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1. Introduction.

In this paper we study the existence of a conjugacy between weakly multimodal
maps, which are defined in Definition 1.2, and Holder continuity of the conjugacy.
Throughout this paper let 7 be a closed interval [0, 1] except §3.1, and n be an
integer. We first recall the notion of topological conjugacy. ‘

DerINITION 1.1. Let f, g: I— I be two maps. f and g are topologically conjugate
if there exists a homeomorphism ¢ : 7— I such that

(1.1) pof=gop.

The map ¢ is called the conjugacy between f and g.
If the map ¢ : I satisfying (1.1) is continuous monotone surjection, f and
g are semi-conjugate. The map ¢ is called the semi-conjugacy.

The key idea is the following. If we can define the “inverse” g~ ' in some sense,

we have the operator Za=¢g !oa o f whose fixed point ¢, if it exists, should have
the equality go ¢ =¢ o f. This idea is found in [1] and [2]. We treat with the following
class of transformations.

DEerFINITION 1.2. The map f: I— [ is weakly multimodal if it is continuous and
there are points 0=a,<b,<a; <b; < <a;;;<b,,,=1 such that f|[b; a;,,] is
strictly monotone and f|[a;, b;] is a constant function. Assume that the set {a,=0,
by, ay, by, -, a1+, b+ =1} is chosen as small as possible. Let J;=[a;, b;]. We say that
the J;’s are flat intervals.

The following class of maps are known as the /-modal maps, if a;=b; for all i.
This map is a special case of weakly multimodal maps (cf. [3]).
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DerINITION 1.3. The map f: I—1 is lI-modal if it is continuous and there are
O=co<c; < - <c<c4+1=1 such that f|[c; c;+,] is strictly monotone. Assume that
the set {c,-|i=0, 1, - - -, I+1} is chosen as small as possible. We say that ¢;,¢,, - -, ¢
are turning points. In particular, if /=1 we say that f is unimodal.

Our main results are stated in §2. The concrete examples are found is §3. More
precisely, we state four examples. Tchebycheff polynomials, the modifications of
unimodal maps, and the Cantor function are discussed. In §4 we describe the proofs
of main results.

2. Main results.

Our main results are as follows.

THEOREM 2.1. Suppose that f,g:I—1 are two weakly multimodal maps with
flat intervals 0€Jy, Jy, - -, Jy4y 31, Ji=[ay, b;] respectively 0eJy, J,, - -+, J1o1 31, J;=
[di’ 51]

Assume that the map

1

1+1
U U o9 U U gl

i=0n=>0

[N

(=2

satisfies the following conditions:
(1) Af"UN=9¢"T) (=1, 1<i<l+1),
(2) h is an order preserving homeomorphism (i.e. x <y =>h(x)<h(y)).
If both U'.“ nez S "J:) and Uf:; "ezg"(j,-) are dense in I, then [ and g are

i=0
topologically conjugate. That is, there exists a homeomorphism ¢ : I—1 such that

¢<ﬁf=:g<>¢>and(p==h on LJz:é nz(yfnch)

Corollary 1 is straightforward from the definition of the /-modal map. This result
is already known (cf. [3]).

COROLLARY 1. Suppose that f,g: I— I are two I-modal maps with turning points
O=co<cy < <cpy1=1 respectively 0=, <y <" <& 41=1.
Assume that the map

1+1 1+1
h: U U SMe) - U U g"(¢;)
i=0n=0 i=0 n>0

defined by h(f"(c;))=g"(¢;) is an order preserving bijection.
If both Uf:é nez S (c;) and U::é wez 97(C;) are dense in I, then [ and g are
topologically conjugate.

If the map & in Theorem 2.1 is merely assumed to be an order preserving continuous
surjection, then f and g are semi-conjugate.
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COROLLARY 2. Let f,g: I1—1 be as in Theorem 2.1.
Assume that the map

1+1 1+1 N
h: Iy —- U U g™
i=0n=0 i=0n=0

satisfies the following conditions:

(1) AU =9"T) (h=1,1<i<I+1),

(2) h is an order preserving continuous surjection.

If both U::é wez ) () and U:(l, .z9"(J;) are dense in I, then f and g are
semi-conjugate. That is, there exists a continuous monotone surjection ¢ : I — I such that

@of=gopand p=hon ;25,0 /")

If only | JiZ2(),.,9"(J;) is dense in I, then f and g are semi-conjugate. This is
clear from the proof of Theorem 2.1.
CorOLLARY 3. Let fig:I—-1 and h:\)\I U, .0/ V)~ UileUss 09"V

be as in Theorem 2.1.
IFUiLe U, ez 9"J) is dense in I, then f and g are semi-conjugate.

