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Abstract. In this paper, for a compact symmetric space M we consider orbits of the linear isotropy action of
M and the canonical action on M of its isotropy group. We reduce some geometric conditions of these orbits to those
of their starting points. Consequently we get some relations among the geometric conditions of orbits.

Introduction.

We consider the following two pairs (M, K) of a Riemannian manifold M and a Lie
transformation group K acting on M as isometries:

(1) K is the linear isotropy group of an irreducible Riemannian symmetric space N of
compact type at a point o and M is the tangent space of N at o,

(2) M is an irreducible Riemannian symmetric space of compact type and K is the
isotropy group at a point.
Many mathematicians have investigated several geometric properties of the orbits of such K
in M from a viewpoint of differential geometry, e.g., [4], [2], [5] and [7].

In this paper we consider relations among several conditions of orbits of K in M. For x
in M we put

K, ={keK|kx=x}.

The conditions of the orbit Kx at x we consider are as follows: A

(a) The pair (Ko, Ko N Ky) of the identity component Ky of K and K¢y N K, is a
symmetric pair.

(b) The pair (&, &,) of the Lie algebras £ and £, of K and K, is an orthogonal symmetric
Lie algebra.

(c) The normal homogeneous Riemannian metric g, on K /K, and the induced Rie-
mannian metric g; on K x as a submanifold in M are proportional.

(d) The Levi-Civita connections D of g, and V of g; coincide.
Moreoveer we consider the conditions:

(¢) The orbit Kx C M is a canonical embedding of a symmetric R-space, in the case
(1) and

() The orbit Kx is a totally geodesic submanifold in M
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in the case (2).

The following equivalent properties have been studied in the case (1): (b) and (e) by
Nagano [8], (a) and (b) by Takeuchi [10], Ohnita [9], (a) and (c) by Takeuchi and Kobayashi
[12], Olmos and Heintz [2]. We describe a necessary and sufficient condition for each from
(a) to (f) by the use of root systems. In the case (1) we get a conclusion the conditions from
(a) to (e) are mutually equivalent (Theorem 3.2). Although many parts of Theorem 3.2 have
been already obtained, in order to compare the cases (1) and (2) we give a complete proof
of Theorem 3.2. In the case (2) those conditions are not equivalent, but we can show some
relations among the conditions above (Theorem 4.2).

The authors would like to thank the referee for pointing out some misprints in the man-
uscript.

1. Preliminaries.

Let G be a compact connected semisimple Lie group and 6 an involutive automorphism
of G. We denote by Gy the closed subgroup consisting of all fixed points of § in G. For a
closed subgroup K of G which lies between Gy and the identity component of Gy, (G, K) is
a Riemannian symmetric pair. Let g and € be the Lie algebras of G and K respectively. The
involutive automorphism 6 of G induces an involutive automorphism of g, also denoted by 6.
We have

t={Xeglb(X)=X}.

An inner product {, ) on g which is invariant under the actions of Ad(G) and 6 induces a
biinvariant Riemannian metric on G and G-invariant Riemannian metric on the homogeneous
space M = G/K, which are also denoted by the same symbol (, ). Moreover we assume
that the linear isotropy representation of K on 7, (M) is irreducible. Then M is an irreducible
Riemannian symmetric space of compact type with respect to (, ). Conversely any irreducible
Riemannian symmetric space of compact type is constructed in this way. Put

m={Xeg|o(X)=—-X}.
Since 0 is involutive, we have an orthogonal direct sum decomposition of g:
g=%¢t+m.

This decomposition is called a canonical decomposition of the orthogonal symmetric Lie
algebra (g, ). The tangent space T, (M) of M at o is identified with m through the differential
7« = (4). of the natural projection 7 : G — M. Take and fix a maximal Abelian subspace
a in m and a maximal Abelian subalgebra t in g including a. Put

b=tNEt.
Since t is #-invariant, we get an orthogonal direct sum decomposition of t:

t=b+a.
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For o € t we put

fo = (X €g|[H X1 =v-T(a, H) X(H € )}
and define the root system R(g) of g with respect to t by

R(g) = {x € t\ {0} | §a # {O}} C t.

