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1. Introduction.

The notion of the extended affine root systems was introduced by K. Saito ([1]).
These root systems relate to the simple elliptic singularity, and by definition, they are
extensions of the affine root systems by one dimensional radical. The Weyl groups
of the extended affine root systems and their hyperbolic extension groups have been
also studied in [1], [2], from a geometric point of view. In this paper, in the case of
$A_{1}^{\langle 1,1)}$ , from the view point of representation theory, we study the Weyl group of $A_{1}^{\langle 1,1)}$

and its hyperbolic extension group, which we denote by $W(A_{1}^{\langle 1,1)})$ and $\tilde{W}(A_{1}^{\langle 1.1)})$ ,
respectively. From their constructions, we find that $\tilde{W}(A_{1}^{\langle 1,1)})$ ([1]) is isomorphic to the
Weyl group $ W(\mathfrak{s}I_{2})\wedge$ of the extended affine Lie algebra $\mathfrak{s}I_{2}\wedge$ (the extended affine $\mathfrak{s}I(2)$). At
first, we fix the generators of $W(A_{1}^{\langle 1,1)})$ and decide their relations by considering $W(A_{1}^{(1,1)})$

as an extension of the finite Weyl group $W(A_{1})$ by translations of two directions, and
further using this result, we show that $W(A_{1}^{\langle 1,1)})$ contains the infinite dihedral group
$D_{\infty}$ as a subgroup and is an extension of the dihedral group $D_{2}$ . Further we present
that $W(A_{1}^{\langle 1,1)})$ is non-amenable. The extended affine Lie algebra $\mathfrak{s}I_{2}\wedge$ is defined as follows.
In quantum field theory, the gauge group (the current group) is defined to be the set
of smooth functions from the compact manifold $M$ onto the semi-simple compact Lie
group $G$ with a pointwise product. When $M=T^{v}=S^{1}\times\cdots\times S^{1}$ i.e. v-dimensional torus,
the corresponding Lie algebra is the gauge algebra $P(T^{\nu}, \mathfrak{g})$ , where $\mathfrak{g}$ is the Lie algebra
of $G$ and $P(T^{v}, \mathfrak{g})$ means the set of functions from $T^{v}$ into $\mathfrak{g}$ with finite fourier series.
The central extensions of $P(T^{v}, \mathfrak{g})$ are infinite dimensional Lie algebras, and called
quasi-simple Lie algebras ([16]). Especially, when $v=1,$ $P(S^{1}, \mathfrak{g})$ is usually written as
$C[t, t^{-1}]\otimes \mathfrak{g}$ , where $C[t, t^{-1}]$ is the ring of Laurent polynomials in $t$ , and its central
extension is called affine Lie algebra (Kac-Moody algebra). Then the corresponding Lie
group is called loop group ([20]). Further let $M=T^{2}=S^{1}\times S^{1}$ , then the Lie algebra
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$\tilde{P}(T^{2}, \mathfrak{g})$ , which is acentral extension of $P(T^{2}, \mathfrak{g})$ , has been studied by several authors
([13], [15], [17]). We may consider $P(T^{2}, \mathfrak{g})$ as $\tilde{\mathfrak{g}}=C[t, t^{-1}, s, s^{-1}]\otimes \mathfrak{g}$ , where
$C[t, t^{-1}, s, s^{-1}]$ is the ring of Laurent polynomials in $t$ and $s$ , then the central extension
of $\tilde{\mathfrak{g}}$ is called the extended affine Lie algebra from the view point of its root system
([14], [18], [19]). The Weyl group $W$ of a Lie algebra $\mathfrak{g}$ is defined to be the group
generated by the reflections of the root system of $\mathfrak{g}$ . In the cases of classical (finite) or
affine Lie algebras, as an equivalent definition, $W$ is also the group of those
automorphisms of a Cartan subalgebra of $\mathfrak{g}$ which are restrictions of conjugations by
elements of $G$, the Lie group corresponding to $\mathfrak{g}$ ([9], [10]). According to the definition
of the latter, we examine the Weyl group $ W(\mathfrak{s}I_{2})\wedge$, and as a result, we find that $ W(\mathfrak{s}I_{2})\wedge$

is a central extension of $W(\Lambda_{1}^{\langle 1,1)})$ and identified with the hyperbolic extension $\tilde{W}(A_{1}^{\{1,1)})$

([1]) of $W(A_{1}^{(1.1)})$ . In the hyperbolic extension $\tilde{W}(A_{1}^{\langle 1,1)})$ , the double translation part of
$W(A_{1}^{\langle 1,1)})$ is replaced by a discrete Heisenberg ([1]), and the case of $ W(\mathfrak{s}I_{2})\wedge$ is similar.
So, using this fact, we describe the generators of $ W(\mathfrak{s}I_{2})\wedge$ and their relations.

2. The extended affine root system $A_{1}^{\langle 1.1)}$ and its Weyl group.

The definition of the extended affine root systems is given as follows ([1]). Let $F$

be a real vector space of finite rank with a symmetric bilinear form $I:F\times F\rightarrow R$ , such
that $I$ is positive semi-definite and the radical;

rad(I): $=$ {$x\in F:I(x,$ $y)=0$ for $\forall y\in F$ } ,

is of rank 2 over R. Then an extended affine root system is defined to be a set $\Phi$ ol
non-isotropic elements $\alpha\in F$ (i.e. $I(\alpha,$ $\alpha)\neq 0$) which satisfy some conditions $([1])$

According to them, in the case of the extended affine root system $A_{1}^{\langle 1,1)},$ $F,$ $I$ and $\Phi$ are
given as follows;

$F=R(\epsilon_{1}-\epsilon_{2})\oplus Ra\oplus Rb$ ,

$I(\epsilon_{i}, \epsilon_{j})=\delta_{ij}$ $(i, j=1,2)$ , $I(\epsilon_{i}, a)=I(\epsilon_{i}, b)=0$ $(i=1,2)$

$I(a, a)=I(b, b)=I(a, b)=0$ ,

$\Phi=\{\pm(\epsilon_{1}-\epsilon_{2})+nb+ma(n, m\in Z)\}$ .

