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Abstract. In this paper we prove that two compact spacelike surfaces in de Sitter space for which there exists
an isometry preserving their mean curvature functions are necessarily congruent. As an application of this, we deduce
that there exists no compact spacelike Bonnet surface in de Sitter space.

1. Introduction.

The interest for the study of spacelike surfaces in de Sitter space is motivated by the fact
that these surfaces exhibit nice Bemstein-type properties. In 1977 Goddard [6] conjectured
that the only complete spacelike hypersurfaces with constant mean curvature in the $(n+1)-$

dimensional de Sitter space should be the totally umbilical ones. This conjecture, which
tumed out to be false in this original statement, motivated the work of an important number of
authors who considered the problem of characterizing the totally umbilical spacelike hyper-
surfaces of de Sitter space in terms of some appropriate geometric assumptions. In particular,
for the two-dimensional case $(n=2)$ Akutagawa [1] showed that Goddard’s conjecture is true
if the constant mean curvature $H$ of the surface satisfies $0\leq H^{2}\leq 1$ . As an application of it,
he proved that when $n=2$ Goddard’s conjecture is also true under the additional hypothesis
of the compactness of the surface (see also [9] for a simultaneous and independent altemative
proof of these facts given by Ramanathan).

In this paper we will obtain a congruence theorem for compact spacelike surfaces in de
Sitter space which states as follows.

THEOREM. Let $\psi_{1}$ : $\Sigma_{1}\rightarrow S_{1}^{3}\subset E_{1}^{4}$ and $\psi_{2}$ : $\Sigma_{2}\rightarrow S_{1}^{3}\subset E_{1}^{4}$ be two compact
spacelike surfaces in de Sitter space. If there exists an isometry between $\Sigma_{1}$ and $\Sigma_{2}$ which
preserves their mean curvature functions, then $\Sigma_{1}$ and $\Sigma_{2}$ are congruent; that is, $\psi_{1}$ and $\psi_{2}$

differ by a rigid motion in $S_{1}^{3}$ .
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In particular, that means that, for the case of compact spacelike surfaces in de Sitte
space, the mean curvature function and the metric suffice to determine the surface, up $t\langle$

rigid motions of the ambient space. Since the Gaussian curvature of the surfaces is preserve $($

by isometries, our congruence result remains true if we replace ”their mean curvature func
tions” by ”their principal curvatures functions”. On the other hand, as another application $0$

this theorem we also conclude that no compact spacelike surface in de Sitter space admit
a non-trivial one-parameter family of isometric deformations preserving the mean curvatur$($

function. In other words, there exists no compact spacelike Bonnet surface in de Sitter spac $($

(see section 4 for the details).

2. Preliminaries.

Let $E_{1}^{4}$ denote the four-dimensional Lorentz-Minkowski space endowed with linear coor
dinates $x_{1,2,3}xx,$ $x_{4}$ and the Lorentzian scalar product ( $\cdot,$

$\cdot\rangle$ given by $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}$ , and le
$S_{1}^{3}$ denote the three-dimensional unitary de Sitter space, that is, $S_{1}^{3}\subset E_{1}^{4}$ is the hyperquadric

$S_{1}^{3}=\{x\in E_{1}^{4} : (x, x\rangle=1\}$ .

As is well-known, the induced metric on $S_{1}^{3}$ from $E_{1}^{4}$ is a Lorentzian metric which makes $S_{1}^{3}th($

standard simply connected Lorentzian 3-space form of positive constant sectional curvature.
A smooth immersion $\psi$ : $\Sigma\rightarrow S_{1}^{3}\subset E_{1}^{4}$ of a two-dimensional connected manifold ,2

is said to be a spacelike surface if the induced metric via $\psi$ is a Riemannian metric on $\Sigma$

which, as usual, it is also denoted by \langle $\cdot,$

$\cdot$ ). Let us recall that every spacelike surface in $S$

is orientable. This follows from the fact that $(0,0,0,1)\in E_{1}^{4}$ is a unit timelike vector fielt
globally defined on $E_{1}^{4}$ , which determines a time-orientation on $E_{1}^{4}$ . Thus we can choose $($

