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Abstract. In this paper we introduce a new concept of more weakly quadrant dependence of hitting
times of stochastic processes. This concept is weaker than the more positively quadrant dependence and it
is closed under some statistical operations of weakly positive quadrant dependence (WPQD) ordering.

1. I**ntroduction.

Lehmann [12] introduced the concept of positive (negative) dependence together
with some other dependence concepts. Since then, a great many works have been studied
on the subject and its extensions and numerous multivariate inequalities have been
obtained. For references of available results, see Karlin and Rinott [11], Ebrahimi
and Ghosh [8] and Sampson [13]. Whereas a number of dependence notions exist for
multivariate processes (see Friday [10]), recently, Ebrahimi [7] introduced some new
dependence concepts of the hitting times of stochastic processes.

Most of the dependence concepts introduced in the literature are stronger than the
positive (negative) dependence. For this reason, Baek [2] introduced some new weakly
positive quadrant dependence concepts in terms of the finite-dimensional distributions
of the hitting times of the components of a vector process. These concepts not only
help us to understand structure of functionals such as hitting times of the given vector
process but also have the potential for new and useful inequalities for stochastic processes.
Moreover, the concept of dependence is a form of qualitative bivariate dependence
which has led to many applications in applied probability, reliability, and statistical
inference such as analysis of variance, multivariate tests of hypothesis, sequential testing.
Like this, since WPQD is a qualitative form of dependence, it would seem difficult, or
impossible to compare different pairs of stochastic processes as to their “degree of
WPQD-ness”. For these reasons, in this paper we introduce a new notion of weakly
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more positive quadrant dependent of two stochastic processes. The importance of this
paper lies in the fact that this new notion is weaker than the more positive quadrant
dependence. In particular, we give a partial ordering which permits us to compare pairs
of WPQD bivariate vector processes of interest as to their “degree of WPQD-ness”.

In Section 2, we develop some definitions and notations of WPQD ordering
processes. In Section 3, we define a WPQD family of bivariate distributions $H$ which
is increasing in $\lambda$ and give some interesting examples of such families.

In Section 4, we derive useful closure properties of WPQD ordering. We show that
WPQD ordering is closed under convolution, limit in distribution, compound distri-
bution, mixture of certain types, transformations of univariate increasing functions,
and convex combination.

2. Notation and deflnitions.

First, in this section, we present notations and basic facts used throughout the
paper. In what follows ’increasing’ means non-decreasing and ’positive’ means non-
negative.

Suppose that we are given two bivariate stochastic processes $\{(X_{11}(t), X_{21}(t)|t\geq 0\}$ ,
$\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ . The state space of $(X_{11}(t), X_{21}(t))$ and $(X_{12}(t), X_{22}(t))$ will be taken
to be any subset, $E=E_{1}\times E_{2}$ , of the plane R2.

For any states $a_{i}\in E_{i},$ $i=1,2$ , we define the random times as follows:

$T_{ij}(a_{i})=\inf\{t|X_{ij}(t)\geq a_{i}, 0\leq t\leq\infty\}$ , $j=1,2$ .

In other words, $T_{ij}(a_{i})$ is the hitting time that the ijth component process $X_{ij}(t)$ reaches
or goes above $a_{i}$ (see [7]). Ifwe base the dependence between processes on the dependence
of their hitting times, we then have the following definitions.

DEFINITION 2.1 [3]. The bivariate stochastic process $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ is said
to be more positively quadrant dependent than $\{(X_{11}(t), X_{21}(t))|t\geq 0\}$ if

$P(T_{12}(a_{1})>t_{1}, T_{22}(a_{2})>t_{2})\geq P(T_{11}(a_{1})>t_{1}, T_{21}(a_{2})>t_{2})$

for all $t_{i}\geq 0,$ $a_{i}\in E_{i},$ $i=1,2$ .

DEFINITION 2.2 [2]. The bivariate stochastic process $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ is said
to be weakly positive quadrant dependent of the first type (WPQDI) if

$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P(\bigcap_{i=1}^{2}(T_{i2}(a_{i})>t_{i}))dt_{2}dt_{1}\geq\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}\prod_{i=1}^{2}P(T_{i2}(a_{i})>t_{i})dt_{2}dt_{1}$

for all $x_{i}>0,$ $a_{i}\in E_{i},$ $i=1,2$ .

