the conditional expectation Ep(f| #..)
simultaneously for all Pe 2. By definition of #, for every ne N there is a #,-measurable
real valued function g, satisfying g,=g [#] (comp. [5], p. 56, Lemma 1.10.3). Since

g=gy,:=limsupg, [2],

n— o0

g, is a %, -measurable version of Ep(f|#.), Pe?, and consequently g€
ﬂpegEP(flgao)' : D

LEMMA 3. Let (X, o, P) be a statistical experiment and let B,€ be sub-o-fields of
& such that /" (P) = €. Then

ENSBUN(P)=S(€NB)L N (P)).
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PROOF. € N S(# v N (P)) is a o-field which contains € N # and A (Z). Hence
ENSBUN(P) > S(EnB)uAN(P)). Conversely let C be an element of €
S(B U AN (P). Then there is a set Be# such that C=B [#]. Hence CABe

N (P) = €, A denoting the symmetric difference, and so B= CA(CAB) is an element
of € n A. This shows Ce S(€ N B) U N (P)). O

THEOREM 1. Let (X, o) be a measurable space, let, for all ne N, 8, be a sub-o-field
of <« which is sufficient for the statistical experiment (X, 4, P,), where (?,),en IS an
increasing sequence of nonempty classes of probability measures on (X, sf). Let
2=\, P, Then the terminal o-field B ;=\~ S(Upsn®Bm) contains a sub-o-field
B, which is sufficient for (X, o, P). '

Proofr. For all neN, k>n and m>k let
m—1
B(n,k,m):= () S(B; 0 N (P) B,
i=k

(the empty intersection is understood to be the o-field o , hence #(n,k,k)=2%,). If
i>k>n then %, is sufficient for 2,, since 2, = #,. Burkholder (comp. [2], p. 1196,
Theorem 4) has proved, that #(n, k, m) is therefore sufficient for £,. We have

B(n,k,m+1) = ﬁ S(B; 0 N (P,)=S(B(n,k,m)w N (2,)),
i=k

for all m>k, where the last equality follows from Lemma 3, applied to the o-fields
¢ =N, S(# N (P,) and B=2AB,. Hence (B(n,k,m)n,; is a P,-essentially
decreasing sequence of sufficient subfields. By Lemma 2 the terminal o-field

B(n,k): = fjk S( U 2, k,j)>

jzi

is sufficient for #,, for every k>n. Next observe that (#(n, k)),., is increasing: By
definition one has

Bn,k,m)c B(n,k+1,m) VneN, k>n, m>k+1,

and consequently

.%(n,k)= ﬁ 1S<U .@(n,k,_]))

i=k+ jzi

c S(U .@(n,k+1,j))=.@(n,k+l),
i=k+1 jzi

for all neN, k>n (note that #(n,k)=();2,S(,,, B k.j)) for any I>k, since

N, j»1B(n.k,j))i», is decreasing). Again by one of Burkholder’s theorems ([2], p.

1196, Theorem 3) the upper envelope
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B (n): =S( O %(n, k))
k=n

is sufficient for £,. Finally observe that (#(n)),.n is a decreasing sequence. To prove
this let neN. 2, = 2, , implies /' (P,) > N/ (?,.,)- This yields

B, k,m)> B(n+1,k,m) Vek=n+1, m>k,
and it follows immediately that
B(n,k) > B(n+1,k) Vk=zn+1.
This implies

Q(n)=S( U) g(n,k)):s( ¥ ga(n+1,k))=g(n+1),
k=n+1 k=n+1

where the first equality is valid since #(n, k), ., is increasing. Now &,=(\"., #(n) is
sufficient for 2, and every neN (again [2], p. 1196, Theorem 3). Lemma 1 yields the
sufficiency of £, for (X, o, P).

A ,, contains #,, since #; contains #(n, k,j) if j>k>n and hence

B(nk)yc (S UQ,-)=Q°O Vk>n.
i=k j=i

It follows immediately that #(n) < 4, is valid, for all neN, i.e. Z, < % . O

REMARK 1. If the assumptions of Theorem 1 hold and in addition all sub-o-fields
4, are necessary for (X, &/, 2,) (i.e. are 2, -essentially included in any sub-o-field which
is sufficient for (X, «/,%,)) then the terminal o-field £, of the sequence (£,),cn 1S
necessary for (X, of, 2). This follows immediately from

s(O wm)cfﬂ [2.1.

which is valid for any sufficient sub-o-field ¥ of &/ and any neN. Hence it may be
deduced from Theorem 1 that minimalsufficiency of £, for (X, &, 2,), neN, implies
minimalsufficiency of & . This result is due to D. Landers ([4], p. 202, Theorem 7).

We now give a reformulation of Theorem 1 in terms of weak Blackwell-sufficiency.
This is a weak version of a notion of sufficiency which has been introduced by D.
Blackwell in [1].

DEFINITION 1. Let (X, o/, %) be a statistical experiment.

1. Let (4,2) be a measurable space. A #-weak Markov kernel from (X, &) into
(4, 2) is a function K: X x 2—R such that
(a) VDe2: K(x,D)>0 [Z],
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(b) K(x,4)=1[Z],
(c) for all sequences (D,),.n of pairwise disjoint Z-measurable subsets of 4

K (x, )y Dn>= > K(x,D,) [Z]
n=1 n=1
holds true,
(d) VDe2: x—K(x, D) is o/-measurable.
2. A sub-o-field # of of is called weakly Blackwell sufficient if there is a #-weak
Markov kernel K from (X, #) into (X, &) such that

JP(dx)K(x,A)=P(A) VAes/, PeP.

THEOREM 2. Let (X, A, P) be a statistical experiment and B be a sub-o-field of oA .
Then

B is weakly Blackwell sufficient
<> contains a sub-o-field which is sufficient for (X, &, P).

ProoF. This is shown in [3]. ]

COROLLARY 1. Let (X, o) be a measurable space, (?,),n an increasing sequence
of nonempty classes of probability measures. For every neN let 8, be a sub-o-field which
is weakly Blackwell sufficient for 2,. Then the terminal o-field B .=\, S(U e, Bm)
is weakly Blackwell sufficient for #:=\) | P,

Proor. This follows immediately from Theorem 1 and Theorem 2. O

References

[1] D. BLACKWELL, Comparison of experiments, Proc. Sec. Berkeley Symp. on Math. Stat. and Prob.
(1951), 93-102.

[2] D. L. BURKHOLDER, Sufficiency in the undominated case, Ann. Math. Stat. 32 (1961), 1191-1200.

[3] J. HiLe, Uber Suffizienz, Blackwell-Suffizienz und Bayes-Suffizienz, Doktorarbeit, Westfilische
Wilhelms Univ. Miinster (1995).

[4] D. Lanpers, Sufficient and minimal sufficient o-fields, Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 23 (1972), 197-207.

[ 51 J. PFANZAGL, Parametric Statistical Theory, de Druyter (1994).

Present Address:
INSTITUT FUR MATHEMATISCHE STATISTIK, UNIVERSITAT MUNSTER,
EINSTEINSTRABE 62, D-48149 MUNSTER.