unique unit normal vector field $N$ on $\Sigma$ which is a future-directed timelike vector in $E_{1}^{4},$ $tt$

hence we may assume that $\Sigma$ is oriented by $N$ .
Since $\Sigma$ is orientable, the induced Riemannian metric of $\Sigma$ determines a conforma

structure on $\Sigma$ . In what folllows, it will be useful to treat $\Sigma$ as a Riemann surface witl
respect to this conformal structure and $\psi$ as a conformal immersion. If $z=u+iv$ is a loca
complex coordinate on $\Sigma$ , then the induced metric on $\Sigma$ can be expressed by

$ds^{2}=e^{\rho}|dz|^{2}$

for a smooth function $\rho=\rho(z)$ , so that

$(\psi_{Z}, \psi_{Z})=(\psi_{\overline{Z}},$ $\psi_{\overline{z}}\rangle$ $=0$ , $(\psi_{z},$ $\psi_{\overline{z}}\rangle$
$=\frac{e^{\rho}}{2}$ ,

where the subscripts denote partial derivatives,

$\frac{\partial}{\partial z}=\frac{1}{2}(\frac{\partial}{\partial u}-i\frac{\partial}{\partial v})$ , $\frac{\partial}{\partial\overline{z}}=\frac{1}{2}(\frac{\partial}{\partial u}+i\frac{\partial}{\partial v})$ .
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The tangent vector fields $\psi_{z},$ $\psi_{\overline{z}}$ as well as the future-directed normal $N$ define a moving
frame on the surface which satisfies the following structural equations for the immersion

$\psi_{zz}=\rho_{Z}\psi_{z}-\frac{1}{2}\phi N$ ,

$\psi_{z\overline{z}}=\frac{e^{\rho}}{2}HN-\frac{e^{\rho}}{2}\psi$ ,

$N_{Z}=H\psi_{z}-\phi e^{-\rho}\psi_{\overline{z}}$ .

Here $H=-(1/2)trace(-dN)=-2e^{\rho}(\psi_{Z\overline{Z}},$ $ N\rangle$ is the mean curvature function of the space-
like surface and $\phi=2(\psi_{zz},$ $ N\rangle$ . Let us remark that $\phi dz^{2}$ defines a global quadratic differential
on $\Sigma$ which is called its Hopf differential. The integrability conditions for this system are the
Gauss equation

$2\rho_{z\overline{z}}=e^{\rho}(H^{2}-1)-e^{-\rho}|\phi|^{2}$

and the Codazzi equation
$\phi_{\overline{z}}=-e^{\rho}H_{z}$ . (1)

We refer the reader to [8] for the details, remembering the opposite sign of our mean curvature
function. The reason for our sign choice is that, with our convention, the mean curvature
timelike vector field $\vec{H}$ is given by $\vec{H}=HN$ , so that $H(p)>0$ at a point $ p\in\Sigma$ if and only
if $\vec{H}(p)$ is future-directed.

3. Proof of the Theorem.

First of all, let us see that every compact spacelike surface in de Sitter space is a topolog-
ical 2-sphere. Indeed, if $\psi$ : $\Sigma\rightarrow S_{1}^{3}\subset E_{1}^{4}$ is a spacelike immersion of a compact surface,
$\psi=(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4})$ , then we may consider the map $\Pi$ : $\Sigma\rightarrow S^{2}$ given by

$\Pi=\frac{1}{\sqrt{1+\psi_{4}^{2}}}(\psi_{1}, \psi_{2}, \psi_{3})$
.

