Between Lie Norm and Dual Lie Norm

Mitsuo MORIMOTO and Keiko FUJITA

International Christian University and Saga University

(Communicated by K. Uchiyama and K. Shinoda)

Introduction.

In August 1999, we discussed the double series expansion of holomorphic functions on the dual Lie ball ([2]). Looking at our results we conjectured that there was a series of norms between the Lie norm and the dual Lie norm.

The Lie norm L(z) on \mathbb{C}^n is defined by

$$L(z) = \sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2}},$$
(1)

where $||z||^2 = |z_1|^2 + |z_2|^2 + \dots + |z_n|^2$, $z^2 = z_1^2 + z_2^2 + \dots + z_n^2$ for $z = (z_1, z_2, \dots, z_n)$. The dual Lie norm $L^*(z)$ is defined as follows: $L^*(z) = \sup\{|z \cdot \zeta|; L(\zeta) \leq 1\}$, where $z \cdot \zeta = z_1 \zeta_1 + z_2 \zeta_2 + \dots + z_n \zeta_n$ for $z = (z_1, z_2, \dots, z_n)$ and $\zeta = (\zeta_1, \zeta_2, \dots, \zeta_n)$. $L^*(z)$ has the following expression:

$$L^*(z) = \sqrt{(\|z\|^2 + |z^2|)/2} = \frac{1}{2} \left(L(z) + \frac{|z^2|}{L(z)} \right).$$

Noting $|z^2|/L(z) = \sqrt{\|z\|^2 - \sqrt{\|z\|^4 - |z^2|^2}}$, we can write

$$L^*(z) = \frac{1}{2} \left(\sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2}} + \sqrt{\|z\|^2 - \sqrt{\|z\|^4 - |z^2|^2}} \right)$$
 (2)

(see [1] and [5]).

For $p \ge 1$, we define the function $N_p(z)$ on \mathbb{C}^n as follows:

$$N_p(z) = \left\{ \frac{1}{2} \left((\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2})^{p/2} + (\|z\|^2 - \sqrt{\|z\|^4 - |z^2|^2})^{p/2} \right) \right\}^{1/p}.$$

It is clear that $N_2(z)$ is equal to the Euclidean norm ||z||. We have $N_1(z) = L^*(z)$ by (2) and $\lim_{p\to\infty} N_p(z) = L(z)$ by (1). If n=2, then $N_p(z)$ is equivalent to the Lebesgue L^p norm (see (5)).

Received July 10, 2000

We shall prove in this note that $N_p(z)$ are norms on \mathbb{C}^n for $p \ge 1$ and that $N_q(z)$ is the dual norm of $N_p(z)$, where 1/p + 1/q = 1 (see Theorem 13 and Corollary 14).

In Section 1, we shall prove that L(z) and $N_1(z)$ are norms on \mathbb{C}^n and dual to each other. Our new proof relies on the rotation invariance and is reduced to the 2 dimensional case. In Section 2, using the same idea we shall prove our main theorems. T. Kimura ([4]) proved that $N_p(z)$ are norms on \mathbb{C}^n . Our proof is different from his.

1. Lie norm and dual Lie norm.

For $z=(z_1,\cdots,z_n)\in \mathbb{C}^n$ and $\zeta=(\zeta_1,\cdots,\zeta_n)\in \mathbb{C}^n$ we denote the canonical bilinear form by

$$z \cdot \zeta = z_1 \zeta_1 + \dots + z_n \zeta_n$$

 $z^2 = z \cdot z$ and $||z||^2 = z \cdot \bar{z}$, where $\bar{z} = (\bar{z}_1, \dots, \bar{z}_n)$ is the complex conjugate of z. Further we define

$$L(z) = \sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2}},$$

$$M(z) = \sqrt{\|z\|^2 - \sqrt{\|z\|^4 - |z^2|^2}},$$

$$N_1(z) = \frac{1}{2}(L(z) + M(z)).$$
(3)

It is clear that $L(x) = M(x) = N_1(x) = ||x||$ for $x \in \mathbb{R}^n$.

It is known that L(z) and $N_1(z)$ are norms on the complex vector space \mathbb{C}^n and dual to each other. L(z) is called the Lie norm and $N_1(z)$ is equal to the dual Lie norm $L^*(z)$. In this section, we give a new proof of these facts relying only on (3).

