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Introduction.

Let A be a commutative ring with unity. For a subset E of SpecA, we put

¢y Sg=() (A\p)  (Sg=4).

peE

Then Sy is a saturated multiplicatively closed set.
To an A-module M, we associate a presheaf M in the following way. By putting

(2 MU)=S;'M

for an open subset U of SpecA, we define a presheaf M of modules on SpecA4. Then
() M(D(f)=M, for fed,

(4) M,=M, for peSpecd,

where D(f)={peSpecA | f¢p}. Here M is not a sheaf in general. But the sheafification
of M turns out to be the quasi-coherent 4-module . Then we ask the question: When
is the presheaf M actually a sheaf?

Noting that M is a sheaf if and only if M =M, we introduce the following three
conditions for a ring A4:

(S.1) M = M for any A-module M.
(8.2) a=a for any ideal a of 4.
(S.3) A=A

Then it is obvious that (S.1) = (5.2) = (S.3).
The main results of this paper are as follows.

THEOREM 1. Suppose that A is a valuation ring. Then
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(1) A satisfies the condition (S.3).
(i1) (S.1) <= (S.2) < SpecA is a noetherian topological space.

COROLLARY. A valuation ring of finite dimension satisfies the condition (S.1).

THEOREM 2. Let A be a Dedekind domain. Then
(8.1) < (8.2) <> (8.3) <> the ideal class group of A is torsion.

CoROLLARY. (i) The ring of integers of an algebraic number field of finite degree
satisfies the condition (S.1).

(i) Let A be a coordinate ring of a non-singular affine algebraic curve over C.
Then A is a Dedekind domain, and A satisfies the condition (S.1) if and only if the curve
is rational.

THEOREM 3. Suppose that A is a unique factorization domain (UFD). Then
(1) A satisfies the condition (S.3).
(i) (S.1) <= (S.2) < A is a principal ideal domain (PID).

For integral rings which are not integrally closed, we obtain;

ExaMPLE 1. Let A=Z[\/m]. If m=—3, 5, then A satisfies the condition (S.1).
Moreover, if m is a square free integer such that m=1 (mod8) and Z[(1+./m)/2] is
a PID, then A satisfies the condition (S.1).

ExampPLE 2. Let A=C[X, Y]/(Y?*—X3—aX—b), where a,beC, 4a®+27b*>=0.
Then A does not satisfy the condition (S.3).

The author wishes to express his thanks to Professor Shigeru litaka for his advices
and warm encouragement.

1. Here we introduce the topological conditions (T.1), (T.2) and (T.3).
Let A4 be a ring and M an A-module. For any subset E of Spec 4, we obtain

5 St 'M=ind.limM(U),
where U runs over all open sets of Spec4 which contain E. Therefore we can write
2) M(E)=S;'M for  EcSpecA.

Let A4 be an integral ring and a an ideal of A. Since & satisfies the condition that
aU)= ﬂpeuav for any non-empty open sets U of Spec A, we obtain

(6) () a,=ind.lima(V)

peE

for any non-empty subset E of Spec4. Here U runs over all open sets of Spec4 which
contain E (see [6], Lemma 1). Therefore we can write
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a &E)= () a, for EcSpecd,E#J.
peE

For a ring 4, we put
I={D()| fed}, Z,={D(a)|aecQA}u{D}.
Here QA is the total quotient ring of 4 and a,={be 4 | booe A}. Then
®) <X, if A is integral .

For any subset E of SpecA, we put

&) E= (U,
UeZX
UoE
(10) E=NV,
Vel
VSE
(11 E*={peSpecA | *p’e E such that pcp’},
(12) E°=m-Spec A(E)<=SpecA .
Then
9" E= () D(f)={peSpecd | p= |J p’} =SpecA(E).
feSE p'eE

Moreover if A is integral and E # J, then
9" E={peSpecd | A(E)=A4,},
(10" E'={peSpecA | A(E)=A,} .

LemMmAa 1. Let A be a ring and E a subset of SpecA. Then
(i) EcE*cE',E*cE, E°cE.

(ii) If E is open, then E=E*.

(iii) If A4 is integral, then E' c E.

The proof is easy.

Let A be a ring. We introduce the following conditions for the topology of SpecA.
(T.1) For any open set U of SpecA, there exists f'€ A such that U=D(f).
(T.2)  For any open set U of Spec4, U=U.

