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Introduction.

In August 1999, we discussed the double series expansion of holomorphic functions on
the dual Lie ball ([2]). Looking at our results we conjectured that there was a series of norms
between the Lie norm and the dual Lie norm.

The Lie norm L(z) on C" is defined by

L(z) = \Azll2 + Vllzl* — 12212, ¢y

where ||z||2 = |z112 + 12212 + - - - + |zal?, 2= z%+z§+---+z§ forz = (21,22, , Zn)-

The dual Lie norm L*(z) is defined as follows: L*(z) = sup{|z - ¢|; L(¢) < 1}, where
z-t=zul1+z0+ - +zntaforz = (21,22, -+ ,2n) and & = (&1, &2, -+ , &n). L*(2) has
the following expression:

1 2
L@ = /Ul +122D/2 = 5 (L(z) + %) .

Noting [2%1/L(2) = / llz2 = +/lzl[* — 1222, we can write
1
L*@) =5 <\/ Je1? + el — 128+ el? — Izl - 12212) @

(see [1] and [5]).
For p > 1, we define the function N, (z) on C" as follows:

1 1/p
Np(2) = [5 ((nzn2 +/llzl* = 1221772 + (lzl? = Nzl = |z2|2)P/2)} .

It is clear that N»(2) is equal to the Euclidean norm }|z||. We have N1(z) = L*(z) by (2) and
limp_, 00 Np(z) = L(z) by (1). If n = 2, then N,(2) is equivalent to the Lebesgue LP norm
(see (5)).
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We shall prove in this note that N, (z) are norms on C" for p > 1 and that N, (2) is the
dual norm of N,(z), where 1/p 4+ 1/q = 1 (see Theorem 13 and Corollary 14).

In Section 1, we shall prove that L(z) and N;(z) are norms on C" and dual to each other.
Our new proof relies on the rotation invariance and is reduced to the 2 dimensional case. In
Section 2, using the same idea we shall prove our main theorems. T. Kimura ([4]) proved that
Np(z) are norms on C". Our proof is different from his.

1. Lie norm and dual Lie norm.

Forz =(z1, - ,zn) € C"and ¢ = (&1, - , &n) € C" we denote the canonical bilinear
form by
z2:¢=z2151+ -+ z2nln,
z2=z-zand ||z||> = z-Z, where Z = (Z1, - - - , Zn) is the complex conjugate of z. Further we
define

L@ = \/ 212 + 2l — 12212,
M@) = \/ 2> = Izl = 12212, ©

1
Ni@) = 7 (L(@) + M(2)).

It is clear that L(x) = M(x) = Nj(x) = ||x|| for x € R".

It is known that L(z) and N;(z) are norms on the complex vector space C" and dual to
each other. L(z) is called the Lie norm and N (z) is equal to the dual Lie norm L*(z). In this
section, we give a new proof of these facts relying only on (3).

LEMMA 1. Forz € C" we have

(8 L(z) > M(z) and LQ)M(2) = 2%,
B Ni(2) =/ 3lzl? + 122,

© L) = |zl = M) = 3L(2).
PROOF. (a)is clear. By (3) we have

1 1
Ni(z)* = Z(L(z)z +2L(DM2) + M(2)?) = E(nzu2 + 12%)),

which implies (b). (¢) results from (3) and (b). O
The following lemma asserts the complex homogeneity of L(z) and N;(z).

LEMMA 2. For A € Cand z € C" we have

L(Az) = |AL(z), M(A2) =|AIM(z), Ni1(Az) =|A|N1(2).
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PROOF. Lemma results from ||Az|| = |A|||z|| and (Az)? = A%Z2.
In the sequel we identify C? with the subspace
{z=(1, ) €eCs =24 =+ =2, =0}.
- Forz=1(z1,22,23,,2n) € C" we denote by Z the projection of z to C:
Z= (21,22,0,"' ,O)'
Weputz =z—2=1(0,0,z3,---,2,). Then we have
2=2+2 and |lzI® = IZI* + 1211%.

LEMMA 3. Forz € C" we have

@ 11ZI? - 12%] <zl = 12%],

) ZI* + 122 < llzll* + 1221,

(© L) =L,
@ M@ =N@.

PROOF. (a) We have

2 2 ~n2 an2 ~2 a2
Izl —|z°| = Ilzll2 + Ilzll2 - Iz2 +2Z |2 , ,
> 1ZI1F + 1zZI1° = 1271 = 127] = zI1F — 1271 -

(b) We have

2 2 ~n2 An2 ~2 22
lzll© + 1zl = Ilzll2 + ||zll2 + I22 +2z l2 , ,
> ZI° + 1zI° + 1271 —12°] = lzIlF + 127] .

(c) By (3), (a) and (b) imply L(z)?> > L(2)?, and L(z) = L(2).
(d) ByLemma 1, (b) implies N1(z)? > N1(2)?, and N1(z) = N1(?).

LEMMA 4. (a) Fora > b > 0andz € C" we have
aL(?) +bM () <alL(z) + bM(z2).
(b) Forz, ¢ € C" we have

LLE)+MEME@) < LE)LE) + M()M(Q).