Observe that

$\Pi^{*}((\cdot, \cdot)_{S^{2}})=\frac{1}{1+\psi_{4}^{2}}(\cdot,$
$\cdot\rangle$

$+\frac{(\nabla\psi_{4},\cdot\rangle(\nabla\psi_{4},\cdot\rangle}{(1+\psi_{4}^{2})^{2}}\geq\frac{1}{1+\psi_{4}^{2}}(\cdot, \cdot)$ ,

where $\nabla\psi_{4}$ is the gradient of $\psi_{4}$ and (., $\rangle_{S^{2}}$ denotes the canonical metric on $S^{2}$ . From here,

it follows that $\Pi$ is a local diffeomorphism, and the compactness of $\Sigma$ implies that it is a
covering map. Since $S^{2}$ is simply connected, then $\Pi$ is in fact a global diffeomorphism
between $\Sigma$ and $S^{2}$ .

Therefore, since there exists an isometry between $\Sigma_{1}$ and $\Sigma_{2}$ which preserves their mean
curvature functions, we may assume that $\Sigma_{1}=\Sigma_{2}=\Sigma$ is a topological 2-sphere and we
may choose a common local complex coordinate $z$ on $\Sigma$ satisfying

$\rho_{1}=\rho_{2}=\rho$ , and $H_{1}=H_{2}=H$ .
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From the Codazzi equation (1) we deduce that $(\phi_{1}-\phi_{2})_{\overline{Z}}=0$, so that the global quadrati $($

differential on $\Sigma$ locally given by $(\phi_{1}-\phi_{2})dz^{2}$ is holomorphic. But being $\Sigma$ a topologica
sphere, that gives $(\phi_{1}-\phi_{2})dz^{2}\equiv 0$, which is $\phi_{1}=\phi_{2}=\phi$ , but this means that the surface:
are congruent. Actually, if $N_{1}$ and $N_{2}$ denote the cooresponding future-directed normal fields
then $\{(\psi_{1})_{Z}, (\psi_{1})_{\overline{z}}, N_{1}, \psi_{1}\}$ and $\{(\psi_{2})_{z}, (\psi_{2})_{\overline{z}}, N_{2}, \psi_{2}\}$ are two adapted moving frames on $\Sigma$

for which there exist an $SO_{1}$ (4)-valued function $A=A(z)$ satisfying

$A((\psi_{1})_{z})=(\psi_{2})_{Z}$ , $(2_{I}^{\backslash }$

$A((\psi_{1})_{\overline{Z}})=(\psi_{2})_{\overline{Z}}$ , $(3^{\backslash }$

,

$A(N_{1})=N_{2}$ , (4.

$A(\psi_{1})=\psi_{2}$ . $(5^{\backslash }$.
Here $SO_{1}(4)$ denotes the group of (positive) rigid motions in $S_{1}^{3}$ . It remains to see that $A$ $i^{t}|$

constant or, equivalently, that $A_{z}=A_{\overline{z}}=0$ . By derivating (5) with respect to $z$ and using (2

we see that $A_{z}(\psi_{1})=0$ . By derivating now (4) with respect to $z$ and using the third structura
equation for the immersion $\psi_{1}$ we obtain that

$A_{Z}(N_{1})+HA((\psi_{1})_{Z})-\phi e^{-\rho}A((\psi_{1})_{\overline{Z}})=(N_{2})_{Z}$ ,

which jointly with (2) and (3), and the third structural equation for $\psi_{2}$ implies that $A_{z}(N_{1})=$

$0$ . Similarly, derivating (2) with respect to $z$ and using the first structural equation, as wel
as (2) and (4), we conclude that $A_{z}((\psi_{1})_{Z})=0$ ; finally derivating (3) with respect to $Zt($

using the second structural equation, jointly with (4) and (5), we obtain that $A_{z}((\psi_{1})_{\overline{z}})=0$

Summing up, $A_{z}=0$ . Since $A$ is real, by conjugation $A_{\overline{z}}=0$ . This finishes the proof of $tht$

theorem.

REMARK. Let us observe that, in the proof above, once we know that $\phi_{1}=\phi_{2}$ , then $Wt$

could argue that the two immersions $\psi_{1}$ and $\psi_{2}$ have the same first and second fundamenta
forms, so that there exists a rigid motion $A\in SO_{1}(4)$ such that $\psi_{2}=Ao\psi_{1}$ (see for examplt
[7]). This is nothing but the uniqueness part (up to isometries) of the fundamental theorem fo
surfaces. In fact, what we have made in the last part of our proof has been to provide a simpl $($

proof of this fact, adapted to our case of spacelike surfaces in de Sitter space.