LEMMA 1. For $z \in \mathbb{C}^n$ we have

- (a) $L(z) \ge M(\underline{z}) \text{ and } L(\underline{z})M(\underline{z}) = |z^2|$,
- (b) $N_1(z) = \sqrt{\frac{1}{2}(\|z\|^2 + |z^2|)}$,
- (c) $L(z) \ge ||z|| \ge N_1(z) \ge \frac{1}{2}L(z)$.

PROOF. (a) is clear. By (3) we have

$$N_1(z)^2 = \frac{1}{4}(L(z)^2 + 2L(z)M(z) + M(z)^2) = \frac{1}{2}(\|z\|^2 + |z^2|),$$

which implies (b). (c) results from (3) and (b).

The following lemma asserts the complex homogeneity of L(z) and $N_1(z)$.

LEMMA 2. For $\lambda \in \mathbb{C}$ and $z \in \mathbb{C}^n$ we have

$$L(\lambda z) = |\lambda| L(z)$$
, $M(\lambda z) = |\lambda| M(z)$, $N_1(\lambda z) = |\lambda| N_1(z)$.

PROOF. Lemma results from $\|\lambda z\| = |\lambda| \|z\|$ and $(\lambda z)^2 = \lambda^2 z^2$. In the sequel we identify \mathbb{C}^2 with the subspace

$$\{z=(z_1,\cdots,z_n)\in \mathbb{C}^n;\ z_3=z_4=\cdots=z_n=0\}.$$

For $z = (z_1, z_2, z_3, \dots, z_n) \in \mathbb{C}^n$ we denote by \tilde{z} the projection of z to \mathbb{C}^2 :

$$\tilde{z}=(z_1,z_2,0,\cdots,0).$$

We put $\hat{z} = z - \tilde{z} = (0, 0, z_3, \dots, z_n)$. Then we have

$$z^2 = \tilde{z}^2 + \hat{z}^2$$
 and $||z||^2 = ||\tilde{z}||^2 + ||\hat{z}||^2$.

LEMMA 3. For $z \in \mathbb{C}^n$ we have

- (a) $\|\tilde{z}\|^2 |\tilde{z}^2| \le \|z\|^2 |z^2|$, (b) $\|\tilde{z}\|^2 + |\tilde{z}^2| \le \|z\|^2 + |z^2|$,
- (c) $L(\tilde{z}) \leq L(z)$,
- (d) $N_1(\tilde{z}) \leq N_1(z)$.

PROOF. (a) We have

$$||z||^{2} - |z^{2}| = ||\tilde{z}||^{2} + ||\hat{z}||^{2} - |\tilde{z}^{2} + \hat{z}^{2}|$$

$$\geq ||\tilde{z}||^{2} + ||\hat{z}||^{2} - |\tilde{z}^{2}| - |\hat{z}^{2}| \geq ||\tilde{z}||^{2} - |\tilde{z}^{2}|.$$

(b) We have

$$||z||^{2} + |z^{2}| = ||\tilde{z}||^{2} + ||\hat{z}||^{2} + |\tilde{z}^{2} + \hat{z}^{2}|$$

$$\geq ||\tilde{z}||^{2} + ||\hat{z}||^{2} + ||\tilde{z}^{2}| - ||\hat{z}^{2}|| \geq ||\tilde{z}||^{2} + ||\tilde{z}^{2}||.$$

- (c) By (3), (a) and (b) imply $L(z)^2 \ge L(\tilde{z})^2$, and $L(z) \ge L(\tilde{z})$.
- (d) By Lemma 1, (b) implies $N_1(z)^2 \ge N_1(\tilde{z})^2$, and $N_1(z) \ge N_1(\tilde{z})$.

LEMMA 4. (a) For $a \ge b \ge 0$ and $z \in \mathbb{C}^n$ we have

$$aL(\tilde{z}) + bM(\tilde{z}) \le aL(z) + bM(z)$$
.

(b) For $z, \zeta \in \mathbb{C}^n$ we have

$$L(\tilde{z})L(\zeta) + M(\tilde{z})M(\zeta) \leq L(z)L(\zeta) + M(z)M(\zeta)$$
.

PROOF. (a) By Lemma 3 (c) and (d) we have

$$aL(\tilde{z}) + bM(\tilde{z}) = (a - b)L(\tilde{z}) + 2bN_1(\tilde{z}) < (a - b)L(z) + 2bN_1(z) = aL(z) + bM(z).$$

(b) Because $L(\zeta) \ge M(\zeta)$ (Lemma 1 (a)), (b) results from (a).