(T.3) For any open set U of SpecA, 0 ="0.

Then the following lemma is easy to prove.
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LEMMA 2. Let A be a ring.
(i) (T.1) < For any ideal a of A, there exists fe A such that \/‘ f
(11) (T.1) = For any peSpecA, there exists fe A such that p=./(f)
= For any subset E of specA, E¥*=F
= (T.2).
(i) If A is integral, then (T.2) = (T.3).

Moreover, we consider the condition:
(T.I') For any compact open set U of SpecA, there exists f€ A such that U= D(f).

Then we have

(13) (T.1) < (T.1") and SpecA is a noetherian topological space .

2. Here we consider the relationship between the conditions (S.1), (8.2), (8.3) and
the conditions (T.1), (T.2), (T.3).
Let A be an integral ring. For any intermediate ring B of QA/A, we put

={a/be QA | acA,be AN B"}.

Then Ac B, cB.
Let us fix an integral ring 4, and consider the correspondence between non-empty
subsets E of SpecA and intermediate rings B of QA/A defined by

(14) E— B=A(E), B+ E={peSpecd|pnB =}.

LEMMA 3. Let A be an integral ring. Then

(i) A(E)— E by (14) for any non-empty subsets E of SpecA.

(ii) {pe SpecA | p " B* =&} — B, by (14) for any intermediate rings B of QA/A.
(i) E=E+#J < there exists B such that E= {peSpecd | pn B* =}.

(iv) B, =B < there exists E such that B= A(E).

The proof is easy.

COROLLARY.  The mapping (14) is a bijection between the set of subsets E of SpecA4
such that E= E+# 5 and the set of intermediate rings B of QA/A such that B,=B.

Let K be a fied and 4 a subring of K. We denote by Loc(K|A) the set of local
subrings of K which contain 4. We consider the mapping ¥ ,: SpecA — Loc(QA|A)
defined by p > 4,. Then ¥, is an into-homeomorphism.

For any 1ntermed1ate ring B of QA/A, we put

B*= N R.

Relm¥ 4 nLoc(QA|B)

Then B B*< QA.



PRESHEAVES ASSOCIATED TO MODULES 53

We consider the correspondence between E and B defined by

(15) E— B=A(E), Bw— E=()D(a,).
aeB
Note that
(16) () D(a,)={peSpecd | Bc4,},
aeB

for any intermediate ring B of QA4/A.

LEMMA 4. Let A be an integral ring. Then

(i) A(E)w— E* by (15) for any non-empty subsets E of SpecA.

(i) (),.zDla,) — B* by (15) for any intermediate rings B of QA/A.
(i) E=E"# < there exists B such that E= (), D(a,).

(iv) B=B* <> there exists E such that B= A(E).

The proof is easy.

COROLLARY. The mapping (15) is a bijection between the set of subsets E of Spec A
such that E=E"# 5 and the set of intermediate rings B of QA/A such that B= B*.

LEMMA 5. Let A be an integral ring and E a subset of SpecA. Then
(i) AE)=AE).
(ii) A(E)=A(E) < E'=E.

PrOOF. We may assume that E# .

( 1 ) A(E) ﬂqupecA(E) A(E)q ﬂpeEA A(E) by (9 )

(i1) If part: By Lemma 4 and (i), we have A(E)=A(EY)=A(E)= A(E). Only
if part: By (9”) and (10"), we have E'={peSpecd | A(E)cA,}= {peSpecA|A(E)c
A,}=E. Q.E.D.

COROLLARY. (S.3) < (T.3) < E'=E for any Ec=SpecA.

LEMMA 6. Let A be an integral ring. For a subset E of SpecA, the following five
conditions are equivalent:.

(@) a(E)=Aa(E) for any ideal a of A.

@) pE)=PE) for any p e SpecA.

(b) bc Up g P’ = there exists p' € E such that bep’, for any ideal b of A.

(b") E*=E.

(c) E°cE.

PrROOF. We may assume that E# .
(a) = (b): Takeanidealbe| ), ;' Then Sz b= _;b, by (a). Since b Sp=,
we have Sg ' b Sg 'A4. Therefore there exists p’ € E such that b, & 4. Then bcp'.
(b) = (b’): Obvious.
(b') = (c): For any peE°c E=E* there exists p'e E such that pcp’. Then
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Sg'peSg'p’#Sz'4 and so p=p'€E.