We choose its basis $ B\subset\Phi$ such as;

$B=\{\alpha_{O}=\epsilon_{2}-\epsilon_{1}+b, \alpha_{1}=\epsilon_{1}-\epsilon_{2}, \alpha_{2}=\epsilon_{2}-\epsilon_{1}+a\}$ .

We note that each root $\beta\in\Phi$ can be written;

$\beta=\sum_{\alpha\in B}n_{\alpha}\alpha$ ,

where the $n_{\alpha}$ are integers, but unlike the cases of finite or affine root systems, $no\uparrow$

necessarily of the same sign. In this basis, we have a direct sum decomposition of the
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vector space $F$;

$F=R(\epsilon_{1}-\epsilon_{2})\oplus Ra\oplus Rb=R\alpha_{0}\oplus R\alpha_{1}\oplus R\alpha_{2}$ .

The reflection $w_{\alpha}$ corresponding to the root $\alpha$ is an element of $qI$) $;=\{g\in GI4F$) $|I(x, y)=$

$I(g(x), g(y))\}$ given by $w_{\alpha}(u):=u-I(u, \alpha^{\vee})\alpha,$ $(\forall u\in F)$ , where $\alpha^{\vee}:$ $=2\alpha/I(\alpha, \alpha)\in F$. The
group generated by $w_{\alpha}$ for all $\alpha\in\Phi$ is called the extended affine Weyl group and denoted
by $W(A_{1}^{\langle 1,1)})$ . We set $w_{i}:=w_{\alpha_{i}}(0\leq i\leq 2)$ , then we have the following.

LEMMA 2.1. $W(A_{1}^{\langle 1,1)})$ is generated by $w_{0},$ $w_{1}$ and $w_{2}$ .
PROOF. For $\alpha\in\Phi,$

$w_{\alpha}$ acts trivially on $a$ and $b$ , so the action of $w_{\alpha}$ on $F$ is decided
by the action on $\epsilon_{1}-\epsilon_{2}$ . We set $\alpha_{1}$ $:=\epsilon_{1}-\epsilon_{2}$ , then we see that

$w_{\alpha_{1}+nb+ma}(\alpha_{1})=-\alpha_{1}-2nb-2ma$ , $w_{-\alpha_{1}+nb+ma}(\alpha_{1})=-\alpha_{1}+2nb+2ma$ .
On the other hand, $w_{1}(\alpha_{1})=-\alpha_{1},$ $w_{0}(\alpha_{1})=-\alpha_{1}+2b,$ $w_{2}(\alpha_{1})=-\alpha_{1}+2a$ , so we see that

$(w_{1}w_{0})^{n}(\alpha_{1})=\alpha_{1}+2nb$ , $(w_{2}w_{0})^{n}(\alpha_{1})=\alpha_{1}+2na$ for $n\geq 1$ .
From these actions, we find that $w_{1},$ $w_{1}w_{0}$ and $w_{2}w_{0}$ , so $w_{1},$ $w_{0}$ and $w_{2}$ are generators
of $W(A_{1}^{\langle 1,1)})$ . $\square $

The elements $w_{0}$ and $w_{1}$ are generators of the affine Weyl group of $\tilde{A}_{1}$ ([3], [4],
[8]), and the relations of the generators of the affine Weyl groups are well known ([5],
[8]), furthermore each affine Weyl group is the semi-direct extension of finite Weyl
group by translations. In the case $\tilde{A}_{1}$ , we set $T:=w_{1}w_{0}$ , then

$T\epsilon_{1}=\epsilon_{1}+b$ , $T\epsilon_{2}=\epsilon_{2}-b$ .

The relations of $w_{0}$ and $w_{1}$ are given by;

$w_{O}^{2}=w_{1}^{2}=1$ .

Rewriting this, we can describe the relations of $w_{1}$ and $T$:

LEMMA 2.2. The elements $w_{1}$ and $T$ are generators of the affine Weyl group of $\tilde{A}_{1}$ ,
and their relations are

$w_{1}^{2}=1$ , $Tw_{1}Tw_{1}=1$ .
In the case of $A_{1}^{\{1,1)}$ , further we set $R:=w_{1}w_{2}$ , then

$R\epsilon_{1}=\epsilon_{1}+a$ , $R\epsilon_{2}=\epsilon_{2}-a$ .

To examine the relations of $w_{i}(0\leq i\leq 2)$ , firstly we regard $w_{1},$
$T$ and $R$ as the generators

of the Weyl group $W(A_{1}^{\langle 1,1)})$ , and examine the relations of them, after that we rewrite
these relations by the elements $w_{i}(0\leq i\leq 2)$ . It is clear the $R$ satisfies the same relations
as $T$, and that $T$ and $R$ commute, i.e.

$Rw_{1}Rw_{1}=1$ . $TR=RT$ .