DEFINITION 2.3 [2]. The bivariate stochastic process $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ is said
to be weakly positive quadrant dependent of the second type (WPQD2) if
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$\int_{0}^{x_{1}}\int_{0}^{x_{2}}P(\bigcap_{i=1}^{2}(T_{i2}(a_{i})>t_{i}))dt_{2}dt_{1}\geq\int_{0}^{x_{1}}\int_{0}^{x_{2}}\prod_{i=1}^{2}P(T_{i2}(a_{i})>t_{i})dt_{2}dt_{1}$

for all $x_{i}>0,$ $a_{i}\in E_{i},$ $i=1,2$ .
Moreover, { $(X_{12}(t),$ $X_{22}(t))$ I $t\geq 0$} (or the distribution $H$) is said to be weakly positive

quadrant dependent (WPQD) if they satisfy both WPQDI and WPQD2.

DEFINITION 2.4 [4]. The bivariate stochastic process $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ is
said to be associated if $Cov(f(T_{12}(a_{1})), g(T_{22}(a_{2})))\geq 0$ for all positive increasing convex
functions $f$ and $g$ for which the covariance exists and $a_{i}\in E_{i},$ $i=1,2$ .

DEFINITION 2.5 [4]. A stochastic process $\{X_{22}(t)|t\geq 0\}$ is stochastically increasing
(SI) in $\{X_{12}(t)|t\geq 0\}$ if $E(f(T_{22}(a_{2}))|T_{12}(a_{1})=t_{1})$ is increasing in $t_{1}$ for all $a_{i}\in E_{i},$ $i=1,2$ ,

and positive increasing convex function $f$

Before we state more definitions, we let $\beta=\beta(F, G)$ denote the class of bivariate
distribution function $H$ having specified marginal distribution functions $F$ and $G$, where
$F$ and $G$ are nondegenerate, and we then consider $\beta^{+}$ , a subclass of $\beta$ , defined by

$\beta^{+}=$ { $H(t_{1},$ $t_{2})|H$ is WPQD, $H(t_{1},$ $\infty)=F(t_{1}),$ $H(\infty,$ $t_{2})=G(t_{2})$}.

Let $H_{1},$ $H_{2}$ belong to $\beta^{+}$ , and use the notations $H_{1}=P(T_{11}(a_{1})>t_{1}, T_{21}(a_{2})>t_{2})$ ,
$\overline{H}_{2}=P(T_{12}(a_{1})>t_{1}, T_{22}(a_{2})>t_{2})$ .

DEFINITION 2.6. The bivariate distribution $H_{2}$ is said to be more weakly positive
quadrant dependent of the first type than $H_{1}$ if

$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}\overline{H_{2}}(t_{1}, t_{2})dt_{1}dt_{2}\geq\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}\overline{H_{1}}(t_{1}, t_{2})dt_{1}dt_{2}$ for all $x_{i}>0$ , $i=1,2$ .

(2.1)

We write $H_{2}>(WPQD1)H_{1}$ .

DEFINITION 2.7. The bivariate distribution $H_{2}$ is said to be more weakly positive
quadrant dependent of the second type than $H_{1}$ if

$\int_{0}^{x_{1}}\int_{0}^{x_{2}}\overline{H_{2}}(t_{1}, t_{2})dt_{1}dt_{2}\geq\int_{0}^{x_{1}}\int_{0}^{x_{2}}\overline{H_{1}}(t_{1}, t_{2})dt_{1}dt_{2}$ for all $x_{i}>0$ , $i=1,2$ .

(2.2)

We write $H_{2}>(WPQD2)H_{1}$ .
Moreover, the bivariate distribution $H_{2}$ is said to be more weakly positive quadrant

dependent than $H_{1}$ if they satisfy both $H_{2}>(WPQD1)H_{1}$ and $H_{2}>(WPQD2)H_{1}$ .
We write $H_{2}>(WPQD)H_{1}$ .

REMARK 1. (a) An equivalent form of (2.1) is
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$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}H_{2}(t_{1}, t_{2})dt_{1}dt_{2}\geq\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}H_{1}(t_{1}, t_{2})dt_{1}dt_{2}$ for all $x_{i}>0$ , $i=1,2$ .

(b) An equivalent form of (2.2) is

$\int_{0}^{x_{1}}\int_{0}^{x_{2}}H_{2}(t_{1}, t_{2})dt_{1}dt_{2}\geq\int_{0}^{x_{1}}\int_{0}^{x_{2}}H_{1}(t_{1}, t_{2})dt_{1}dt_{2}$ for all $x_{i}>0$ , $i=1,2$ .

From $t$he Definitions 2.1, 2.6, 2.7 and [1] we then have the following theorem.