We denote by O(n) the orthogonal group. It is known that O(n) acts transitively on the real unit sphere $S = \{x \in \mathbb{R}^n; ||x|| = 1\}$. For complex vectors we have the following

LEMMA 5. For any $z \in \mathbb{C}^n$ there exists $T \in O(n)$ such that $Tz \in \mathbb{C}^2$.

PROOF. For z=x+iy, $x,y\in \mathbb{R}^n$ take $T_1\in O(n)$ such that $a=T_1x=(a_1,0,\cdots,0)$. Then we can find $T_2\in O(n)$ such that

$$T_2e_1 = e_1 =$$
(the first unit vector),
 $b = T_2(T_1y) = (b_1, b_2, 0, \dots, 0)$.

Take $T = T_2T_1$. Then we have $Tz = a + ib = (a_1 + ib_1, ib_2, 0, \dots, 0)$.

LEMMA 6. For $T \in O(n)$ and $z \in \mathbb{C}^n$ we have

$$L(Tz) = L(z), \quad M(Tz) = M(z), \quad N_1(Tz) = N_1(z).$$

PROOF. Take z = x + iy, $\zeta = \xi + i\eta$, $x, y, \xi, \eta \in \mathbb{R}^n$. Then we have Tz = Tx + iTy, $T\zeta = T\xi + iT\eta$, and hence

$$Tz \cdot T\zeta = Tx \cdot T\xi - Ty \cdot T\eta + i(Tx \cdot T\eta + Ty \cdot T\xi)$$

= $x \cdot \xi - y \cdot \eta + i(x \cdot \eta + y \cdot \xi) = z \cdot \zeta$.

Because $\overline{Tz} = T\overline{z}$, we have $||Tz||^2 = Tz \cdot \overline{Tz} = Tz \cdot T\overline{z} = z \cdot \overline{z} = ||z||^2$. Therefore, Lemma results from (3).

THEOREM 7. For $z, \zeta \in \mathbb{C}^n$ we have

$$|z \cdot \zeta| \leq L(z)N_1(\zeta)$$
.

PROOF. Suppose first $z, \zeta \in \mathbb{C}^2$. Then we have

$$||z||^4 - |z^2|^2 = (z_1\bar{z}_1 + z_2\bar{z}_2)^2 - (z_1^2 + z_2^2)(\bar{z}_1^2 + \bar{z}_2^2) = -(z_1\bar{z}_2 - z_2\bar{z}_1)^2.$$

Therefore,

$$L(z) = \max \sqrt{z_1 \bar{z}_1 + z_2 \bar{z}_2 \pm i(z_1 \bar{z}_2 - z_2 \bar{z}_1)} = \max\{|z_1 \pm i z_2|\}.$$

Similarly, we have

$$M(z) = \min\{|z_1 \pm iz_2|\}, \quad N_1(z) = \frac{1}{2}(|z_1 + iz_2| + |z_1 - iz_2|).$$

On the other hand, we have

$$z \cdot \zeta = z_1 \zeta_1 + z_2 \zeta_2 = \frac{1}{2} \{ (z_1 + i z_2)(\zeta_1 - i \zeta_2) + (z_1 - i z_2)(\zeta_1 + i \zeta_2) \}$$

and hence

$$|z \cdot \zeta| \leq \frac{1}{2} \{ |z_1 + iz_2| |\zeta_1 - i\zeta_2| + |z_1 - iz_2| |\zeta_1 + i\zeta_2| \}$$

$$\leq \max\{ |z_1 \pm iz_2| \} \times \frac{1}{2} (|\zeta_1 - i\zeta_2| + |\zeta_1 + i\zeta_2|) = L(z) N_1(\zeta) .$$

Suppose now $z, \zeta \in \mathbb{C}^n$. By Lemma 5 there exists $T \in O(n)$ such that $\alpha = T\zeta \in \mathbb{C}^2$. Put w = Tz. By the rotation invariance, we have $|z \cdot \zeta| = |w \cdot \alpha|$. Then by the first step, we have

$$|w \cdot \alpha| = |\tilde{w} \cdot \alpha| \le L(\tilde{w}) N_1(\alpha)$$
.

By Lemma 3 (c) and Lemma 6 we have

$$|z \cdot \zeta| = |w \cdot \alpha| \le L(\tilde{w}) N_1(\alpha) \le L(w) N_1(\alpha) = L(z) N_1(\zeta). \quad \Box$$

THEOREM 8. For $\zeta \in \mathbb{C}^n$ we have

$$N_1(\zeta) = \sup\{|z \cdot \zeta|; \ z \in \mathbb{C}^n, L(z) = 1\}$$

= \sup\{|x \cdot \zeta|; \ x \in \mathbb{R}^n, ||x|| = 1\}.