302 TADAYOSHI TAKEBAYASHI

Next we must consider about the relations containing all of $T,$ $R$ and $w_{1}$ . But the
relation $Tw_{1}Tw_{1}=1$ (resp. $Rw_{1}Rw_{1}=1$ ) is rewritten as $Tw_{1}=w_{1}T^{-1}$ (resp. $Rw_{1}=$

$w_{1}R^{-1})$ , so all commutation relations between each two elements have been already
given. Therefore we can obtain all relations of $w_{1},$

$T$ and $R$ from only these three
relations. Now the relation $TR=RT$ is rewritten as follows;

$TR=RT=(w_{0}w_{1}w_{2})^{2}=1$ ,

so we have the following;

PROPOSITION 2.3. The relations of the extended affine Weyl group $W(A_{1}^{\langle 1.1)})$ are
given as follows;

$w_{i}^{2}=1(0\leq i\leq 2)$ , $(w_{0}w_{1}w_{2})^{2}=1$ .
PROOF. $Wehaveonlytocheckthatitispossibletoobtaina11relationsRw_{1}Rw_{1}=1$ ,

$Tw_{1}Tw_{1}=1$ , and $TR=RT$ from the above relations, and it is easy. $\square $

In the above arguments, we have chosen the basis of $A_{1}^{\langle 1,1)}$ such as $\{\alpha_{0}, \alpha_{1}, \alpha_{2}\}$ .
But the Dynkin diagram of $A_{1}^{\langle 1.1)}$ is given by the following ([1]);

$\alpha_{0}^{*}$ $\alpha_{1}^{*}$

where $\alpha_{0}$ and $\alpha_{1}$ are the previous ones and $\alpha_{0}^{*}=\alpha_{0}+a,$ $\alpha_{1}^{*}=\alpha_{1}+a$ . The reflections with
respect to $\alpha_{0}^{*}$ and $\alpha_{1}^{*}$ are expressed as follows;

$w_{O}^{*}:$ $=w_{\alpha_{O}^{l}}=w_{1}TR$ , $w_{1}^{*}:$ $=w_{\alpha_{1}^{*}}=w_{1}R^{-1}$

By simple calculations, we see that $w_{0}^{*2}=w_{1}^{*2}=1$ , and using these relations, $TR=RT$ is
rewritten as $w_{0}w_{0}^{*}w_{1}w_{1}^{*}=1$ . So we have the following;

PROPOSITION 2.4. The relations of $w_{0},$ $w_{1},$ $w_{0}^{*}and$ $w_{1}^{*}are$ given as follows;

$w_{O}^{2}=w_{1}^{2}=w_{O}^{*2}=w_{1}^{*2}=w_{O}w_{O}^{*}w_{1}w_{1}^{*}=1$ .

PROOF. It is clear from the fact that we can obtain all relations of $w_{1},$
$T$, and $B$

from the above relations. $\square $

3. An extension of dihedral group $D_{2}$ and inflnite dihedral group $D_{\infty}$ .
The infinite dihedral group $D_{\infty}$ ([6], [7], [8]) is the multiplicative group generated

by the matrices $A,$ $B$, where

$A=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ , $B=\left(\begin{array}{ll}1 & 1\\0 & -1\end{array}\right)$ .
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This group is also defined by the following generator and relations;

$\langle A, B;A^{2}=B^{2}=1\rangle$ ,

and isomorphic to the affine Weyl group of $\tilde{A}_{1}$ . The extended affine Weyl group $W(A_{1}^{\langle 1.1)})$

contains this group as a subgroup, so we imbed $A,$ $B$ into the $3\times 3$ matrix as follows;

$A^{\prime}=\left(\begin{array}{lll}1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1\end{array}\right)$ ,

And further add

$C^{\prime}=(001$

for symmetry. Then we have;

PROPOSITION 3.1.

$B^{\prime}=\left(\begin{array}{lll}1 & 1 & 0\\0 & -1 & 0\\0 & 0 & 1\end{array}\right)$ .

$-101001)$

$gp\{\left(\begin{array}{lll}1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1\end{array}\right)$ , $\left(\begin{array}{lll}1 & 1 & 0\\0 & -1 & 0\\0 & 0 & 1\end{array}\right)$ , $\left(\begin{array}{lll}1 & 0 & 0\\0 & -1 & 0\\0 & 1 & 1\end{array}\right)\}\cong W(A_{1}^{\langle 1,1)})$ .

PROOF. It suffices to show that $gp\{w_{0}, w_{1}, w_{2}\}\cong gp\{A^{\prime}, B^{\prime}, C^{\prime}\}$ . By considering
the action on the basis $\alpha_{i}(0\leq i\leq 2),$ $w_{i}(0\leq i\leq 2)$ are expressed as

$w_{0}=\left(\begin{array}{lll}-1 & 2 & -2\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ , $w_{1}=\left(\begin{array}{lll}1 & 0 & 0\\2 & -1 & 2\\0 & 0 & 1\end{array}\right)$ , $w_{2}=\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\-2 & 2 & -1\end{array}\right)$ .