THEOREM 2.8. Let $H_{1}$ and $H_{2}$ be bivariate distribution with specified marginals $F$

and G. Assume that the bivariate distribution $H_{2}$ is more positively quadrant dependent
than $H_{1}$ . Then $H_{2}$ is more weakly positive quadrant dependent than $H_{1}$ .

3. WPQD increasing in a parameter.

Before we state the definiton, we let $t_{1}\wedge t_{2}=\min\{t_{1}, t_{2}\}$ . Within $\beta^{+}$ there are
cumulative distribution function $H_{0}$ and $H^{*}$ defined by

$H_{O}(t_{1}, t_{2})=F(t_{1})\cdot G(t_{2})$ , $H^{*}(t_{1}, t_{2})=F(t_{1})\wedge G(t_{2})$

such that for any $ H\in\beta$ ,

$H_{0}(t_{1}, t_{2})\leq H(t_{1}, t_{2})\leq H^{*}(t_{1}, t_{2})$ for all $t_{i}\geq 0$ , $i=1,2$ .

In this section, we define WPQD families increasing in a parameter and give some
interesting examples of such families.

DEFINITION 3.1. A family of WPQD distributions $H=\{H_{\lambda}(t_{1}, t_{2})|\lambda\in\Lambda\subset R\}$ is
said to be increasing weakly positive quadrant dependent in $\lambda$ if for $\lambda,$ $\lambda^{\prime}\in\Lambda$ ,

$\lambda^{\prime}>\lambda\rightarrow H_{\lambda’}>(WPQD)H_{\lambda}$ .
Next we present some examples of families which are increasing weakly positive

quadrant dependent in the indexing parameter.

EXAMPLE 3.2. Consider the bivariate distribution
$H_{\alpha}(t_{1}, t_{2})=F(t_{1})G(t_{2})\{1+\alpha F\overline{(}t_{1})\overline{G}(t_{2})\}$ , $0\leq\alpha<1$ .

Then for $0\leq\alpha_{1}<\alpha_{2}<1$ ,

$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}\overline{H}_{\alpha_{2}}(t_{1}, t_{2})dt_{1}dt_{2}\geq\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}\overline{H}_{\alpha_{1}}(t_{1}, t_{2})dt_{1}dt_{2}$ ,

$\int_{0}^{x_{1}}\int_{0}^{x_{2}}\overline{H}_{\alpha_{2}}(t_{1}, t_{2})dt_{1}dt_{2}\geq\int_{0}^{x_{1}}\int_{0}^{x_{2}}\overline{H}_{\alpha_{1}}(t_{1}, t_{2})dt_{1}dt_{2}$ .

Hence $H_{\alpha}(t_{1}, t_{2})$ is increasing WPQD in $\alpha$ .
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EXAMPLE 3.3. Let $\beta_{c}^{+}$ be the class of all convex combinations

$\{H(t_{1}, t_{2})|H=(1-\alpha)H_{0}+\alpha H^{*}, 0\leq\alpha\leq 1\}$ .

First of all, we will show that $\beta_{c}^{+}$ is a subclass of $\beta^{+}$ . Suppose $H=(1-\alpha)H_{0}+\alpha H^{*}$ . If
$\alpha=0$ or $\alpha=1$ , then $H\in\beta^{+}$ . For $0<\alpha<1$ ,

$\lim_{t_{1}\rightarrow\infty}H(t_{1}, t_{2})=\lim_{t_{1}\rightarrow\infty}[(1-\alpha)F(t_{1})G(t_{2})+\alpha(F(t_{1})\wedge G(t_{2}))]$

$=(1-\alpha)G(t_{2})+\alpha G(t_{2})=G(t_{2})$ ,

$\lim_{t_{2}\rightarrow\infty}H(t_{1}, t_{2})=\lim_{r_{2}\rightarrow\infty}[(1-\alpha)F(t_{1})G(t_{2})+\alpha(F(t_{1})\wedge G(t_{2}))]$

$=(1-\alpha)F(t_{1})+\alpha F(t_{1})=F(t_{1})$ .

It is clear that $H$ has marginals $F$ and $G$ . Moreover,

$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}H(t_{1}, t_{2})dt_{1}dt_{2}=\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}[(1-\alpha)F(t_{1})G(t_{2})+\alpha(F(t_{1})\wedge G(t_{2}))]dt_{1}dt_{2}$

$\left\{\begin{array}{l}\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}[(1-\alpha)F(t_{1})G(t_{2})+\alpha F(t_{1})]dt_{1}dt_{2}ift_{2}\geq t_{1}\\=\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}F(t_{1})G(t_{2})[1+\alpha\frac{\overline{G}(t_{2})}{G(t_{2})}]dt_{1}dt_{2}\\\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}[(1-\alpha)F(t_{1})G(t_{2})+\alpha G(t_{2})]dt_{1}dt_{2}ift_{2}<t_{1}\\=\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}FIt_{1})G(t_{2})[1+\alpha\frac{\overline{I}l^{\beta_{1}})}{FIt_{1})}]dt_{1}dt_{2}\end{array}\right.$

$\geq\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}F(t_{1})G(t_{2})dt_{1}dt_{2}$ .

