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1. Introduction.

Let M be an n-dimensional manifold with a conformal class C. A conformal -
connection on M is an affine connection D preserving the conformal class C. We also
assume D is torsion-free. The triple (M, C, D) is called a Weyl manifold or (C, D) is called
a Weyl structure on M. In general, the Ricci curvature Ric® of D is not symmetric, so
we denote by Sym(RicP?) its symmetric part.

We consider a problem of a Weyl structure with prescribed Ricci curvature as
follows: For a given conformal class C and a (0, 2)-tensor H, can we find a conformal
connection D such that Ric?=H? In this paper, we prove the following result on
uniqueness for the problem.

THEOREM 1. Let M be a closed connected n-manifold, n>3, with a conformal class
C, and let D and D be torsion-free conformal connections of (M, C). If Sym(RicP)
=Sym(Ric?), then D=D.

The result shows for a conformal connection, the symmetric part of the Ricci
curvature determines the full Ricci curvature. The following corollary is due to [7].

CoOROLLARY 2. Let (M, C,D) be a closed connected Weyl n-manifold, n>3. If
Sym(Ric®) =Ric, for some Riemannian metric ge C, then D is the Levi-Civita connection
of g, and such a g is unique in C up to a constant multiple.

2. Preliminaries.

Let (M, C, D) be a Weyl manifold. We assume n=dim M > 3. Then there is a unique
1-form w, such that Dg=w,®g.

We denote by Ric? the Ricci curvature of D, and by Sym(RicP) the symmetric part
of the Ricci curvature. The scalar curvature R of D with respect to ge C is defined
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by R} :=tr,Ric”. We denote the Ricci curvature and the scalar curvature of g by Ric,
and R, respectively.

LemMMA 3. Let (M,C,D) be a Weyl n-manifold. Then the symmetric part of
Ricci curvature Sym(RicP) of D and the scalar curvature R] of D with respect to
ge C are related in terms of Ric, and R, as follows.

. . n—2 n—2
Sym(Ric?)=Ric, + "= (Zuig-+ 0y @ 0,) — (—4— g+ 6gwg)g .
(n—1)n—-2)
RY=R,———— |, "~ (1~ 13,0, , @)

where the vector field w] is defined by w/(X)=g(X,w]) for all vector field X, &
is the Lie derivative, and 9, is the codifferential of d with respect to g.

Proor. Direct calculations. [

LeEMMA 4. Let (M, C, D) be Weyl n-manifold. Then for ge C, we have

5g{5ym(RicD) - % (Log+0,® wg)}

__1 Jop, (1=2)n-3)

|, |*+(n— 2)59wg} ) 3)
PrROOF. A direct calculation with the second Bianchi identity: 59Ricg+%ng=
0. O
LEMMA 5. Let o be a 1-form on M. If 6,4=0 for all ge C, then a=0.

ProoF. For heC, define a vector field X, by «(X)=h(X, X,). Fix an arbitrary
ge C. For a smooth function u on M, set §:=e2*g. Then we have

0 =(divzXp)du;= %y dug=ne™(Xa)du,+e™ %y du,
=n(e” X u)du;+(div,(e” 2 Ddpg=(n—2)e (X u)du; ,

where du, denote the volume element of g. Therefore X,u=0 for all smooth function
u, so X,=0, and a=0. [J

3. Proof of Theorem.

Fix an arbitrary geC, and Dg=w,Q®g, D—g=a‘)g®g. Put a:=w0,—w, Note
that « is independent of the choice of Riemannian metric g. By our assumption
Sym(Ric?) =Sym(Ric?), we have

(n—2)(Zug + Dy ® By — 0, ® wg) —(n—2)(| &, 1> — | @, |*)g —2(3,2)g =0 . 4)
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From R} =R, we have

n—2
O0=— 2 (@, 1> —lw,1%), ©)
so we get
20(Zeg+ 0, @ D;— 0, @ w,)= —d(l@, > —|w,1?) . (6)
On the other hand, from the second Bianchi identity,
n—3 _
5g(,?j,zag+a‘)g®a')g—wg®wg)=d{T(|a)glz—la)glz)—26ga} . @)
Combining the above equations, we get
(n—2)d(la,|* —|w,|)=0, ()
therefore, | @, | —| w,|*=: c=const. So
n—2 _ c(n—2
O=f 5g“d”g= - J' (Iwglz—lwglz)dﬂg-: _—(——)_VOI(M, g) . (9)
M 4 M
Therefore for all ge C,
n—2  _ n—2
5ga=_— 4 (|mg|2—|wgl2)=_ 4 C=0,

so we get desired result @,=w, for all ge C. [
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