We obtain the following result for Holder continuity of the conjugacy. We denote
the closure of a set X by Cl X.

THEOREM 2.2. Besides the assumptions of Theorem 2.1, suppose further that both
Ui:é w>o0/(J;) and Ui:é n>0g”(.7,.) are finite sets, and that the map h is Hélder

continuous on J,, i=0,1, - -+, I+ 1. Let I=(b;, a;+ ), I,=(b;, d;+{), i=0, 1, - -, I, and let
g,-=g|C1 7,-, i=0,1, -+, Moreover, suppose that for each i=0,1, ---, 1| there exists
K;>0 such that

2.1 197 ') =g "W I< K Hx—yl

for any x, yeg,(ClI,), and that there exists @ with 0<ao <1 such that

(2.2) | f)~ D<K x—p|

for any x, ye Cl1I,. Then the conjugacy ¢ in Theorem 2.1 is Holder continuous.

We remark that Theorem 2.2 can be applied to the conjugacy in Corollary 1 and
the semi-conjugacy in Corollaries 2, 3.

3. Examples.

3.1. The conjugacy between Tchebycheff polynomials and piecewise linear maps.
Let I=[—1, 1]. Tchebycheff polynomials 7, : I— I are defined by 7,(x)=cos(ncos "' x),
where 0 <cos~ ! x <. The case when n=0, 1 is trivial. So we deal the case when n>2.
We remark that 7,(x) are polynomials of degree » and that T,(x) are (n—1)-modal
maps (cf. [4]).
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LemMmA 3.1. Let T,: I— I be Tchebycheff polynomials for n>2. Then the union of
the backward orbits of the turning points is dense.

PRrROOF. Since
T2(x)=cos(ncos~ }(cos(ncos™ ! x)))=cos(n?cos ' x),
we have inductively

1

3.1 TXx)=cos(n*~! cos ™ }(cos(ncos ™! x)))=cos(n*cos 1x).

We show that the union of the backward orbits of 1, —1 is dense in I f(x)=
cos x has local extrema at x=nm, meZ. By (3.1)

3.2) {xeI| n*cos™!x=mnm for some k>0, meZ}

is in the union of the backward orbits of 1, —1. Let X={nm/n*e[0, n] | k, m>0}. It
follows that X is dense in [0, ]. The map f(x)=cos x is a homeomorphism from [0, =]
to 1. Hence f(X) is dense in I. This completes the proof. [J

LEMMA 3.2. Let f: I—1 be a piecewise linear I-modal map with | f'|>1 a.e.
Then the union of the backward orbits of the turning points is dense.

PrROOF. Let —1=co<c; < ' - <c¢;<c;4+;=1 be turning points of . We show that
for any x, y €I there exist n>0 and c; such that

(3.3) ["x)<e<f(y), or fU(y)<a=sf(x).

Suppose that c;<x<y<c;,,. Since | f'|>1 a.e., | f"(x)—f"(y) | must be increasing until
we get (3.3). O

By Lemmas 3.1 and 3.2, the maps F, in the following result and the maps T, satisfy
the assumptions of Corollary 1. This shows the existence of a conjugacy. In fact we
have, using the result in [4],

ExXAMPLE 3.1. Letn>2. Let F, : I— I be piecewise linear (n — 1)-modal maps with
slopes +n and F,(1)=1. Then ¢(x)=-2sin"!x is a topological conjugacy between T,
and F, such that ¢ T,=F, - ¢.

Proor. Let R: I—[0, n] be the map defined by R: x » x'=cos ™! x. Put
(3.9 V,=RoT,oR™ ',
If

kn _, (k+Dmn
< x<—,

n n

we see that
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nx' —kn if k even
Vix)= .
—nx'+k+1)n if kodd.
It is easy to check that V, are piecewise linear (n— 1)-modal maps with slopes +# and
V,(0)=0.
Let L: [0, ©] — I be the linear map defined by L: x’ —»x= —-2x'+1. We have
3.5) V,=L 'oF,oL.

From (3.4) and (3.5), F,o(L-R)=(L-R)-T, It follows that the conjugacy
o(x)=LoR(x)=2sin"'x. [

3.2. The modifications of the quadratic map and the tent map. Let G: I—1 be

2x if 0<x<1/2

G(x)z{ Al—x) if 12<x<l.