(c) = (a): It is sufficient to prove ﬂpeEapchla. For any aeﬂpeEap, we put
b={beA| baea}. If we assume that b N Sg= (¥, then S; 'bg Sz !4. Thus there exists
p€ E°c E such that Sg 'bcS; 'p. Then bep. Since aea,, we can write a=a/b, aca,
be A\p. Then ba=ae aand hence beb c p. Thisis a contradiction. Therefore b n Sy # .
If beb N Sg, then a=baeca. Thus a=a/be Sg *a.

(a) = (a’): Obvious.

(a’) = (c): For any peE’, we have Sy 'p=(), P, by (a’). Since veE°cE we
obtain Sz 'p& Sg 'A4. There exists p’€ E such that p,.& 4,. Then pcp’ and hence
Sg 'p<=S; 'p’. Since S 'p is maximal, we obtain p=p’e€E. Q.E.D.

COROLLARY. (8.2) =« (T.2)
<> p=p for any peSpecA
< E*=F for any E=SpecA
<> E°cE for any EcSpecA .

REMARK. The above conditions are not equivalent to the following one: m=1h
for any mem-SpecA. See Example 3 in §4.

LemMMA 7. Let A be an integral ring satisfying the condition (S.3). Then

(1) p=9 <= p¢D(p), for any peSpecA.
(i1) If a is a principal ideal of A, then a=a.

PrOOF. (i) Note that £' = E for any subset E of SpecA. Thus
p=p < if peE, then pe E* for any EcSpecA4
<« if p¢ E*, then p¢ E for any EcSpecA
< if EQV(p)=(, then p ¢ E for any EcSpecA
< p¢D(p).

(i1)) Let a=aA4. We may assume a#0. It is sufficient to prove ﬂpe £, < Sg 'a for any
non-empty subset E of Spec4. For any ae(),_,a,, we obtain a/ae (), p4,=S5z ‘4.
Thus ae Sg 'a. Q.E.D.

LemMA 8. For an integral ring A, we obtain
(S.1) = (8.2) = (S8.3)
l ¢ $
PID = (T.1) = (T.2) = (T.3)
The proof is obvious from (3), Lemma 2 and Corollaries of Lemmas 5 and 6.

Next we consider several integral rings which are not integrally closed.

ExampLe 1. Let A=Z[,/m]. If m= —3, 5, then A satisfies the condition (T.1).
Moreover if m is a square free integer such that m=1(mod8) and Z[(1 +./m)/2] is a
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PID, then A satisfies the condition (T.1).

In fact, since any prime ideal of A4 is the radical of a principal ideal and any closed
subset of SpecA is either Spec A itself or a finite set, 4 satisfies the condition (T.1).

ExaMpPLE 2. Let A=C[X, Y]/(Y?—X?3).If we put m,=(X—a?, Y—a?) foraeC,
then m-Spec4 = {m, | ae C} and m, is the unique singular point of Spec4. Moreover,
(i) If a subset E of SpecA does not contain m,, the A(E)=A(E).
(ii) If we put U=SpecA\{m,}, then A(U)=A(U) <> a=0.
Thus 4 does not satisfy the condition (S.3).

ExampLE 2”. Let A=C[X, Y]/(Y>—X3—X?). If we put m,=(X—a’+1,Y—
a3+ a) for ae C, then m-Spec 4 ={m, | ae C} and m_, =m, is the unique singular point
of Spec 4. Moreover,

(i) If a subset E of SpecA4 does not contain m_,; =m,, then A(E)=A(E).

(ii) If we put U=SpecA\{m,}, where a# + 1, then A(U)=A(U) <> (a+1)/(a—1)

is a root of unity.
Thus 4 does not satisfy the condition (S.3)

3. Here we collect some properties of Priifer rings and Krull rings.
First we recall the definition of Priifer rings. An integral ring A is said to be Priifer
if A4, is a valuation ring for any peSpec A. Let A be a Priifer ring. Then

(16" () D(a,)={peSpecA | Bc A,}={peSpecA | pBE B}

aeB

={peSpecA | *ge Spec B such that p=4 N q} =SpecB,
for any intermediate ring B of QA/A (see [1], (26.1)).