Hence $H$ is WPQDI. The proof of the WPQD2 is similar to the proof of the WPQDI.

Therefore $H\in\beta^{+}$ . Thus $\beta_{c}^{+}\subset\beta^{+}$ .
For $0\leq\alpha_{1}\leq\alpha_{2}<1$ ,

$\int_{x_{1}}^{\infty}\int_{X2}^{\infty}[(1-\alpha_{2})F(t_{1})G(t_{2})+\alpha_{2}(F(t_{1})\wedge G(t_{2}))]dt_{1}dt_{2}$

$-\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}[(1-\alpha_{1})F(t_{1})G(t_{2})+\alpha_{1}(F(t_{1})\wedge G(t_{2}))]dt_{1}dt_{2}\geq 0$ ,

$\int_{0}^{x_{1}}\int_{0}^{x_{2}}[(1-\alpha_{2})F(t_{1})G(t_{2})+\alpha_{2}(F(t_{1})\wedge G(t_{2}))]dt_{1}dt_{2}$

$-\int_{0}^{x_{1}}\int_{0}^{x_{2}}[(1-\alpha_{1})F(t_{1})G(t_{2})+\alpha_{1}(F(t_{1})\wedge G(t_{2}))]dt_{1}dt_{2}\geq 0$ .
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Hence $\beta_{c}^{+}$ is increasing WPQD in $\alpha$ .

4. Closure properties of $(\beta^{+}, >(WPQD))$ .
In this section, we establish preservation of the WPQD ordering under convolution,

limit in distribution, compound distribution, mixture of a certain type, transforma-
tions of univariate increasing convex functions, and convex combination. First note
that by Theorem 3 of Alzaid, (2.1) and (2.2) are equivalent to $ E(f(T_{12}(a_{1}))g(T_{22}(a_{2})))\geq$

$E(f(T_{11}(a_{1}))g(T_{21}(a_{2})))$ for all increasing positive convex functions $f$ and $g$ .
Below, we show that the ordering is $pre$served under convolution. We need the

following lemma which is of independent interest.
LEMMA 4.1. Let (a) $\{(X_{11}(t), X_{21}(t))|t\geq 0\}$ and $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ have dis-

tributions $H_{1}$ and $H_{2}$ , where $H_{1},$ $H_{2}$ belong to $\beta^{+},$ $(b)\{(X_{12}(t), X_{22}(t))|t\geq 0\}>(WPQD)$

$\{(X_{11}(t), X_{21}(t))|t\geq 0\}$ , and (c) $(Z_{1}, Z_{2})$ with an arbitrary WPQD distribution function $H$

independent of both of $\{(X_{11}(t), X_{21}(t))|t\geq 0\}$ and $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ . Then $(X_{12}(t)+$

$Z_{1},$ $X_{22}(t)+Z_{2})>(WPQD)(X_{11}(t)+Z_{1}, X_{21}(t)+Z_{2})$ .

PROOF. First, we will show that $(X_{12}(t)+Z_{1}, X_{22}(t)+Z_{2})$ is WPQD. Consider any
hitting times $W_{ij}(a_{i})$ given by $W_{ij}(a_{i})=\inf\{t|X_{ij}(t)+Z_{i}\geq a_{i}, t\geq 0\},$ $i,j=1,2$ . Then,

$Cov(f(W_{12}(a_{1})), g(W_{22}(a_{2})))=Cov(f(T_{12}(a_{1}-Z_{1})),g(T_{22}(a_{2}-Z_{2})))$

$=Cov(E(f(T_{12}(a_{1}-Z_{1}))|Z_{1}, Z_{2}),$ $E(g(T_{22}(a_{2}-Z_{2}))|Z_{1}, Z_{2}))$