The map G is called the tent map.
We define the map G, by

2x if 0<x<a
G,,(x)={ 2a if a<x<l-—a
2(1—x) if 1—a<x<l,

where 0 <a<1/2. Note that the backward orbit of the interval [a, 1 —a] is dense in /
by the proof of Lemma 3.2.

ExampLE 3.2. For any a,be(1/3,2/5], G, and G, are topologically conjugate.
Let J=[a,1—a]. We have G (J)=2a, G2(J)=2(1—2a)eJ. Hence all of points in J
are eventually periodic of period 2. Let J=[b, 1 —b]. Similarly, we have G2(J)e J. From
Theorem 2.1, G, and G, are topologically conjugate.
Let Q: I— I be the map defined by Q: x — 4x(1 —x). We define the map @, by
4x(1—x if xelI\[b,1-b]
0, ={ )
4b(1 —b) if xe[b,1-b].

It is well known that the map ¢(x)=sin?% x is a conjugacy between Q and G with
Q- @=¢G. From this, we have the following.

ExampLE 3.3. G, are topologically conjugate to Q,, where b=sin’%a, ¢(x)=
sin? % x is a conjugacy such that
(3.6) Qpop=0-°G,.

Proor. If xel\[a,1—a], then ¢(x)el\[sin?%aq,sin’%(1—a)]. Since Qop=
@ - G, (3.6) holds.
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If xe[a, 1—a], then @(x)e[sin® % a, sin? % (1 —a)]. Hence we have

2
0,0 p(x)=4 (sin2 % a)(l —sin? _72c_ a> = (Z(Sin % a)(cos % a)) =sin’na,

@ o G(x)=sin? (% . 2a> =sin’na . O

3.3. The Cantor function as a semi-conjugacy. We recall the Cantor Middle-
Thirds set. Put E,=7=[0, 1]. Suppose n=>0 and E, is constructed so that E, is the
union of 2" disjoint closed intervals, each of length 37". Delete a segment in the center
of each of these 2" intervals, so that each of the remaining 2"*! intervals has length
37771 and let E,, , be the union of these 2"*! intervals. Put

E=()E,.
n=1
We say that the set E is the Cantor Middle-Thirds set. It is well known that E
consists precisely of those numbers in 7 whose base-3 expansion does not contain the
digit 1.
The Cantor function C: I—1 is the following. For every xeE let x=u,3" 1+
®;37 %+ - - - with ;=0 or 2 for each i. We define

{o if «,=0
1 if a,=2,
and C(x)=B,2"'+p,27%+---. If xel\E, we define C(x)=sup{C(y)|y<x,yeE}.

Note that C is continuous.
Now let the maps f,g: I—1 be

Bn=

3x if 0<x<1/3
f(x)={1 if 13<x<2/3

31—-x) if 2/3<x<l1,

2x if 0<x<1/2
g(x)= )

21—x) if 12<x<l.

It is easy to check that we may use Corollary 2 for f and g. Furthermore, we have

ExaMPLE 3.4. The Cantor function C is a semi-conjugacy between f and g such
that Co f=g-C.

ProOF. Let E be the Cantor Middle-Thirds set. For x e E we write
x=03" 43724+,

where «; =0, 2, and
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C)=Fi2 1442724,

where f,=0, 1.
We show that Co f=goC. For xeE, if 0<x<1/3 then ;=0 and B, =0. Hence
we have

Cof(x)=C(3x)=Cl(0x3 '+ 3372+ - - )=B2 14272+ -+,
goC(X)=2C(x)=2(B,2 2+ P32 3+ - )=P27 1+ P27+ .- .
If 2/3<x<1 then a, =2 and B, =1. We define &;=2—a;, and f;=1—p,. We have
Cof(x)=C3(1—x)=C(@3 ' +a&33 2+ - )=B2" "+ 5272+ -,

go C(x)=2(1—C(x)=2(Bo2 2+ B2 3+ - )=P27 + 5272+ - --.
If x e I\E then there exist u, ve E, u<x<v such that C(u)= C(x)= C(v). Hence we have
Coflwy=g°Clw=g-C(x),
Cof(y)=g-Clr)=g-C(x).

Since f is monotone on [u, v], C- f is monotone. Hence we have Ceo f(x)=g o C(x).