LemMMA 9. For an integrally closed integral ring A, the following two conditions
are equivalent:

(@) A is a Priifer ring.

(b) For any intermediate ring B of QA/A, there exists a subset E of SpecA such
that B=A(E).

For a proof, see [1], (26.2).

THEOREM 4. For an integral ring A, the following three conditions are equivalent:

(a) A is a Priifer ring which satisfies the condition (S.3).

(@) A is a Priifer ring which satisfies the condition (T.1").

(b) For any intermediate ring B of QA/A, there exists a subset E of SpecA such
that B=A(E).

The proof is easy from Lemma 9 and [1], (27.5).
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COROLLARY. Suppose that A is a Priifer ring such that SpecA is a noetherian
topological space. Then the conditions (S.1), (S.2), (S.3), (T.1), (T.2) and (T.3) are all
equivalent.

Next we recall the definition of Krull rings. An integral ring 4 is said to be Krull
if there exists a subset W of Zar(QA|A) such that

17 If Re W, then R is a discrete valuation ring .
(18) For any ae 04, the set {Re W | a¢ R} is finite .
19y A= () R.

ReWwW

Here we denote by Zar(QA|A4) the set of valuation rings of QA4 which contain 4. In
this case we say that W defines 4. If 4 is a Krull ring, then Wo={A,| peSpec4,
dim 4, = 1} is the smallest subset of Zar(QA |4) which defines A4 (see [4], Theorem 12.3).

LEMMA 10. Let A be a Krull ring and E a non-empty subset of SpecA. Then A(E)
is also a Krull ring. Moreover,

(1) If W defines A, then W~ & ((E) defines A(E). Here ® , is the mapping from
Zar(QA|A) to SpecA defined by ® (R)=A N m(R) for any ReZar(QA|A).

(ii) @5 (BN E) is the smallest subset of Zar(QA|A) which defines A(E), where
P={peSpecA4 | dimA4,=1}.

PrROOF. (i) It is clear that W & (E) satisfies (17) and (18). By [4], Theorem
12.1 and & (E)=Zar(QA|A(E)), we obtain A(E)= gy .o- iR
(i) is easy from (i) and P N E= {p'eSpecA(E) | htp'=1}. Q.E.D.

LeEMMA 11. Let A be a Krull ring and E a non-empty subset of SpecA. Then A(E)
is also a Krull ring. Moreover if W defines A, then all the sets W ® ] (E*), W & (EY)
and W ~ Zar(QA|A(E)) define A(E).

PROOF. Since W @ E*)= W & (E')= W Zar(QA|A(E)) = W, these sets
satisfy (17) and (18). By the similar method to the proof of Lemma 10, we obtain
A(E)=ﬂReWﬁ¢;,(E,) R. Q.E.D.

THEOREM 5. Suppose that A is a Krull ring. If we put B={p eSpecA | dim4,=1},
then

A(E)=A(E) < PnEcE*
for any subset E of SpecA.
The proof is easy from Lemmas 10 and 11.

COROLLARY. For a Krull ring A, we obtain
(S8.3) <> P Uc U for any open subsets U of Spec A
< P Ec E* for any subsets E of SpecA.
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4. Here we prove Theorems 1, 2, 3 and their corollaries.
First we shall prove Theorem 1.

LemMmA 12. If A is a valuation ring, then A satisfies the condition (S.3).

Proor. Since any finitely generated ideal of A4 is principal, A4 satisfies (T.1"). From
Theorem 4, the proof is complete. Q.E.D.

LemMMA 13. Let A be a valuation ring and p € SpecA. Then
p=p <= U p'gp
PEP
<>  D(p) has the maximal element, if D(p)+# .

The proof is easy from Lemma 7.

LemMA 14. For a valuation ring A, the conditions (S.1), (T.1), (8.2) and (T.2)
are equivalent to each other. Moreover, each condition is also equivalent to the condition
that Spec A is a noetherian topological space.

Proor. From (13) and Lemma 12, we obtain that “SpecA is a noetherian
topological space = (T.1)”’. By Lemma 8, we have that (T.1) = (T.2) <> (S.2). Thereofre,
it is sufficient to prove that ““(S.2) = SpecA is a noetherian topological space.” We
assume that Spec 4 is not noetherian. Then there exists a chain of open subsets of Spec A
such that

UO% UI%UZ%

Since any non-empty closed subsets of SpecA4 are irreducible, we obtain a sequence of
SpecA such that

PoEP1EP2E "
If we put p,, =) 7_,pi then p, eSpecA and P, #P- Q.E.D.
Then the proof of Theorem 1 is complete from Lemmas 12 and 14.