$+E(Cov(f(T_{12}(a_{1}-Z_{1})), g(T_{22}(a_{2}-Z_{2}))|Z_{1},$ $Z_{2}$)) $\geq 0$ .
Note that the first and second terms are greater than or equal to zero for any increasing
convex functions $f$ and $g$ . Thus by Theorem 3 ofAlzaid (1990), $(X_{12}(t)+Z_{1}, X_{22}(t)+Z_{2})$

is WPQD. Similarly we can show that $(X_{11}(t)+Z_{1}, X_{21}(t)+Z_{2})$ is also WPQD.
Next, we will show that $(X_{12}(t)+Z_{1}, X_{22}(t)+Z_{2})>(WPQD)(X_{11}(t)+Z_{1}, X_{21}(t)+$

$Z_{2})$ , i.e.,

$E(f(T_{12}(a_{1}-Z_{1}))g(T_{22}(a_{2}-Z_{2})))\geq E(f(T_{11}(a_{1}-Z_{1}))g(T_{21}(a_{2}-Z_{2})))$

for any increasing convex functions $f$ and $g$ . Now,

$E(f(T_{12}(a_{1}-Z_{1}))g(T_{22}(a_{2}-Z_{2})))=E$($E(f(T_{12}(a_{1}-Z_{1}))g(T_{22}(a_{2}-Z_{2}))$ I $Z_{1},$ $Z_{2})$)

$=E(E(f(T_{12}(a_{1}-Z_{1}))g(T_{22}(a_{2}-Z_{2}))))\geq E(E(f(T_{11}(a_{1}-Z_{1}))g(T_{21}(a_{2}-Z_{2}))))$

$=E(f(T_{11}(a_{1}-Z_{1}))g(T_{21}(a_{2}-Z_{2})))$ .

The inequality follows from the assumption that $(X_{12}(t), X_{22}(t))>(WPQD)(X_{11}(t)$,
$X_{21}(t))$ .

THEOREM 4.2. Suppose that the stochasticprocess (a) $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ is more
weaklypositive quadrant dependent than $\{(X_{11}(t), X_{21}(t))|t\geq 0\},$ $(b)\{(Y_{12}(t), Y_{22}(t))|t\geq 0\}$
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is more weaklypositive quadrant dependent than { $(Y_{11}(t),$ $Y_{21}(t))$ I $t\geq 0$ }, and (c) let $\{(X_{12}(t)$ ,
$X_{22}(t))|t\geq 0\}$ and $\{(Y_{12}(t), Y_{22}(t))|t\geq 0\}$ be independent processes, $\{(X_{11}(t), X_{21}(t)|t\geq 0\}$

and $\{(Y_{11}(t), Y_{21}(t))|t\geq 0\}$ be independent processes. Then $\{(X_{12}(t)+Y_{12}(t), X_{22}(t)+$

$Y_{22}(t))|t\geq 0\}>(WPQD)\{(X_{11}(t)+Y_{11}(t), X_{21}(t)+Y_{21}(t))|t\geq 0\}$ .

PROOF. By assumption, (X, $2(t),$ $X_{22}(t)$) $>(WPQD)(X_{11}(t), X_{21}(t))$ . Specifying
$(Z_{1}(t), Z_{2}(t))$ to be $(Y_{12}(t), Y_{22}(t))$ , we apply Lemma 4.1 to obtain

$(X_{12}(t)+Y_{12}(t), X_{22}(t)+Y_{22}(t))>(WPQD)(X_{11}(t)+Y_{12}(t), X_{21}(t)+Y_{22}(t))$ . (4.1)

Next, we use the assumption $(Y_{12}(t), Y_{22}(t))>(WPQD)(Y_{11}(t), Y_{21}(t))$ , specifying
$(Z_{1}(t), Z_{2}(t))$ to be $(X_{11}(t), X_{21}(t))$ , and again use Lemma 4.1 yielding

$(X_{11}(t)+Y_{12}(t), X_{21}(t)+Y_{22}(t))>(WPQD)(X_{11}(t)+Y_{11}(t), X_{21}(t)+Y_{21}(t))$ . (4.2)

By combining (4.1) and (4.2),

$(X_{12}(t)+Y_{12}(t), X_{22}(t)+Y_{22}(t))>(WPQD)(X_{11}(t)+Y_{12}(t), X_{21}(t)+Y_{22}(t))$

$>(WPQD)(X_{11}(t)+Y_{11}(t), X_{21}(t)+Y_{21}(t))$ .

Thus

$(X_{12}(t)+Y_{12}(t), X_{22}(t)+Y_{22}(t))>(WPQD)(X_{11}(t)+Y_{11}(t), X_{21}(t)+Y_{21}(t))$ .

This completes the proof.

The next theorem demonstrates that, under suitable conditions, limits of the WPQD
ordering processes inherit the WPQD ordering structure.