O

Since we can apply Theorem 2.2 to the previous example, it follows that the Cantor
function C is Holder continuous with exponent log 2/log 3. In fact, from (2.1) we have
K;=2 for i=1, 2. Since it follows that | f(x)— f(y)|<3|x—y]| for x, ye[0,1/3] or
x, ye[1/3, 1], by (2.2) we have 2'“=3. Hence o =1og2/log 3.

4. Proofs of main results.

4.1. Proof of Theorem 2.1. We consider a complete metric space
1

a non-decreasing, « =4 on U s "(J,-)}
ASARA

i=0n

1

IIC+

M={rx: I-1

with a metric |la — | =sup,;| a(x)— B(x)|. Note that M # .
Let I,=(b; a;+,), I,=(b;,d;,,), and g;=g|ClI, i=0,1, - -,I. We define an
operator . on M by
gi— 1(a(f(x))) lf xEIia l=05 19 o .,l
h(x) it xelJiloJ:-

It is easy to check that  is well-defined.

4.1 T (a)(x)= {

LEmMMmA 4.1. I McM.
Proor. We first show that J (¢)=h on U’.H f™(J;). For n=0 it follows

i=0 n=0



518 HITOSHI SEGAWA AND HIROSHI ISHITANI

that 7 (@)=h on (J;Z3J; by the definition of . Let n>0. If f"(J;)eJ; then
T () fIT)=h(f"(J}). If f*(J;)el; then we have g"(J. )eI since h(f"(J;))eh(I;). Hence
we have

TSN =g; @ TN =g; 96" TN =h("(J)) .
Therefore 7 (@)=h on | J;2o U, o /")

To show that J (a) is non-decreasing, suppose x<y. If x, yeJ; then h(x)<h( y)
Hence 7 (a)(x) < 7 (a)( y) Let x, yeI,. If f is increasing on I, then g is increasing on T,
Hence, it follows that g;” ! is also increasing, so that we have  (a)(x) < 7 (a)( y). Similarly,
if f is decreasing on I; then it follows that J (a)(x)<Z (x)(y). Since 7 (a)(Ij)cCI(fj)
and ﬁ'(a)(Jj)cfj, if xel, yeJ;fori<jor xeJ;, yel, for j<i then we have J (x)(x)<
J()Ny). O

By Lemma 4.1, we have Mo M>7 2M > - - .. We denote the boundary of X by
0X.

LeMMA 4.2. Let ae€ M. The restriction of the map I "(«)

1+1 1+1
T M) : .90 kp_ fk(Ji) - 'yo kp_ gk(ji)

is an order preserving homeomorphism with
T UN=g"T), k=—-n, i=0,1, -, I+1.

ProOOF. We use induction on n. If n=0, this is straightforward from the defini-
tion of 7 (a). So we may assume that the statement holds for n—1.

We note that the restriction of 7 "(a) is an order preserving homeomorphism with
TN J)=g%J;) for k=>—n+1 since T"McT" ‘M. We first show that
T™a)f ~"(J) =g "J,) for all i. Let xe f ~"J,). Suppose xeJ; for some j. We claim
thatif /' ~"(J;) n J;%# & then f~"(J;) > J;. In fact, assume that there exists xef ~"(J;) N J;.
Since f is constant on J;, we have f"(x)= f"(y) for any yeJ;. From this and f"(x)eJ,,
we have f"(J;)eJ;. Therefore J;cf ~™(J,).

Since f"(J;)€J;, we have

g"(jj)__'h(fn(']j))eh(‘]i):ji .
This shows that J,=g~"(J)). Therefore 7"(a)(x)=h(x)eJ;=g~"(J,). If xeI, for some j
then we have
TN x)=g; (T D)) egy (T oS " I))=9""UJ)

by induction.
We show that the restriction of J™(«) is onto. Since I (x)e T " M, for ye
UH 1 Uk> nt1 g"(J) there exists x e UHé k> —ni1 fXJ;) sucht that T "a)lx)=y. So let

ye Ui:ég "(J,). If ye J}, then it is clear. Assume that ye I, and g"(y)e J,. By induction
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and g(y)eg ""(J)), there exists € f ~"*1(J;) such that 7"~ !(x)(¢)=g(y). Hence there
exists x € I;, such that f(x)=¢. It follows that xe ' ~'(£)= f ~"(J;), so that we have

T a)x)=g; (T A xN)=g; (T @)=y .