Using the matrix

$X=\left(\begin{array}{lll}a & 0 & 0\\-2a & 2a & -2a\\0 & 0 & a\end{array}\right)$ , $a\neq 0$ ,

we see that

$Xw_{0}X^{-1}=A^{\prime}$ , $Xw_{1}X^{-1}=B^{\prime}$ , $Xw_{2}X^{-1}=C^{\prime}$ $\square $

From the previous arguments, it turns out that the Weyl group $W(A_{1}^{\langle 1,1)})$ is
isomorphic to

\langle $a,$ $b,$ $c;$ a $=b^{2}=c^{2}=(abc)^{2}=1\rangle$ $\cong$ \langle $a,$ $b,$ $c,$ $d;$ a $=b^{2}=c^{2}=d^{2}=abcd=1\rangle$ .
Now the dihedral group $D_{2}$ , of order 4, is defined by ([7], [8])

\langle $a,$ $b;$ a $=b^{2}=(ab)^{2}=1\rangle$ $\cong\langle a, b, c;a^{2}=b^{2}=c^{2}=abc=1\rangle$ ,
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therefore we can also see that the extended affine Weyl group $W(A_{1}^{(1,1)})$ is an extensior
of the dihedral group $D_{2}$ . Further both $D_{\infty}$ and $D_{2}$ are amenable, but we present tht
following;

PROPOSITION 3.2. The extended affine Weyl group $W(A_{1}^{(1.1)})$ is non-amenable.

PROOF. In the group \langle $a,$ $b,$ $c,$ $d;$ a $=b^{2}=c^{2}=d^{2}=abcd=1\rangle$ , we can see that $a$

and $bd$ are generators of the free group $F_{2}$ which is non-amenable. Because $W(A_{1}^{(1,1)}$

has the subgroup $F_{2}$ which is non-amenable, $W(A_{1}^{(1.1)})$ is also non-amenable. $\square $

4. Definition of the extended affine Lie algebra $\mathfrak{g}I_{n}\wedge$ .
Let $\mathfrak{g}I_{n}$ denote the Lie algebra of all $n\times n$ matrices with complex entries acting or

$C^{n}$ and let $C[t, t^{-1}, s, s^{-1}]$ denote the ring of Laurent polynomials. We define the twc
loop algebra $\mathfrak{g}I_{n}\sim$ as $\mathfrak{g}I_{n}(C[t, t^{-1}, s, s^{-1}])$ i.e. as the complex Lie algebra of $n\times n$ matrices
with Laurent polynomials as entries. An element of $\mathfrak{g}I_{n}\sim$ has the form

$a(t, s)=\sum_{k,l}t^{k}s^{l}a_{k,l}$
$(a_{k,l}\in \mathfrak{g}I_{n})$ ,

where $k,$ $1$ run over a finite subset of Z. The central extension of $gI_{n}\wedge$ is defined as follows
([17], [18]). We set

$\mathfrak{g}I_{n}^{\prime}:=\mathfrak{g}I_{n}\oplus Cc\oplus Cc_{2}\wedge\sim$ .
For $X(m, n)=t^{m}s^{n}\otimes X,$ $Y(k, l)=t^{k}s^{l}\otimes Y$, the two-cocycle $\alpha$ is defined by

$\alpha(X(m, n),$ $Y(k, l))=(m+n)\delta_{m+k.O}\delta_{n+l.O}tr(XY)$ , (4.1,

where tr denotes the trace in $\mathfrak{g}I_{n}\sim$ . For general elements $a(t, s),$ $ b(t, s)\in \mathfrak{g}I_{n}\sim$ the formula
(4.1) can be written as follows:

$\alpha(a(t, s),$ $b(t, s))={\rm Res}_{0}tr(s^{-1}\rightarrow dtSdtb(t, s))+{\rm Res}_{0}tr(t^{-1}\frac{dats1}{d}ib(t, s))$ ,

where ${\rm Res}_{0}$ is the coefficient of $(st)^{-1}$ .
The commutation relations of the Lie algebra $\mathfrak{g}I_{n}^{\prime}\wedge$ are given by:

$[a(t, s), c]=[a(t, s), c_{2}]=[c, c_{2}]=0$ ,

$[a(t, s), b(t, s)]=a(t, s)b(t, s)-b(t, s)a(t, s)$

$+{\rm Res}_{0}tr(s‘‘ 1 \frac{dat}{dt}\Delta Sb(t, s))c+{\rm Res}_{O}tr(t_{ds}^{-1\underline{da}Lt_{\wedge}s\perp}b(t, s))c_{2}$ . $(4.2^{t}$,

For the elements $X(m, n)=t^{m}s^{n}\otimes X,$ $Y(k, l)=t^{k}s‘\otimes Y,$ $(4.2)$ is written as follows:

$[X(m, n), Y(k, l)]=[X, Y](m+k, n+l)+m\delta_{m+k,0}\delta_{n+l,0}tr(XY)c+n\delta_{m+k,0}\delta_{n+l,0}tr(XY)c_{2}$ .
The bilinear form on $\mathfrak{g}I_{n}$ defined by

(X $|Y$) $=tr(XY)$ , (4.3)
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is symmetric, non-degenerate and invariant. Now $\mathfrak{g}I_{n}$ is the Lie algebra of the group
$GL_{n}$ and $(\cdot|\cdot)$ has the property of being invariant under the adjoint action Ad of this
group:

$(Ad(A)(X)|Ad(A)(Y))=$ ($AXA^{-1}|$ A $YA^{-1}$ ) $=(X|Y)$ (4.4)

for all $A\in GL_{n}$ . We can define a bilinear form on $\mathfrak{g}I_{n}\sim$ in analogy with (4.3):

$(X(m, n)|Y(k, l))=\delta_{m+k,0}\delta_{n+l,0}tr(XY)$ .
This definition extends by linearity to general elements $a(t, s),$ $b(t, s)$ of $\mathfrak{g}I_{n}\sim$ as follows:

$(a(t, s)|b(t, s))={\rm Res}_{0}(ts)^{-1}tr(a(t, s)b(t, s))$ .