THEOREM 4.3. Let (a) $\{(X_{n1}(t), X_{n2}(t))|t\geq 0\},$ $\{(Y_{n1}(t), Y_{n2}(t))|t\geq 0\}$ have distribu-
tions $H_{n},$ $H_{n}^{\prime}$ for every $n$ and $H_{n}>(WPQD)H_{n}^{\prime}$ , (b) $\{(X_{1}(t), X_{2}(t))|t\geq 0\},$ $\{(Y_{1}(t)$,
$Y_{2}(t))|t\geq 0\}$ have distributions $H,$ $H^{\prime},$ $(c)\{(X_{n1}(t), X_{n2}(t))|t\geq 0\},$ $\{(Y_{n1}(t), Y_{n2}(t))|t\geq 0\}$ ,
$\{(X_{1}(t), X_{2}(t))|t\geq 0\}$ and $\{(Y_{1}(t), Y_{2}(t))|t\geq 0\}$ have all sample paths and they are right
continuous on $[0, \infty$ ) with finite left limits at all $t$ , and (d) $H_{n}\rightarrow^{w}H$ and $H_{n}^{\prime}\rightarrow^{w}H^{\prime}$ as
$ n\rightarrow\infty$ , respectively. Then $H>(WPQD)H^{\prime}$ .

PROOF. Denote by $C(H)$ and $C(H^{\prime})$ the sets of continuity points of $H$ and $H^{\prime}$ ,
respectively. Let $D=C(H)\cap C(H^{\prime})$ . It follows from our assumptions that $ H(t_{1}, t_{2})\geq$

$H^{\prime}(t_{1}, t_{2})$ for all $(t_{1}, t_{2})\in D$ . Since $D$ is a dense set in $R^{2},$ $H>(WPQD)H^{\prime}$ .

The following theorem is another application of Theorem 4.2 which is very
important in recognizing WPQD ordering in compound distributions which arise
naturally in stochastic processes.

THEOREM 4.4. Let (a) $(Y_{1}, S_{1}),$ $(Y_{2}, S_{2}),$ $\cdots$ be independent random processes, (b)
$(X_{1}, K_{1}),$ $(X_{2}, K_{2}),$ $\cdots$ be independent random processes, (c) $(Y_{i}, S_{i})$ and $(X_{i}, K_{i}),$ $i=$

$1,2,$ $\cdots,$ $n$ , are WPQD random process (d) $(Y_{i}, S_{i})>(WPQD)(X_{i}, K_{i}),$ $i=1,2,$ $\cdots$ , and
(e) $N(t)$ be a Poisson process which is independent of $(Y_{i}, S_{i})$ and $(X_{i}, K_{i}),$ $i=1,2,$ $\cdots$ .
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Then

$(Z_{12}(t)=\sum_{i=1}^{N\langle t)}Y_{i},$ $Z_{22}(t)=\sum_{i=1}^{N\langle t)}s_{i})>(WPQD)(Z_{11}(t)=\sum_{i=1}^{N\langle t)}X_{i},$ $Z_{21}(t)=\sum_{i=1}^{N\langle t)}K_{i})$

PROOF. This can be proved by the similar method as Theorem 4 in [7].

Our next result deals with the preservation of the WPQD ordering under mixture.
In order to motivate our definition of a subclass of $\beta^{+}$ in which the WPQD ordering
is $pre$served under mixture we need Proposition 4.5.

PROPOSITION 4.5. Let (a) $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ given a scalar $\lambda$ , a stochastic
process be conditionally WPQD, and (b) { $X_{i2}(t)$ I $t\geq 0$} be SI in $\lambda$ , for each $i=1,2,$ $(c)\lambda$

be associated. Then $\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ is WPQD.

PROOF. Let $f$ and $g$ be increasing positive convex functions for which the covari-
ance exists. Then

$Cov(f(T_{12}(a_{1})), g(T_{22}(a_{2})))$

$=E[Cov(f(T_{12}(a_{1})), g(T_{22}(a_{2}))|\lambda)]+Cov[E(f(T_{12}(a_{1}))|\lambda), E(g(T_{22}(a_{2}))|\lambda)]$ . (4.3)

Conditioned on $\lambda,$ $(X_{12}(t), X_{22}(t))$ is WPQDI (WPQD2). Thus by Theorem 3 of Alzaid
(1990) the first term on the right hand side of (4.3) is positive. From Definition 2.5 the
conditional expectations in the second term on the right hand side of (4.3) are increasing
functions of $\lambda$ . Since $\lambda$ is associated, the covariance of the conditional expectations in
the second term is positive. It follows that $Cov(f(T_{12}(a_{1})), g(T_{22}(a_{2})))\geq 0$ . Thus
$\{(X_{12}(t), X_{22}(t))|t\geq 0\}$ is WPQD.