PROOF. By Theorem 7 we have

$$N_1(\zeta) \ge \sup\{|z \cdot \zeta|; \ z \in \mathbb{C}^n, L(z) = 1\}$$

$$\ge \sup\{|x \cdot \zeta|; \ x \in \mathbb{R}^n, ||x|| = 1\}.$$

Suppose first $\zeta = (\zeta_1, \zeta_2, 0, \dots, 0) \in \mathbb{C}^2$. Then we have

$$\sup\{|x \cdot \zeta|; \ x \in \mathbf{R}^{n}, \|x\| = 1\}
\geq \sup\left\{\frac{1}{2}|(x_{1} + ix_{2})(\zeta_{1} - i\zeta_{2}) + (x_{1} - ix_{2})(\zeta_{1} + i\zeta_{2})|; \ x \in \mathbf{R}^{2}, \|x\| = 1\right\}
= \sup\left\{\frac{1}{2}|e^{i\theta}(\zeta_{1} - i\zeta_{2}) + e^{-i\theta}(\zeta_{1} + i\zeta_{2})|; \ \theta \in \mathbf{R}\right\}
= \frac{1}{2}(|\zeta_{1} - i\zeta_{2}| + |\zeta_{1} + i\zeta_{2}|) = N_{1}(\zeta).$$

Suppose now $\zeta \in \mathbb{C}^n$. By Lemma 5 there exists $T \in O(n)$ such that $T\zeta \in \mathbb{C}^2$. Then by Lemma 6 and the first step we have

$$\sup\{|x \cdot \zeta|; \ x \in \mathbf{R}^n, \|x\| = 1\} \\
\ge \sup\{|Tx \cdot T\zeta|; \ x \in \mathbf{R}^n, \|x\| = 1\} \\
\ge \sup\{|y \cdot T\zeta|; \ y \in \mathbf{R}^n, \|y\| = 1\} = N_1(T\zeta) = N_1(\zeta)$$

THEOREM 9. For $z \in \mathbb{C}^n$ we have

$$L(z) = \sup\{|z \cdot \zeta|; \ \zeta \in \mathbb{C}^n, N_1(\zeta) = 1\}.$$

PROOF. By Theorem 7 we have

$$L(z) \ge \sup\{|z \cdot \zeta|; \ \zeta \in \mathbb{C}^n, N_1(\zeta) = 1\}.$$

Suppose first $z \in \mathbb{C}^2$. Then we have

$$\sup\{|z \cdot \zeta|; \ \zeta \in \mathbb{C}^{n}, N_{1}(\zeta) = 1\} \\
\geq \sup\{|z \cdot \zeta|; \ \zeta \in \mathbb{C}^{2}, N_{1}(\zeta) = 1\} \\
= \sup\left\{\frac{1}{2}|(z_{1} + iz_{2})(\zeta_{1} - i\zeta_{2}) + (z_{1} - iz_{2})(\zeta_{1} + i\zeta_{2})|; \\
\frac{1}{2}(|\zeta_{1} + i\zeta_{2}| + |\zeta_{1} - i\zeta_{2}|) = 1\right\} \\
= \max\{|z_{1} \pm iz_{2}|\} = L(z).$$

Suppose now $z \in \mathbb{C}^n$. By Lemma 5 there exists $T \in O(n)$ such that $Tz \in \mathbb{C}^2$. Then by Lemma 6 and the first step, we have

$$\sup\{|z \cdot \zeta|; \ \zeta \in \mathbb{C}^n, N_1(\zeta) = 1\}$$

$$= \sup\{|Tz \cdot T\zeta|; \ \zeta \in \mathbb{C}^n, N_1(\zeta) = 1\}$$

$$= \sup\{|Tz \cdot \alpha|; \ \alpha \in \mathbb{C}^n, N_1(\alpha) = 1\} = L(Tz) = L(z).$$

COROLLARY 10. L(z) and $N_1(z)$ are norms on \mathbb{C}^n and dual to each other.

PROOF. In view of Lemmas 1 and 2, to show L(z) (resp. $N_1(z)$) is a norm on \mathbb{C}^n we have only to show the subadditivity, which results from Theorem 9 (resp. Theorem 8).