It is easily checked that $(\cdot|\cdot)$ is a symmetric, invariant, non-degenerate, bilinear
form on $\mathfrak{g}I_{n}\sim$ . It also has the property, which is analogous to (4.4), of being invariant
under the adjoint action Ad of the group $ GL_{n}\sim$ , where

$ GL_{n}=GL_{n}(C[t, t^{-1}, s, s^{-1}])\sim$ ,

is the group of all invertible $n\times n$ matrices over $C[t, t^{-1}, s, s^{-1}]$ , and the adjoint action
of $ GL_{n}\sim$ on $\mathfrak{g}I_{n}^{\prime}\wedge$ are defined by

Ad $A(t, s)a(t, s):=A(t, s)a(t, s)A(t, s)^{-1}$ , Ad $A(t, s)c:=c$ , Ad $A(t, s)c_{2}:=c_{2}$ ,

for $ a(t, s)\in \mathfrak{g}I_{n}\sim$ and $ A(t, s)\in GL_{n}\sim$ .
The form $(\cdot|\cdot)$ can be extended to $\mathfrak{g}I_{n}^{\prime}\wedge$ by defining $(c|\mathfrak{g}I_{n})=(c_{2}\sim|\mathfrak{g}I_{n})=(c\sim|c)=$

$(c_{2}|c_{2})=(c|c_{2})=0$ . This definition preserves all the previous properties, except that
it is degenerate. It is convenient from several points of view to enlarge $\mathfrak{g}I_{n}\sim$ by adding
two generators $d$ and $d_{2}$ : we set

$\mathfrak{g}I_{n}:=\mathfrak{g}I_{n}^{\prime}\wedge\wedge\oplus Cd\oplus Cd_{2}$ ,

where the commutation relations with $d$ and $d_{2}$ are:
$[d, c]=[d, c_{2}]=[d_{2}, c]=[d_{2}, c_{2}]=[d, d_{2}]=0$ ,

$[d, a(t, s)]=t\frac{dats)}{d}i$ , $[d_{2}, a(t, s)]=s\frac{dat.s1}{ds}$ . (4.5)

The Lie algebra $\mathfrak{g}I_{n}\wedge$ is called the extended affine Lie algebra associated to $\mathfrak{g}I_{n}$ .
LEMMA 4.1. The extended affine Lie algebra $\mathfrak{g}I_{n}=\mathfrak{g}I_{n}\wedge\sim\oplus Cc\oplus Cc_{2}\oplus Cd\oplus Cd_{2}$

carries a non-degenerate, symmetric, invariant bilinear form $(\cdot|\cdot)$ defined by;

$(a(t, s)|b(t, s))={\rm Res}_{O}(ts)^{-1}tr(a(t, s)b(t, s))$ for $a(t, s),$ $ b(t, s)\in \mathfrak{g}I_{n}\sim$ ,

$(d|c)=(d_{2}|c_{2})=1$ ,

$(c|a(t, s))=(c_{2}|a(t, s))=(c|c)=(c|c_{2})=(c_{2}|c_{2})=0$ ,

$(d|a(t, s))=(d_{2}|a(t, s))=(d|d)=(d|d_{2})=(d_{2}|d_{2})=0$ .

PROOF. It is clear from the definition. $\square $
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REMARK. In the above statement, invariant means $([x, y]|z)=(x|[y, z])$ , not the
action of $ GL_{n}\sim$ .

From (4.5), we define adjoint action of $ GL_{n}\sim$ on $\mathfrak{g}I_{n}\sim\oplus Cd\oplus Cd_{2}$ by

$Ad(A(t, s))(a(t, s)):=A(t, s)a(t, s)A(t, s)^{-1}$ ,

$Ad(A(t, s))(d):=d-t^{\frac{dAt}{dt}\Delta s}A^{-1}(t, s)$ ,

$Ad(A(t, s))(d_{2}):=d_{2}-s_{ds}^{\underline{dA}Lt\perp}SA^{-1}(t, s)$ ,

for $a(t, s)\in \mathfrak{g}I_{n},$$ A(t, s)\in GL_{n}\sim\sim$ .
Further from the commutation relations of $\mathfrak{g}I_{n}\wedge$ , we define the adjoint action of $ GL_{n}\sim$

on $\mathfrak{g}I_{n}\wedge$ as follows:

$Ad(A(t, s))(c)=c$ , $Ad(A(t, s))(c_{2})=c_{2}$ ,

$Ad(A(t, s))(x(t, s))=Ax(t, s)A^{-1}+\lambda(A, x)c+\lambda_{2}(A, x)c_{2}$ ,

$Ad(A(t, s))(d)=d-t\frac{dA}{dt}A^{-1}+\mu(A)c+\mu_{2}(A)c_{2}$ ,

$Ad(A(t, s))(d_{2})=d_{2}-s\frac{dA}{ds}A^{-1}+v(A)c+v_{2}(A)c_{2}$ ,

where $ x(t, s)\in \mathfrak{g}I_{n}\sim$ and $\lambda(A, x),$ $\lambda_{2}(A, x),$ $\mu(A),$ $\mu_{2}(A),$ $v(A),$ $v_{2}(A)\in C$ .
To decide the coefficients $\lambda(A, x),$ $\lambda_{2}(A, x),$ $\mu(A),$ $\mu_{2}(A),$ $v(A)$ and $v_{2}(A)$ , we demand

the $ GL_{n}\sim$-invariants of the form $(\cdot|\cdot)$ on $\hat{\mathfrak{g}}I_{n}$ , and the following cocycle condition:
$Ad(A(t, s))\cdot Ad(B(t, s))=Ad(A(t, s)B(t, s))$ . Then we have