We simply write R for R(g). For A € a we put

o ={X € g®|[H X]=+~1(0, H) X(H € a))
and define the restricted root system R(g, £) and (g, £) with respect to a by

R(g.®) = {r € a\{0}|gs # {0} C a.
We simply write R for R(g, £). Put
Ro(g) = R(e) Nb
and denote the orthogonal projection from t to a by H — H. Then we have
R(g.®) = {a | € R(g) \ Ro(9)}.

We define lexicographic orderings > on a and t with respect to which H > 0 implies H > 0
for H € t. We denote by R, R the set of all positive roots in R, R respectively and by F, F
the fundamental root systems of R, R respectively. We have

Ri={ala e Ri\Ro}, F={(a&laeF\Ro}.
We put

b = {X € £|[X, a] = {0}
and for A € R,
LL=tN(@+g-2), mu=mN(@ +g-1).
Then we obtain the following lemma ([11, Chap. II, §5]).
LEMMA 1.1. (NE=8+3 ;g G, m=a+3 ;g ™M
are orthogonal direct sum decompositions.
(2) Foreacha € ﬁ+ \ ﬁo there exist Sy € € and Ty, € m such that

{Syle € Ry,a=1}, {Ty|la€ Ry a=Ar}
are orthonormal bases of ¢, m,, respectively and that for H € a they satisfy
[H’ Sa]_—'(a, H>Toz, [Hs Ta]=~(a7 H)Sa, [Sa, Ta]=6‘,
Ad(exp H)S, = cos{o, H)Sy + sin{«, H)T,

Ad(exp H)Ty = — sin{«, H)S, + cos{a, H)T, .
(3) We define a real Lie subalgebra g" of g€ by
g =t+/—1m.

For A € R we put
g =g¢"Ng.
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Then for A € Ry we have
g§‘+gu_)¥ =€ 4+ +V—1m,.
(4) Fora € Ry \ Ro we put
Xo=Sa— 1Ty, X_o=S84+—1T,.
Then for A € R

{Xo |l € R,@ = A}
is a basis of gi and ‘

(Bg)c =g = S

INg

€

QR
>

holds.
We define a convex region C in a by
C={Heal|{Ad, H) >0 (A€ F)}.
Then we have
m= | Adk)C,
keKyp
where K is the identity component of K. So in order to consider the K -orbits of H in m we
may suppose H belongs to C. The closure of C is given by
C={Hea|(A,H) =0 (A€ F)}.
For a subset A C F we define
CA={HeC|(AH)>0 (A€d),(uH)=0 (neF\A4)}.
In particular C2 = {0} if A = 0.
LEMMA 1.2. C=JucrCA
is a disjoint union.
For each « € F we take H, € t satisfying
1 @=B,BekF)
0 (@#B,BeF)
and for each A € F we take H) € a satisfying

1 A=u,nerF)
0 W#u,nuekF).

(B, Hy) = {

(/'L’ Hl) = [

Then we obtain

é= { Zt)_HA 5% ZO}
rAEF
and for a subset A C F
CA=[ZtAHA tA>O].

rEeA
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Let 8 be the highest root of R and consider
F = FU{8}.
We define a convex region Q in a by
OQ={Heal0O< (A, H)y<m (AelF)}.
For A C F we put

A _|0< (L H)Y (L€ ANF), (8, H) <7 (if 6 € 4),
< _{HEQ~O=(M,H)(MGF\A), (5, Hy = (f 8 ¢ A) }

For example 0F = Q c a. The condition Q4 # @ holds if and only if A # @. A subset
A C F satisfying this condition is said to be admissible. For an admissible subset A C F,
Q4 is a convex cell in Q. Thus we will consider only admissible subsets A C F.

LEMMA 1.3.

0= o*

ACF
is a disjoint union.
LEMMA 1.4. IfAC Fand H € QA, then the subsets
{(,eRy|(\ HenZ}, {aecRy|({a H)enZ}

are not dependent on H € Q4, but on A. We denote by Rﬁ, ’féf_ these subsets.

2. Some properties of root systems.

We shall now give some general properties of an irreducible root system used in later
sections. Let R be an irreducible root system and F = {1, -, a,} a fundamental root
system of R.

PROPOSITION 2.1. Forl <i, j <r,i # j, there exist positive roots
e« =aay+---+ao, p=bai+--+bra;
such that

a=1, bj=1, a+pBeER.