ExAMPLE 3. Let k be a field and K the quotient field of a polynomial ring over
k of countable indeterminates. Then there exists 4 € Zar(K |k) such that

Zar(K‘A)={R0, Rl’ Rz, Tt T, B, A} .

where K=R,2R, 2R,2 -, B=(\2, R, B2 A.In this case, m(4) =?n?4/) but A4 does
not satisfy the condition (S.2).

Next we shall prove Theorem 2.

LemMa 15. Let A be a Dedekind domain. Then
(i) the conditions (S.1), (T.1), (S.2), (T.2), (S.3) and (T.3) are all equivalent.
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(i) (T.1) is equivalent to the condition that the ideal class group of A is a torsion
group.

PrOOF. (i) is obvious from the corollary to Theorem 4.
(i1) is easy from Lemma 2.

Therefore the proof of Theorem 2 is over. The proof of Corollary (i) to Theorem
2 is easy from Theorem 2 and the fact that the ideal class group of the ring of integers
of an algebraic number field of finite degree is finite. Moreover, Corollary (ii) to Theorem
2 is induced from Theorem 2, the fact that any coordinate ring of a non-singular affine
rational curve over C is a PID and the following lemma:

LEMMA 16. Let V be an open set of a complete algebraic curve X over C and
A=0x(V). If V is non-singular and J#V E X, then v

(1) A is a Dedekind domain and V =SpecA.

(ii) The ideal class group of A is isomorphic to Z ® (RIZ)**/M, where M is a finitely
generated submodule of Z @ (R/Z)*? and g is the genus of X.

Finally we shall prove Theorem 3.
LemMma 17. If A is a UFD, then A satisfies the condition (S.3).

PrOOF. Since any prime ideal of height one is principal, we obtain B N Ec E*
for any EcSpecA. From the corollary of Theorem 5, the proof is complete. Q.E.D.

LEmMA 18. Let A be a UFD and peSpecA. Then p=9p <= dimA, <1 <p isa
principal ideal.

PrOOF. We shall prove in the following three steps:

(1) dimA,=<1 = p is principal: This step is clear.

(11) p is principal = p=p: This is verified from Lemmas 7 and 17.

(iti) p=p =dimA4,<1: If we assume /_@’at dimA4,=2, then/&c D(p). Since
Sp=A4%, we also have Sp,)=A4" and hence D(p)=SpecA. Thus peD(p). By Lemma
7, we obtain p #p. Q.E.D.

LEMMA 19. For a UFD A, the conditions (S.1), (T.1), (S.2) and (T.2) are equivalent
to each other. Moreover, each condition is also equivalent to the condition that A is a PID.

Proor. From Lemma 8, it is sufficient to prove that (S.2) implies PID. Take any
peSpecA. Then p=p by assumption. From Lemma 18, we have dim4,<1 and that
p is principal. Thus A4 is noetherian and dim4 < 1. Therefore 4 is a PID. Q.E.D.

Then the proof of Theorem 3 is complete from Lemmas 17 and 19.



(1]
[2]
(31
(4]
[5]
(61

PRESHEAVES ASSOCIATED TO MODULES 59

References

R. GILMER, Multiplicative ideal theory, Marcel Dekker (1972).

A. GROTHENDIECK and J. DIEUDONNE, Eléments de Géométric Algébrique, 1. H.E.S. (1960-1967).

S. iITAKA, Algebraic Geometry, Springer (1982).

H. MATSUMURA, Kakarnkanron, Kyoritsu (1980) (in Japanese).

K. SexkiGucHI, Priifer domain and affine scheme, Tokyo J. Math. 13 (1990), 259-275.

K. SexiGucHI, Differential forms on ringed spaces of valuation rings, Tokyo J. Math. 18 (1995), 133-145.

Present Address:

DEPARTMENT OF ELECTRONIC AND PHOTONIC SYSTEMS ENGINEERING,
KocH1 UNIVERSITY OF TECHNOLOGY,

TosAYAMADA-CHO, KOcCHI, 782-8502 JAPAN.