N.B. The Lie norm L(z) is equal to the cross norm of the Euclidean norm ||x|| on \mathbb{R}^n :

$$L(z) = \inf \left\{ \sum_{j=1}^{M} |\lambda_j| \|x_j\|; \ z = \sum_{j=1}^{M} \lambda_j x_j, \lambda_j \in \mathbb{C}, x_j \in \mathbb{R}^n \right\}.$$

This important fact can be proved by the method of this section (see [1] or [5]).

2. Norms between L(z) and $N_1(z)$.

LEMMA 11. For $z, \zeta \in \mathbb{C}^n$ we have

$$2|z \cdot \zeta| \le L(z)L(\zeta) + M(z)M(\zeta). \tag{4}$$

PROOF. Suppose first $z, \zeta \in \mathbb{C}^2$. By Proof of Theorem 7, we have only to show

$$|z_1 + iz_2||\zeta_1 - i\zeta_2| + |z_1 - iz_2||\zeta_1 + i\zeta_2|$$

$$< \max\{|z_1 \pm iz_2|\} \max\{|\zeta_1 \pm i\zeta_2|\} + \min\{|z_1 \pm iz_2\} \min\{|\zeta_1 \pm i\zeta_2|\}$$

which can be checked easily.

Suppose now $z, \zeta \in \tilde{\mathbb{C}}^n$. By Lemma 5 there exists $T \in O(n)$ such that $\alpha = T\zeta \in \mathbb{C}^2$. Put w = Tz. Then we have $|w \cdot \alpha| = |\tilde{w} \cdot \alpha|$ and

$$\begin{aligned} 2|z \cdot \zeta| &= 2|Tz \cdot T\zeta| = 2|w \cdot \alpha| = 2|\tilde{w} \cdot \alpha| \\ &\leq L(\tilde{w})L(\alpha) + M(\tilde{w})M(\alpha) \\ &\leq L(w)L(\alpha) + M(w)M(\alpha) = L(z)L(\zeta) + M(z)M(\zeta), \end{aligned}$$

where we used the first step and Lemmas 4 and 6.

For $p \ge 1$ and $z \in \mathbb{C}^n$ we define

$$N_p(z) = \left(\frac{1}{2}(L(z)^p + M(z)^p)\right)^{1/p},$$

where L(z) and M(z) are defined in (3). By Lemma 6 $N_p(z)$ is invariant by rotations; that is, $N_p(Tz) = N_p(z)$ for any $T \in O(n)$ and $z \in \mathbb{C}^n$.

If $1 \le p \le r$, then we have $N_p(z) \le N_r(z)$ (see [3]). In fact, by the Hölder inequality we have

$$\begin{split} N_{p}(z)^{p} &= \frac{1}{2} (L(z)^{p} + M(z)^{p}) = \left(\frac{L(z)^{r}}{2}\right)^{\alpha} \left(\frac{1}{2}\right)^{1-\alpha} + \left(\frac{M(z)^{r}}{2}\right)^{\alpha} \left(\frac{1}{2}\right)^{1-\alpha} \\ &\leq \left(\frac{L(z)^{r}}{2} + \frac{M(z)^{r}}{2}\right)^{\alpha} \left(\frac{1}{2} + \frac{1}{2}\right)^{1-\alpha} = N_{r}(z)^{p} \,, \end{split}$$

where $\alpha = p/r$, $0 < \alpha \le 1$.

For $z \in \mathbb{C}^2$ we have

$$N_p(z) = \left(\frac{1}{2}(|z_1 + iz_2|^p + |z_1 - iz_2|^p)\right)^{1/p},\tag{5}$$

which is equivalent to the Lebesgue L^p norm. By the Hölder inequality we have

$$|z_1 + iz_2||\zeta_1 - i\zeta_2| + |z_1 - iz_2||\zeta_1 + i\zeta_2|$$

$$\leq (|z_1 + iz_2|^p + |z_1 - iz_2|^p)^{1/p} (|\zeta_1 + i\zeta_2|^q + |\zeta_1 - i\zeta_2|^q)^{1/q}$$
(6)

that is, $|z \cdot \zeta| \leq N_p(z)N_q(\zeta)$.

For general n we have the following

THEOREM 12. For $z, \zeta \in \mathbb{C}^n$ we have

$$|z \cdot \zeta| \leq N_p(z) N_q(\zeta)$$
,

where p, q > 1 satisfy 1/p + 1/q = 1.

PROOF. By the Hölder inequality we have

$$\frac{1}{2}(L(z)L(\zeta) + M(z)M(\zeta)) \leq \frac{1}{2}(L(z)^p + M(z)^p)^{1/p}(L(\zeta)^q + M(\zeta)^q)^{1/q} = N_p(z)N_q(\zeta).$$

Hence, Lemma 11 implies Theorem.