4. Applications.

First of all, since the Gaussian curvature $K$ of $\Sigma$ is preserved by isometries, we $cal$

rewrite our congruence result as follows

COROLLARY 1. $Let\psi_{1}$ : $\Sigma_{1}\rightarrow S_{1}^{3}\subset E_{1}^{4}$ and $\psi 2$ : $\Sigma_{2}\rightarrow S_{1}^{3}\subset E_{1}^{4}$ be two compac
spacelike surfaces in de Sitter space. If there exists an isometry between $\Sigma_{1}$ and $\Sigma_{2}$ which
preserves their principal curvatures functions, then $\Sigma_{1}$ and $\Sigma_{2}$ are congruent.

On the other hand, an old problem in classical surface theory first posed by Bonnet [3

is the study of non-trivial one-parameter families of isometric surfaces having the same $meal$

curvature. By non-trivial families here we mean families of surfaces which do not differ $b^{1}$.
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rigid motions. In particular, a surface is said to be a Bonnet surface if it admits such non-trivial
isometric deformations. We refer the reader to [2] for a recent comprehensive study of this
subject and its relationship to the Painlev\’e equations. Using this terminology, our congruence
result implies the following consequence.

COROLLARY 2. There exists no compact spacelike Bonnet surface in de Sitter space.

Chen and Li [4] and Fujioka and Inoguchi [5] have recently considered the local study
of spacelike Bonnet surfaces in the three-dimensional Lorentzian space forms, and, in partic-
ular, its relationship to isothermic surfaces and to harmonic inverse mean curvature surfaces,
respectively. With respect to the global theory, our congruence result has also the following
application.

COROLLARY 3. There exists no compact spacelike Bonnet suiface in the three-dimen-
sional Lorentzian spacefoms.

To proof this corollary we have simply to observe that the only Lorentzian 3-space form
which admits compact spacelike surfaces is the de Sitter space. To see it, let $E_{1}^{3}$ be the three-
dimensional Lorentz-Minkowski space, which is the standard model for a Lorentzian 3-space
form with zero curvature, and let $H_{1}^{3}$ be the three-dimensional anti de Sitter space, which is
the standard model for a Lorentzian 3-space form with negative sectional curvature. Recall
that $H_{1}^{3}\subset E_{2}^{4}$ is the hyperquadric

$H_{1}^{3}=\{x\in E_{2}^{4} : \langle x, x)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=-1\}$ .
Let us assume that $\psi$ : $\Sigma\rightarrow E_{1}^{3}$ or $\psi$ : $\Sigma\rightarrow H_{1}^{3}\subset E_{2}^{4}$ is a spacelike surface with timelike
Gauss map $N$ . If $a$ is a fixed vector, $a\in E_{1}^{3}$ or $a\in E_{2}^{4}$ respectively, then consider the height
function {$a,$ $\psi\rangle$ defined on the spacelike surface $\Sigma$ . The gradient of ($a,$ $\psi\rangle$ is

$\nabla(a, \psi)=a^{T}$

where $a^{T}\in\chi(\Sigma)$ is the tangent component of $a$ , that is, $a^{T}=a+(a,$ $ N\rangle$ $N$ in the case of a
spacelike surface in $E_{1}^{3}$ , and $a^{T}=a+(a,$ $ N\rangle$ $N+(a,$ $\psi\rangle$ $\psi$ in the case of a spacelike surface
in $H_{1}^{3}$ . In particular,

$|\nabla\langle a, \psi)|^{2}\geq(a, a\rangle$ ,

so that if we choose $a$ to be spacelike, then the height function has no critical points in $\Sigma$ .
This shows that $\Sigma$ cannot be compact (here by compact we mean compact without boundary).
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