We may now define the class $\beta_{\lambda}^{+}$ by

$\beta_{\lambda}^{+}=\{H_{\lambda}|H(t_{1}, \infty|\lambda)=F(t_{1}|\lambda),$ $H(\infty, t_{2}|\lambda)=G(t_{2}|\lambda)$ ,

$ H_{\lambda}|\lambda$ is WPQD, and both $F$ and $G$ are SI in $\lambda$ }.
Now consider $(\beta_{\lambda}^{+}, >(WPQD))$ . The following theorem shows that if two elements

of $\beta_{\lambda}^{+}$ are ordered according to $>(WPQD)$ , then after mixing $\lambda$ , the resulting element
in $\beta^{+}$ preserves the same order.

THEOREM 4.6. Let $(X_{12}(t), X_{22}(t))$ I $\lambda$ and $(X_{11}(t), X_{21}(t))|\lambda$ belong to $\beta_{\lambda}^{+}$ and
$((X_{12}(t), X_{22}(t))|\lambda)>(WPQD)((X_{11}(t), X_{21}(t))|\lambda)$ for all $\lambda$ . Then, unconditionally,
$(X_{12}(t), X_{22}(t)),(X_{11}(t), X_{21}(t))$ belong to $\beta^{+}and(X_{12}(t), X_{22}(t))>(WPQD)(X_{11}(t), X_{21}(t))$ .

PROOF. From Proposition4.5, $(X_{12}(t), X_{22}(t))$ and $(X_{11}(t), X_{21}(t))$ are WPQD. Let
$f$ and $g$ be positive increasing convex functions. Then

$E(f(T_{12}(a_{1}))g(T_{22}(a_{2})))=E_{\lambda}(E(f(T_{12}(a_{1}))g(T_{22}(a_{2}))|\lambda))$

$\geq E_{\lambda}(E(f(T_{11}(a_{1}))g(T_{21}(a_{2}))|\lambda))=E(f(T_{11}(a_{1}))g(T_{21}(a_{2})))$ .
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The inequality comes from the fact that $(X_{12}(t), X_{22}(t))|\lambda>(WPQD)(X_{11}(t), X_{21}(t))|\lambda$

for all $\lambda$

Next, we show that the WPQD ordering is invariant under transformations of
stochastic processes by increasing convex functions.

RESULT 4.7. Let (a) $\{(X_{ij}(t), X_{ij}^{\prime}(t))^{H_{j}}|t\geq 0\},$ $i=1,2,3,$ $\cdots,$ $n$ , be n-independent
pairs from a bivariate distribution $H_{j}$ with continuous increasing sample paths, $j=1,2$ ,

(b) $H_{1}$ and $H_{2}$ belong to $\beta^{+}$ such that $H_{2}>(WPQD)H_{1}$ , and (c) $f_{1}$ and $f_{2}$ are positive

convex functions and they are increasing in each of their arguments when all other
arguments arefixed Then $(Y_{12}(t), Y_{22}(t))>(WPQD)(Y_{11}(t), Y_{21}(t))$ , where the processes
$Y_{ij}(t)$ are given by $Y_{1i}(t)=f_{1}(X_{1i}(t), \cdots, X_{ni}(t)),$ $Y_{2i}(t)=f_{2}(X_{1i}^{\prime}(t), \cdots, X_{ni}^{\prime}(t)),$ $i=1,2$ .

PROOF. First, we will show that the WPQDI ordering holds. The proof will be
given for the case $n=2$ . For the general $n$ , the proof is similar.

Fix $t_{i}\geq 0,$ $i=1,2$ , and introduce the variables $V_{i}=X_{2i}(t_{i}),$ $V_{i}^{\prime}=X_{2i}^{\prime}(t_{i}),$ $U_{i}=$

$\sup_{0\leq s<t_{i}}(f_{1}(X_{1i}(s), X_{2i}(s)))$ , and $U_{i}^{\prime}=\sup_{0\leq s<t_{i}}(f_{2}(X_{1i}^{\prime}(s), X_{2i}^{\prime}(s))),$ $i=1,2$ , where for
simplicity, $t_{1},$ $t_{2}$ have been suppressed in $V_{i},$ $V_{i}^{\prime},$ $U_{i}$ and $U_{i}^{\prime}$ . Consider any hitting times
of $Y_{1i}(s)=f_{1}(X_{1i}(s), X_{2i}(s)),$ $Y_{2i}(s)=f_{2}(X_{1i}^{\prime}(s), X_{2i}^{\prime}(s)),$ $i=1,2$ , given by

$W_{ij}(a_{i})=\inf\{s|Y_{\ddot{u}}(s)\geq a_{i}, s\geq 0\}$ , $i,j=1,2$ .