$0=(x|d)=(Ad(A)(x)|Ad(A)(d))$

$=(AxA^{-1}+\lambda c+\lambda_{2}c_{2}|d-t\frac{dA}{dt}A^{-1}+\mu c+\mu_{2}c_{2})$ ,

from this $\lambda={\rm Res}_{0}tr(s^{-1}\frac{dA}{dt}xA^{-1})$ .
Similarly from $0=(x|d_{2})=(Ad(A)(x)|Ad(A)(d_{2}))$ , we get $\lambda_{2}={\rm Res}_{0}tr(t^{-1}\frac{dA}{ds}xA^{-1})$ .
Further from $0=(d|d)=(Ad(A)(d)|Ad(A)(d)),$ $0=(d_{2}|d_{2})=(Ad(A)(d_{2})|Ad(A)(d_{2}))$

and $0=(d|d_{2})=(Ad(AKd)|Ad(AXd_{2}))$ , we get $\mu(A)=-\frac{1}{2}{\rm Res}_{O}tr(s^{-1}t(\frac{dA}{dt}A^{-1})^{2}),$ $v_{2}(A)=$

$-\frac{1}{2}{\rm Res}_{O}tr(t^{-1}s(\frac{dA}{ds}A^{-1})^{2})$ , and

$\mu_{2}(A)+v(A)=-{\rm Res}_{0}tr(\frac{dA}{dt}A^{-1}\frac{dA}{ds}A^{-1})$ . (4.6)

Further from the cocycle condition, we get

$\mu_{2}(A)+\mu_{2}(B)-\mu_{2}(AB)={\rm Res}_{0}tr(\frac{dA}{ds}\frac{dB}{dt}B^{-1}A^{-1})$ , (4.7)

$v(A)+v(B)-v(AB)={\rm Res}_{0}tr(\frac{dA}{dt}\frac{dB}{ds}B^{-1}A^{-1})$ . (4.8)

Further we see that (4.6), (4.7), $(4.8)\Leftrightarrow(4.6),$ $(4.7)$ . Now we can describe the adjoint
action of $ GL_{n}\sim$ on $\mathfrak{g}I_{n}\wedge$ .
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PROPOSITION 4.2. In the above notations, we have:

$Ad(A(t, s))(c)=c$ , $Ad(A(t, s))(c_{2})=c_{2}$ ,

$Ad(A(t, s))(x(t, s))=Ax(t, s)A^{-1}+{\rm Res}_{0}tr(s^{-1}\frac{dA}{dt}xA^{-1})c+{\rm Res}_{0}tr(t^{-1}\frac{dA}{ds}xA^{-1})c_{2}$ ,

$Ad(A(t, s))(d)=d-t\frac{dA}{dt}A^{-1}-\frac{1}{2}{\rm Res}_{0}tr(s^{-1}t(\frac{dA}{dt}A^{-1})^{2})c+\mu_{2}(A)c_{2}$ ,

$Ad(A(t, s))(d_{2})=d_{2}-s\frac{dA}{ds}A^{-1}-\frac{1}{2}{\rm Res}_{0}tr(t^{-1}s(\frac{dA}{ds}A^{-1})^{2})c_{2}+v(A)c$ ,

where $\mu_{2}(A)$ and $v(A)$ obey the above conditions (4.6) and (4.7).

REMARK. We can check that these actions define an automorphism of the Lie
algebra $\mathfrak{g}I_{n}\wedge$ .

5. Extended affine Lie algebra $\mathfrak{s}I_{2}\wedge$ and its Weyl group.

The restriction of the bilinear form (4.3) on $\mathfrak{g}I_{n}$ to its subalgebra $\mathfrak{s}I_{n}$ remains
non-degenerate and we have the associated extended affine Lie algebra $\mathfrak{s}I_{n}\wedge$ . Especially
in the case of $\mathfrak{s}I_{2}\wedge$ , we examine its Weyl group. The Cartan subalgebra $\hat{\mathfrak{h}}$ of $\mathfrak{s}I_{2}\wedge$ is spanned

by $h,$ $c,$ $c_{2},$
$d$ and $d_{2}$ , where $h=\left(\begin{array}{ll}l & 0\\0 & -1\end{array}\right)$ , i.e.

$\hat{\mathfrak{h}}=Ch\oplus Cc\oplus Cc_{2}\oplus Cd\oplus Cd_{2}$ .

The bilinear form $(\cdot|\cdot)$ on $\mathfrak{s}I_{2}\wedge$ is non-degenerate when restricted to $\hat{\mathfrak{h}}$ , and we see from
Lemma 4.1;

$\left\{\begin{array}{l}(h|h)=2,(c|d)=(c_{2}|d_{2})=1\\\end{array}\right.$

We shall identify $\hat{\mathfrak{h}}$ with $\hat{\mathfrak{h}}^{*}$ via this form. We define the Weyl group $ W(SL_{2})\sim$ of

$SL_{2}$$:=SL_{2}(C[t, t^{-1}, s, s^{-1}])\sim$ as follows. Let $H=\{\left(\begin{array}{ll}a & 0\\0 & a^{-1}\end{array}\right)|a\in c*\}$ and $\tilde{N}=\{\left(\begin{array}{ll}a & 0\\0 & a^{-1}\end{array}\right)$ ,

$\left(\begin{array}{ll}0 & a\\-a^{-1} & 0\end{array}\right)|a,$ $a^{-1}\in C[t, t^{-1}, s, s^{-1}]\}$ be the subgroups of $ SL_{2}\sim$ , and we set $W(SL_{2}):\sim=$

$\tilde{N}/H$. Then we easily see the following.