PROOF. Two simple roots «; and «; are connected in the Dynkin diagram in the fol-
lowing way.
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o aj
oG aj
o oj

O—0O—0O0—0
o; aj
OO
o; o;

Let o’ be the sum of all simple roots which lie between «; and «; in the diagram. Put
@ = a; + o’ and B = «;. In general the sum of roots in a connected subdiagram of a Dynkin
diagram is a positive root. Therefore o and « + B are in R.

We denote the highest root of R by ap = nja; + - -+ + n,a,.
PROPOSITION 2.2. Ifn; > 2, there exist positive roots
a=aa1+- - -+aa, B=ba+- - -+bra,
such that
ai>1, bj>1, a+BeR.
PROOF. By the assumption R is not of type A,. We put
a=a;+:---4+a, B=a—«.
Using the classification of root systems we have 8 € R and the proposition is proved.
We have the following due to Helgason [3, p. 460].

PROPOSITION 2.3. For any positive root a there exits a sequence of positive roots
Bi, -, Bn = a such that B| and B; — Bi—1 are simple roots.

From the above we have also the following.
PROPOSITION 2.4. Ifn; > 3, there exists a positive root
0 =aix; + -+ ara

such that
a=1, ao+a; €R.

In particular a + «; is not the highest root.

3. Orbits of linear isotropy groups.

Let M = G/K be an irreducible Riemannian symmetric space of compact type. For
H € T,(M), we consider the orbit K, H C T,(M) of the linear isotropy group K. Identifying
T,(M) with m in a natural manner, we consider Ad(K)H C m. The submanifold Ad(K)H
in m is connected (see [4, Prop. 2.1]). We may assume that H is in C.
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We define a closed subgroup Z I’}' of K by
ZH =k e K |Ad(k)H = H}.

Then the mapping
®:K/Z¥ - AAK)H; kZ§ — Ad(KH
is a diffeomorphism between K/Zy H and Ad(K)H. Hence Ad(K)H has two Riemannian
metrics in the following way. The normal homogeneous Riemannian metric g, on K/Zy o4
which is induced by the biinvariant Riemannian metric on G and the induced Rlemanman
metric g; on Ad(K)H C m. Take a fundamental root system F = {Ag,---, A1} of R and
denote by § = m1A; + --- + myA; the highest root of R. For the sake of simplicity, we set
H; = Hy,.
DEFINITION 3.1. Put
H=xH;, mi=1 (x=>0).
Since the involutive automorphism

o : Ko = Ko; k — (expr H;)k(exp(—m H;))

defines a compact symmetric pair (Ko, Z g 0), K/Z g is a compact symmetric space, which
we call a symmetric R-space. @ : K/Z 2’ — m is called the canonical embedding of the
symmetric R-space.

We denote by D and V the Levi-Civita connections with respect to the Riemannian
metrics g, and g;, respectively.

THEOREM 3.2. Let M = G/K be an irreducible Riemannian symmetric space of
compact type. Then the following conditions are equivalent.

(1) Ad(K)H C wm is a canonical embedding of a symmetric R-space.

(2) The pair (Ko, Z ) is a compact symmetric pair.

(3) The pair (&3} K) is an orthogonal symmetric Lie algebra, where we put 3 X =

Lz,
(4) The Riemannian metrics g, and g; are proportional.
(5) V=D.

PROOF. It is clear that (1) = (2) = (3) and that (4) = (5). In order to show this
theorem, we prove lemmas needed later.
Let A C F, H € C4. From Lemma 1.1, we have

TH(AAK)H) =[t, Hl= ) m,
AERL\R?

T,(K/ZR) =Gt = )Y &,
A€R\RE
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where o’ is the origin of K/Z ? and we denote by (-)< the orthogonal complement of (-) in &.
The linear isomorphism (®,), is given by

(@) : GE)t - [¢, HI; X — [X, H]. (3.1)

LEMMA 3.3. The condition (3) in Theorem 3.2 holds if and only if fora, B € I§+ \ 15_‘,_‘
the following two conditions hold.
a+B¢R,
(¢ — B, H) #0impliesa — B ¢ R.

PROOF. Let H € CA4.
(e, 3? ) is an orthdgonal symmetric Lie algebra
&[G G CsR
& IGHT 6L HI=0
& (o, H)[Ta, Spl — (B, H)[Tp, Sl =0 (o, B € Ry \ RD).