It suffices to show that

$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P(W_{12}(a_{1})>t_{1}, W_{22}(a_{2})>t_{2})dt_{1}dt_{2}$

$\geq\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P(W_{11}(a_{1})>t_{1}, W_{21}(a_{2})>t_{2})dt_{1}dt_{2}$ , $i=1,2$ .

No $te$ the facts that $U_{i}=\sup_{0\leq s<t_{i}}(f_{1}(X_{1i}(s), V_{i})),$ $U_{i}^{\prime}=\sup_{0\leq s<t_{i}}(f_{2}(X_{1i}^{\prime}(s), V_{i}^{\prime})),$ $i=1,2$ ,

and that by hypothesis, $(V_{2}, V_{2}^{\prime})>(WPQD1)(V_{1}, V_{1}^{\prime})$ . Now, we obtain

$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P(W_{12}(a_{1})>t_{1}, W_{22}(a_{2})>t_{2})dt_{1}dt_{2}$

$=\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P(U_{1}<a_{1}, U_{2}<a_{2})dt_{1}dt_{2}$

$=\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}E[P(U_{1}<a_{1}, U_{2}<a_{2}|V_{2}, V_{2}^{\prime})]dt_{1}dt_{2}$

$\geq\int_{x_{1}}^{\infty}E[P(U_{1}<a_{1}|V_{2})]dt_{1}\int_{x_{2}}^{\infty}E[P(U_{2}<a_{2}|V_{2}^{\prime})]dt_{2}$

$\geq\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}E[P(U_{1}<a_{1}, U_{2}<a_{2}|V_{1}, V_{1})]dt_{1}dt_{2}$
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$=\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P(W_{11}(a_{1})>t_{1}, W_{21}(a_{2})>t_{2})dt_{1}dt_{2}$ .

The proof of the WPQD2 ordering is similar.

We now tum our attention to a simple but important property of the class $\beta^{+}$ .
RESULT 4.8. The class $\beta^{+}=\{H|H(t_{1}, t_{2})$ is WPQD, $H(t_{1}, \infty)=F(t_{1}),$ $H(\infty, t_{2})=$

$G(t_{2})\}$ is closed under convex combination.

PROOF. Let $H_{1},$ $H_{2}\in\beta^{+}$ and for $\alpha\in(0,1),$ $H=\alpha H_{1}+(1-\alpha)H_{2}$ . Then we will show
that $H$ is a convex combination of $H_{1}$ and $H_{2}$ . Since each of $H_{1}$ and $H_{2}\in\beta^{+}$ ,

$\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P_{H}(T_{12}(a_{1})>t_{1}, T_{22}(a_{2})>t_{2})dt_{1}dt_{2}$

$=\alpha\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P_{H_{1}}(T_{12}(a_{1})>t_{1}, T_{22}(a_{2})>t_{2})dt_{1}dt_{2}$

$+(1-\alpha)\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P_{H_{2}}(T_{12}(a_{1})>t_{1}, T_{22}(a_{2})>t_{2})dt_{1}dt_{2}$

$\geq\alpha\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P_{H}(T_{12}(a_{1})>t_{1})P_{H}(T_{22}(a_{2})>t_{2})dt_{1}dt_{2}$

$+(1-\alpha)\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P_{H}(T_{12}(a_{1})>t_{1})P_{H}(T_{22}(a_{2})>t_{2})dt_{1}dt_{2}$

$=\int_{x_{1}}^{\infty}\int_{x_{2}}^{\infty}P_{H}(T_{12}(a_{1})>t_{1})P_{H}(T_{22}(a_{2})>t_{2})dt_{1}dt_{2}$ . (4.4)

Hence $H$ is WPQDI. The proof of the WPQD2 ordering is similar to the proof of the
WPQDI. Moreover,

$\lim_{t_{1}\rightarrow\infty}H(t_{1}, t_{2})=\alpha G(t_{2})+(1-\alpha)G(t_{2})=G(t_{2})$ , (4.5)

$\lim_{t_{2}\rightarrow\infty}H(t_{1}, t_{2})=\alpha F(t_{1})+(1-\alpha)F(t_{1})=F(t_{1})$ . (4.6)

It follows from (4.4), (4.5), (4.6) that $H\in\beta^{+}$ . Thus $\beta^{+}$ is closed under convex combina-
tion.
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