LEMMA 5.1. $ W(SL_{2})\sim$ is generated by the conjugations by $\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right),$ $\left(\begin{array}{ll}t & 0\\0 & t^{-1}\end{array}\right)$ and

$\left(\begin{array}{ll}s & 0\\0 & s^{-1}\end{array}\right)$ .

We define $ W(\mathfrak{s}I_{2})\wedge$ by the action of $ W(SL_{2})\sim$ on $\hat{\mathfrak{h}}$ , and we denote that $r_{\alpha}$ is conjugation

by $\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , and $t_{k}$ and $s_{k}(k\in Z)$ are conjugations by the $k_{r}th$ powers of $\left(\begin{array}{ll}r & 0\\0 & t^{-1}\end{array}\right)$ and
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$\left(\begin{array}{ll}s & 0\\0 & s^{-1}\end{array}\right)$ , respectively. Since the adjoint action of $ SL_{2}\sim$ on $\hat{\mathfrak{h}}$ can be determined from

Proposition 4.2, we can compute the actions of the elements $r_{\alpha},$ $t_{k}$ and $s_{k}$ on $\hat{\mathfrak{h}}a!$

follows:

$r_{\alpha}(h)=-h$ , $r_{\alpha}(c)=c$ , $r_{\alpha}(c_{2})=c_{2}$ , $r_{\alpha}(d)=d$ , $r_{\alpha}(d_{2})=d_{2}$ ,

$t_{k}(h)=h+2kc$ , $t_{k}(c)=c$ , $t_{k}(c_{2})=c_{2}$ ,

$t_{k}(d)=d-kh-k^{2}c+\mu_{k}c_{2}$ , $t_{k}(d_{2})=d_{2}-\mu_{k}c$ ,

$s_{k}(h)=h+2kc_{2}$ , $s_{k}(c)=c$ , $s_{k}(c_{2})=c_{2}$ ,

$s_{k}(d)=d-v_{k}c_{2}$ , $s_{k}(d_{2})=d_{2}-kh-k^{2}c_{2}+v_{k}c$ ,

where $\mu_{k}$ and $v_{k}$ satisfy the conditions;

$\mu_{k}+\mu_{l}=\mu_{k+l}$ and $v_{k}+v_{l}=v_{k+l}$ $(k, l\in Z)$ , (4.9

which are obtained by (4.7) and (4.8).
Let $v:\hat{\mathfrak{h}}\rightarrow\hat{\mathfrak{h}}^{*}$ be a map defined by the bilinear form $(|)$ , and we put

$ v(h):=\alpha$ , $ v(c):=\delta$ , $v(c_{2}):=\delta_{2}$ , $v(d):=\Lambda_{0}$ , $v(d_{2}):=\Lambda_{2}$ .

With this map, identifying $\hat{\mathfrak{h}}$ with $\hat{\mathfrak{h}}^{*}$ , we write the actions of $r_{\alpha},$ $t_{k}$ and $s_{k}$ on $\hat{\mathfrak{h}}^{*}$ as follows:

PROPOSITION 5.2. In the above notations, we have:

$ r_{\alpha}(\alpha)=-\alpha$ , $ r_{\alpha}(\delta)=\delta$ , $r_{\alpha}(\delta_{2})=\delta_{2}$ , $r_{\alpha}(\Lambda_{0})=\Lambda_{0}$ , $r_{\alpha}(\Lambda_{2})=\Lambda_{2}$ ,

$ t_{k}(\alpha)=\alpha+2k\delta$ , $ t_{k}(\delta)=\delta$ , $t_{k}(\delta_{2})=\delta_{2}$ ,

$t_{k}(\Lambda_{0})=\Lambda_{0}-k\alpha-k^{2}\delta+\mu_{k}\delta_{2}$ , $ t_{k}(\Lambda_{2})=\Lambda_{2}-\mu_{k}\delta$ ,

$s_{k}(\alpha)=\alpha+2k\delta_{2}$ , $ s_{k}(\delta)=\delta$ , $s_{k}(\delta_{2})=\delta_{2}$ ,

$s_{k}(\Lambda_{O})=\Lambda_{O}-v_{k}\delta_{2}$ , $ s_{k}(\Lambda_{2})=\Lambda_{2}-k\alpha-k^{2}\delta_{2}+v_{k}\delta$ ,

where $\mu_{k}$ and $v_{k}$ satisfy (4.9).

From this proposition, we see that:

COROLLARY 5.3. (i) $t_{n}\cdot t_{m}=t_{n+m},$ $s_{n}\cdot s_{m}=s_{n+m}$ , (ii) $t_{n}r_{\alpha}=r_{\alpha}t_{-n},$ $s_{n}r_{\alpha}=r_{a}s_{-n}$ .