We now prove that the restriction of J "(«) is one-to-one. Suppose that I "(a)(x)=
T"(a)(y) for any x, ye )} 2o Uy S¥J:), x<y. If x€I,, yel, then we have that i=j
and 7" Ne)(f(x)=T " H@)(f(») since g7 (T SN =g; (T @) (»). By
induction, it follows that f(x)=f(y). Hence x=y. If xeI, yeJ; then we must have
j=i+1 and y=minJ,,, since g, (I " Hoa)f(x))=h(y) and x<y. Hence A(y)=
minJ,, ,, so that

9-"_1(“)(f(x))=gi(minji+1)=g(-7i+ 1) -

By induction, it follows that f(x)=f(J;,,). Hence xeJ;,,. This contradicts our
assumption.

If x € J;, y € I; then the proof is similar. If x, y € ) f:é J;then h(x)=h(y). Hence x=y.

I ™a) is non-decreasing on I. This implies that the restriction of J "(«) is order
preserving.

Finally, we prove that  *(a) is continuous on U'.“ f*J,). By induction,

i=0 k= —n

it follows that 7 "(a)=g, (7" *(@)(f(x))) is continuous on I, (| J;Is/"(J;) for

0<i<l!. ™) is also continuous on all of J;,. We show that 7 "(«) is continuous on dJ;.
Let c=minJ;. We have

lim 7 "(a)(x)=h(c) ,

xlc

lim 7" (a)(x) = liﬂ gi—3(T" " @)(f (%))

xTce x
=g 1T @S (@) =91 (gT) =hc) .
If c=maxJ; then the proof is similar. []J

Let Lemma 4.3 be ready to prove Lemma 4.4.

LEmMMa 4.3. For any n>0 and any xe | );25 . _, F4J:), we have
T " a)x) =T "(@)(x) .
PROOF. We use induction on n. Suppose n=0, then xe | J;2¢ (U, o f4J). If xe J,

we have T(a)(x)=h(x)=a(x). Now we may write x=/*J ;). If xelI; then we have
T(@x) =g " * =g Yg" W) =g"J) =a(f ) =) .

So we assume that the result is true for n—1 and prove it for n.
If xeJ;, we have I"* Ya)(x) = T "(a)(x) = h(x). If xeI,, we have

T @X) =g (T @) =g, (T () =T "(0)(x) . g

Using Lemma 4.2 and Lemma 4.3, we will show that 7 "(a) converges in M.
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LEMMA 4.4. For any o€ M, there exists ¢ € M such that

lim |7™()—¢]|=0.

n—oo

PROOF. Let ¢>0 and B,(x)=(x—g, x+¢). Since ::(1, "ezg"(f,-) is dense in 7, for

any &> 0 there exists a number N >0 such that {By(x) | xe | J}_, U . _y9%(})} is covering
of 1. By Lemma 4.2, for any x e[ for m, n> N there exists ye | J;_, . _n /*(J;) such
that I "(a)(x) € B,(Z ™(«)(y)) and I "(a)(x) € B,(Z "(@)(y)). By Lemma 4.3, we have

| 7 ™(@)(x) = T "(@)(x) | <| T ™@)x) =T ™l y) | +| T (N y)—T (X )|
+1T @) y)— T (@)x) | <2 .

Hence,
7 ™(a)— T (@) = sup | T ™a)(x)— T "()(x)| <2e.

Thus, it follows that {7 "(®)},2, is a Cauchy sequence in M. This shows that {J"(x)},2,
has a limit point ¢ in M. []

By Lemma 4.4, it follows that ¢ is an order preserving homeomorphism from
UiZo Unez S to UiliU,.z9"J:). Hence ¢ :I—1 is a homeomorphism with
T @ =¢. This completes the proof of Theorem 2.1.

4.2. Proof of Theorem 2.2. The complete metric space M and the operator
are those defined in the proof of Theorem 2.1. We consider

>sup sup MSA}, A>O,

o<islixyeCll; |x—y|?
x#y

HA={(XEM

which is a subset of M.
Since both | Ji_, ,- /") and | J;_, U, ,g"(J;) are finite sets, we can choose a
number A sufficiently large and a number o sufficiently small such that H,# ¢J. It is

clear that H, is a closed set in M. Hence H, is complete. Let ae H, and x, yeClI..
Using (2.1) and (2.2), we have

| 7 (@)(x) =T (@) =19 "l f X)) —g: (@S (»)]
<Ko fx) = f(ONISAKT f)—f(DIF<A|x—p[°.

Thus, we have 9 H,c H,. Therefore ¢ is Holder continuous on each of closed
intervals Cl 7, and J;. This shows that ¢ in the proof of Theorem 2.1 is Holder continuous
on I.
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