PROOF. (a) By Lemma 3 (c) and (d) we have

aL(Z) +bMZ) = (a —b)L(Z) +2bN1(2)
< (a —b)L(2) +2bN1(z) =aL(z) + bM(2).

(b) Because L(¢) = M(¢) (Lemma 1 (a)), (b) results from (a).
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We denote by O (n) the orthogonal group. It is known that O (n) acts transitively on the
real unit sphere S = {x € R"; ||x|| = 1}. For complex vectors we have the following

LEMMA 5. Foranyz € C" there exists T € O(n) such that Tz € C.

PROOF. Forz = x+iy, x,y € R"take T} € O(n) suchthata = T1x = (a1, 0, --- , 0).
Then we can find 7> € O (n) such that

Te1 = e; = (the first unit vector) ,
b =T (Tvy) = (b1,02,0,---,0).
Take T = 7>T;. Thenwehave Tz =a +ib = (a; +ib1,ibs,0,--- ,0). O
LEMMA 6. ForT € O(n) and z € C" we have
L(Tz)=L(z), M(Tz)=M(), Ni(Tz)=N(2).
PROOF. Takez =x+iy, ¢ =&+in,x,y,E,n € R*. Thenwehave Tz =Tx+iTy,
T¢ =T& +iTn, and hence

Tz-T¢=Tx-T§-Ty -Tn+i(Tx-Tn+Ty-TE)
=x-§—y-n+ix-n+y-§=z-¢

Because Tz = Tz, we have |Tz||? =Tz-Tz =Tz - TZ =z - 7 = ||z||2. Therefore, Lemma
results from (3). O

THEOREM 7. Forz,{ € C" we have
|z- ¢ < L(z2)N1(Z) .
PROOF. Suppose first z, ¢ € C2. Then we have
lzll* — 1221 = (2121 + 2222)* — (&} + )@ + 23) = —(172 — 221)%.

Therefore,

L(z) = max+/z1Z1 + 22Z2 2 i (2122 — 2271) = max{|z1 £ iz2l}.
Similarly, we have
M(z) = min{|z) iz2|}, Ni(2) = %(Im +iza| +lz1 —iz2)).
On the other hand, we have
- =al1+2202= %{(21 +iz22)(61 — i82) + (21 —iz2)(G1 + ig2)}
and hence
lz- ¢l < %{IZ1 +iz2||61 — iizl + lz1 — iz2/|$1 + id2l}
< max({|z1 £ iz2|} x §(|€1 —is|+ 61 +is2]) = LZ)Ni1(C).
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Suppose now z, € C". By Lemma 5 there exists T € O(n) such thatw = T¢ € C2.
Put w = T'z. By the rotation invariance, we have |z - ¢| = |w - ¢|. Then by the first step, we
have
lw-a|=|w- o < L@)Ni(a).

By Lemma 3 (c) and Lemma 6 we have

lz- ¢l =|w-a| = L@)Ni(e) < L(w)Ni(2) = L()N1(£) . O

THEOREM 8. For ¢ € C" we have

Ni(¢) =sup{lz-¢|; ze C", L(z) =1}

= sup{|x - ¢|; x € R", |Ix|| = 1}.

PROOF. By Theorem 7 we have

Ni(¢) =sup{lz-¢|; ze C", L(z) =1}
>sup{lx - ¢|; x e R", |Ix|| =1}.

Suppose first ¢ = (¢, £2, 0, - - - , 0) € C2. Then we have
sup{]x - £|; x € R", |lx|| = 1}
> sup{%uxl +ix2) (81 — i82) + (x1 — ix2)(&1 +i82)]; x € R, |Ix| = 1}
= SUP{%IeiG(Cl — i) +e 7@ +it)l; 6 € R
= S8 — gl + 10 + i) = N @)

‘ Suppose now ¢ € C". By Lemma 5 there exists T € O(n) such that T¢ € C2. Then by
Lemma 6 and the first step we have

sup{|x - £|; x € R, ||Ix|| = 1}
>sup{|Tx-T¢|; x eR", ||x]| =1}
>sup{ly - T¢l; y e R?, iyl =1} = N1(T¢) = N1(¥) a

THEOREM 9. Forz € C" we have

L(z) =sup{lz-¢|; £ € C", N1(¢) = 1}.

PROOF. By Theorem 7 we have

L(z) = supflz- ¢l ¢ € C*, N1(§) = 1}.
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Suppose first z € C2. Then we have

sup{lz-¢|; £ € C*, N1(¢) =1}
> sup{lz - ¢I; ¢ € C3,N1() =1}

1
= S“P{EKZI +iz2)(C1 —i&2) + (z1 —iz2) (&1 +id)l;

1
SUe+igal + 16 —itah) = 1]
= max{|z1 £ izal} = L(2).

Suppose now z € C". By Lemma 5 there exists T € O(n) suchthat Tz € C2. Then by
Lemma 6 and the first step, we have

sup{lz-¢|; ¢ € C*", N1(¢) =1}
=sup{|Tz-T¢|; £ € C", N1(¢) = 1}
=sup{|Tz-al; ¢ € C", Ni(a) =1} =L(Tz) = L(2). ]
COROLLARY 10. L(z) and N1(z) are norms on C" and dual to each other.