THEOREM 13. For $z \in \mathbb{C}^n$ we have

$$N_p(z) = \sup\{|z \cdot \zeta|; \ \zeta \in \mathbb{C}^n, N_q(\zeta) = 1\},\tag{7}$$

where 1/p + 1/q = 1.

PROOF. Suppose first $z, \zeta \in \mathbb{C}^2$. Then the equality in the Hölder inequality (6) holds if and only if $a|z_1+iz_2|^p=b|\zeta_1-i\zeta_2|^q$ and $a|z_1-iz_2|^p=b|\zeta_1+i\zeta_2|^q$ for some $a,b\geq 0$, not both 0. Therefore, (7) is valid if n=2.

Suppose now $z \in \mathbb{C}^n$. Take $T \in O(n)$ such that $w = Tz \in \mathbb{C}^2$. By Theorem 12 we have

$$\begin{split} N_p(z) &\geq \sup\{|z \cdot \zeta|; \ \zeta \in \mathbf{C}^n, N_q(\zeta) = 1\} \\ &= \sup\{|Tz \cdot T\zeta|; \ \zeta \in \mathbf{C}^n, N_q(\zeta) = 1\} \\ &= \sup\{|w \cdot \alpha|; \ \alpha \in \mathbf{C}^n, N_q(\alpha) = 1\} \\ &\geq \sup\{|w \cdot \alpha|; \ \alpha \in \mathbf{C}^2, N_q(\alpha) = 1\} \\ &= N_p(w) = N_p(Tz) = N_p(z). \end{split}$$

COROLLARY 14. $N_p(z)$ is a norm on \mathbb{C}^n .

PROOF. We have to show the following three conditions:

- (a) $N_p(z) \ge 0$; $N_p(z) = 0$ if and only if z = 0.
- (b) $N_p(\lambda z) = |\lambda| N_p(z)$ for any $\lambda \in \mathbb{C}$ and $z \in \mathbb{C}^n$.
- (c) $N_p(z+w) \le N_p(z) + N_p(w)$ for any $z, w \in \mathbb{C}^n$.
- (a) and (b) are clear. (c) results from Theorem 13.

Generalizing Lemma 3 we have the following

COROLLARY 15. For $z \in \mathbb{C}^n$ we denote by \tilde{z} the projection of z to \mathbb{C}^2 . Then we have

$$N_p(\tilde{z}) \le N_p(z) \,. \tag{8}$$

PROOF. Let $z \in \mathbb{C}^n$. By the homogeneity of (8) we may assume $N_p(z) = 1$. By Theorem 13 there exists $\zeta \in \mathbb{C}^2$ such that $N_q(\zeta) = 1$ and $|\tilde{z} \cdot \zeta| = N_p(\tilde{z})$. By Theorem 12 we have

$$1 = N_q(\zeta) \ge \sup\{|w \cdot \zeta|; \ w \in \mathbb{C}^n, N_p(w) = 1\}$$
$$= \sup\{|\tilde{w} \cdot \zeta|; \ w \in \mathbb{C}^n, N_p(w) = 1\}$$
$$\ge |\tilde{z} \cdot \zeta| = N_p(\tilde{z}).$$

Hence, we have $N_p(\tilde{z}) \leq 1$, which proves (8).

References

- [1] L. DRUŻKOWSKI, Effective formula for the cross norm in the complexified unitary space, Zeszyty Nauk Uniw. Jagiellon. Prace Mat. 15 (1974), 47-53.
- [2] K. FUJITA and M. MORIMOTO, Holomorphic functions on the dual Lie ball, the Proceedings of the Second ISAAC Congress, Fukuoka 1999, Kluwer Academic Publisher 1 (2000), 771-780.
- [3] G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, *Inequalities*, Cambridge University Press (1934); Second Edition (1952).
- [4] T. KIMURA, Norms related to the Lie norm, preprint. (This paper is a part of the master's thesis submitted to Sophia University, February 2000.)
- [5] M. MORIMOTO, Analytic Functionals on the Sphere, Translations of Mathematical Monograph, 178, American Mathematical Society, (1998).

Present Addresses:
MITSUO MORIMOTO
DEPARTMENT OF MATHEMATICS, INTERNATIONAL CHRISTIAN UNIVERSITY,
TOKYO, 181–8585 JAPAN.

Keiko Fujita Faculty of Culture and Education, Saga University, Saga, 840–8502 Japan.