From the pairing on $\hat{\mathfrak{h}}$ , we get that on $\hat{\mathfrak{h}}^{*}$ :

$\left\{\begin{array}{l}(\alpha|\alpha)=2,(\delta|\Lambda_{0})=1,(\delta_{2}|\Lambda_{2})=1\\andallofotherpairsvanish\end{array}\right.$

We introduce the element $\gamma^{n}(n\in Z)$ ([19]), which is defined by

$\gamma^{n}(\lambda)=\lambda+n\delta_{2}\cdot\delta(\lambda)-n\delta\cdot\delta_{2}(\lambda)$ , for $\lambda\in\hat{\mathfrak{h}}^{*},$
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where $\delta(\lambda)=(\delta|\lambda),$ $\delta_{2}(\lambda)=(\delta_{2}|\lambda)$ . Using this, we obtain

PROPOSITION 5.4. The commutation relation of $t_{n}$ and $s_{m}$ is given by
$t_{n}s_{m}=\gamma^{2nm}s_{m}t_{n}$ $(n, m\in Z)$ .

PROOF. It is easily checked by direct calculations. $\square $

We define the reflection $w_{\beta}$ for $\beta\in\Phi$ as the element in $GL(\hat{\mathfrak{h}})$ , then we see that
$ W(\mathfrak{s}I_{2})\wedge$ is the group generated by $w_{\beta}$ for all $\beta\in\Phi$ , and we have the following.

LEMMA 5.5.
$w_{\alpha+n\delta+m\delta_{2}}=\gamma^{nm}s_{m}t_{n}w_{\alpha}$ , $w_{-\alpha+n\delta+m\delta_{2}}=\gamma^{nm}w_{\alpha}s_{m}t_{n}$ .

PROOF. It is easily checked by direct calculations. $\square $

REMARK. We can identify $ W(\mathfrak{s}I_{2})\wedge$ with $\tilde{W}(A_{1}^{\langle 1.1)})$ through the reflection $w_{\beta}$ (see [1]).

From the above lemma, we have the following.

LEMMA 5.6.
$w_{0}^{2}=w_{1}^{2}=w_{0}^{*2}=w_{1}^{*2}=1$ , $ w_{0}w_{0}^{*}w_{1}w_{1}^{*}=\gamma$ ,

where $w_{1}=w_{\alpha},$ $w_{O}=w_{-\alpha+\delta}=w_{1}t_{1},$ $w_{1}^{*}=w_{\alpha+\delta_{2}}=s_{1}w_{1}$ , and $w_{O}^{*}=w_{-\cdot+\delta+\delta_{2}}=\gamma w_{1}s_{1}t_{1}$ .

PROOF. It is easily checked by direct calculations. $\square $

From the above arguments, we see that:

PROPOSITION 5.7. (i) The Weyl group $ W(\mathfrak{s}I_{2})\wedge$ is generated by the four elements $\gamma$ ,
$t_{1},$ $s_{1},$ $w_{1}$ .

(ii) The relations of $ W(\mathfrak{s}I_{2})\wedge$ are given by:

$\gamma s_{1}=s_{1}\gamma$ , $\gamma t_{1}=t_{1}\gamma$ , $\gamma w_{1}=w_{1}\gamma$ , $w_{1}^{2}=1$ ,
$t_{1}s_{1}=\gamma^{2}s_{1}t_{1}$ , $t_{1}w_{1}t_{1}w_{1}=1$ , $s_{1}w_{1}s_{1}w_{1}=1$ .

PROOF. From Lemma 5.5 and Lemma 5.6, (i) is clear. So we prove (ii). When
we restrict the action of $ W(\mathfrak{s}I_{2})\wedge$ on $\alpha,$

$\delta$ and $\delta_{2}$ , we see that $t_{1}=T^{-1},$ $s_{1}=R^{-1}$ and
$ W(\mathfrak{s}I_{2})|_{R\alpha\oplus R\delta\oplus R\delta_{2}}=W(A_{1}^{\langle 1,1)})\wedge$ . The relations of $w_{1},$

$T$ and $R$ are:
$w_{1}^{2}=1$ , $Tw_{1}Tw_{1}=1$ , $Rw_{1}Rw_{1}=1$ , $TR=RT$ . (5.1)

We see that $w_{1},$ $t_{1}$ and $s_{1}$ satisfy the following relations in (5.1):

$w_{1}^{2}=1$ , $t_{1}w_{1}t_{1}w_{1}=1$ , $s_{1}w_{1}s_{1}w_{1}=1$ .

Further it is easily checked that the element $\gamma$ commutes with all of $w_{1},$ $t_{1}$ and $s_{1}$ . We
have seen that $W(\mathfrak{s}I_{2})\sim\cong\tilde{W}(A^{\langle 1,1)})$ before, so using the result [1], we see that $ W(\mathfrak{s}I_{2})\sim$ is
the central extension of $W(A_{1}^{\langle 1,1)})$ and the double translation part is replaced by a central
extension, therefore we get (ii). $\square $
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REMARK. The element $\gamma$ is a central element in $ W(\mathfrak{s}I_{2})\wedge$ , and corresponds to $\iota^{\Gamma}$

l-cocycle in [11] and the Coxeter element in [1].

COROLLARY 5.8. The hyperbolic extension group $\tilde{W}(A^{\langle 1.1)})$ is generated by th‘

reflections $w_{0},$ $w_{1},$ $w_{0}^{*}and$ $w_{1}^{*}and$ their relations are given by:

$w_{0}^{2}=w_{1}^{2}=w_{0}^{*2}=w_{1}^{*2}=1$ , and

$w_{0}w_{0}^{*}w_{1}w_{1}^{*}=w_{0}^{*}w_{1}w_{1}^{*}w_{0}=w_{1}w_{1}^{*}w_{0}w_{0}^{*}=w_{1}^{*}w_{0}w_{0}^{*}w_{1}$ .
PROOF. It is easily checked by Lemma 5.6 and Proposition 5.7. $\square $
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