PROOF. In view of Lemmas 1 and 2, to show L(z) (resp. N1(z)) is a norm on C" we
have only to show the subadditivity, which results from Theorem 9 (resp. Theorem 8). O

N.B. The Lie norm L(z) is equal to the cross norm of the Euclidean norm ||x|| on R":

M M
S sliells 2= 3 Ajxs, A € Cox;j € R”}.

L(z) = inf{
j=1 j=1

This important fact can be proved by the method of this section (see [1] or [5]).

2. Norms between L(z) and N;(z).

LEMMA 11. Forz, ¢ € C" we have

2lz- ¢l = L@LE)+ M()M(Q). )

PROOF. Suppose firstz, ¢ € C2. By Proof of Theorem 7, we have only to show

|z1 +iz2ll¢1 —ig2| + |21 —iz2ll&1 +idal
< max({|z; £ iz2|} max{|{1 £ i¢2|} + min{|z) £ iz2} min{|¢; i}

which can be checked easily.
Suppose now z, £ € C". By Lemma 5 there exists T € O(n) such that o = T¢ € C2.
Put w = Tz. Then we have |w - «| = |@ - o] and

2z-¢| =2|Tz - T¢| =2|w-a| =2 - a|
< L(w)L(a) + M(w)M ()
< L(w)L(e) + M(w)M(a) = L(z)L(¢) + M(2)M (),
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where we used the first step and Lemmas 4 and 6. O

For p > 1 and z € C" we define

1 1/p
Np(2) = (E(L(Z)p + M(Z)p)) ,

where L(z) and M (z) are defined in (3). By Lemma 6 N (z) is invariant by rotations; that is,
Np(Tz) = Np(z) forany T € O(n) and z € C".

If 1 < p <r, then we have N,(z) < N,(z) (see [3]). In fact, by the Holder inequality
we have

| r\@ 1-a TN® 1\
Np(2)? = %(L(Z)p+M(Z)P) = (L(ZZ) ) (%) +(M(22) ) (5)

LY | M@'\* (1 1\ ,
S( 5 + ) ) (5'{‘5) = Ny (2)?,

wherea = p/r,0 <a < 1.
For z € C? we have

1 _ ) 1/p
Np@ = (5Uz1 +izl? + |z —i22?) ", s)
which is equivalent to the Lebesgue L? norm. By the Holder inequality we have

lz1 +iz2ll1 —i&a| + |z1 —iz2l|$1 +i82]

. (6)
< (lz1 +iz2l? + |21 —iz2lP)VP (&1 + i L) + |51 — iL2]9)1/4

thatis, [z - | < Np(z)Ngy($).
For general n we have the following

THEOREM 12. Forz,¢ € C" we have
|z- & < Np(2)Ng(8),

where p,q > 1 satisfy 1/p+ 1/q = 1.
PROOF. By the Holder inequality we have

%(L(Z)L@) +M@ME)) < %(L(z)p +M@P)PLE)T +ME)DY = Np(@)Ny(©) .

Hence, Lemma 11 implies Theorem. O

THEOREM 13. Forz € C" we have

Np(z) =sup{lz- ¢l; & € C", Ng(¢) =1}, (7N

where 1/p+1/q = 1.
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PROOF. Suppose first z, ¢ € C2. Then the equality in the Holder inequality (6) holds
if and only if a|z1 +iz2|P = b|¢1 — 2|7 and a|zy — iz2|P = b|g1 +i42|? for some a, b > O,
not both 0. Therefore, (7) is valid if n = 2.

Suppose now z € C". Take T € O(n) suchthatw =Tz € C2. By Theorem 12 we have

Np(z) = sup{lz- ¢l; ¢ € C", Ng(¢) = 1}
=sup{|Tz-T¢l; £ € C", Ny(¢) =1}
=sup{|lw - a|; a € C", Ny(a) = 1}
>sup{lw-af; a € Cc?, Ng(a) = 1}
= Np(w) = Np(T2) = Np(2). O

COROLLARY 14. N,y(z) is a norm on C".

PROOF. We have to show the following three conditions:
(@) Np(z) 20; Np(z) =0ifandonly if z = 0.
(b) Np(rAz) = |A|Np(z) forany A € Cand z € C".
() Np(z+ w) < Np(2) + Np(w) for any z, w eC".
(a) and (b) are clear. (c) results from Theorem 13. O

Generalizing Lemma 3 we have the following

COROLLARY 15. Forz € C" we denote by Z the projection of z to C2. Then we have

Np(2) < Np(2). ®)

PROOF. Let z € C". By the homogeneity of (8) we may assume N,(z) = 1. By
Theorem 13 there exists ¢ € C? such that Ng(¢) = land |Z-¢| = Np(2). By Theorem 12
we have

1= Ny(¢) = sup{lw-¢|; weC", Ny(w) =1}
=sup{|w-¢|; w e C", Np(w) = 1}
> |Z-¢l = Np(2).

Hence, we have N, (Z) < 1, which proves (8). O
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