From Lemma 1.1, we have

V=1

[Ta, Spl = —4—([Xa, Xpl = [X—o, X_g] — [X_qo, Xp] + [Xa, XD,

which implies that

(¢, 3? ) is an orthogonal symmetric Lie algebra

[(a + B, H)[X4, X1 =0,

(¢ —B,H)[Xo, X_pg]=0 (e, B € Ry \ Ri‘)

(s}, o1 = (0}, L
PR NTE
[gx, gl = {0}, o
Q[(“—ﬂ,H)#O:'[gx,g—u]={0} @=25=u
a+B¢R;, o
A b0 pg R @PRARD.

LEMMA 3.4. The condition (4) in Theorem 3.2 holds if and only if (a, H) is a constant
fora e I§+ \ I?ﬁ. Moreover this is equivalent to the condition (1) in Theorem 3.2.

PROOF. From (3.1), the condition (4) holds if and only if there exists a positive constant
¢ such that

c(X,Y) = ([X, H],[Y,H]) forany X,Y € 3E)*.
From Lemma 1.1,

{Sela € Ry \ RY}, (Tyla e Ry\ R4}
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are orthonormal bases of T, (K /Z I’;’ ) and Ty (Ad(K) H), respectively. Hence we have
(4) & (A, H) isaconstantfor A € Ry \ R%.

It is clear that if H = xH; (m; = 1), then the two Riemannian metrics are proportional.
Conversely we assume that the condition (4). For any restricted simple root A; € Ry \ Rﬁ,
we have
(MAi, HY = constant x(> 0) .

For the restricted highest root § € Ry \ R4, we have

(6, H) = Z mix =x,

ieli| €A}

which implies that H = xH; (m; = 1).

LEMMA 3.5. The condition (5) in Theorem 3.2 holds if and only if for a, B € Ry \
R, (a — B, H) # O impliesox + 8 ¢ R.

In order to prove this lemma, we prepare the following. For X € ¢, we define a Killing
vector field X* on Ad(K)H by

d
(XM, = = Ad(exptX)x = [X, x].
t=0

We also denote by the same symbol X* the corresponding vector field on K /Z I’g .
LEMMA 3.6. ForX,Y €, ‘
(Vx+Y* g = [Y, [X, Hlle, 1 »

1
£ 3 ] - —
(Dx=Y")o = —[X )1, Yyl = S1X gm0, Yomtdam -

)+- and

where (-)i¢, 1) is the [€, H]-cbmponent of (-), and where (')(3§)¢ and (')éz are the (3?
321 -component of (-) in &, respectively.
PROOF. For the first equation we refer to [5]. For the second we refer to [6, p. 176].
PROOF OF LEMMA 3.5.
V=D& (Vx+ X" = (P ((DxxX%)y) (X €8
& [X, (X, Hllje,y = —[[Xgy0, Xpul Hl (X €9)
& [X(Z?)_L, [X o)L, Hllge iy = 0 Xe¥p
& [X, 1Y, He.my + [V, [X, Hle sy =0 (X, Y € G
& (X, [Y, HI+ 1Y, [X, HL [, H) =0 (X,Y € G¥)D)
& (X, [V, HIl, H1+ [V, [X, H]L, H1 =0 (X.Y € G¥)D)
& [[Sa. [Sp, HIL HI+ [(Sp. [Sa. HIl, HI=0 (a, 8 € Ry \ RY)
& (@—B, H) #0=> (S, Sp1=0 (B € R+ \RY).
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By a similar argument in the proof of Lemma 3.3, we have
V=D& (a—B H) #0=[Xa, Xp] = [Xa, X-p] =0 (a, B € Ry \ RY)
Sl@—BH) #0=>axB¢R (2, R \RY.

We return to the proof of Theorem 3.2.

We first prove the conditions (3) and (5) are equivalent. It is clear from Lemmas 3.3
and 3.5 that (3) implies (5). In order to prove the converse, it is sufficient to prove that for
o, peR\R{if(a —B,H) =0thenar+ B ¢ R.Ifa + B € R, thena + B € R\ R and
((a + B) — a, H) # 0. Hence by the assumption we have 8 = (¢ + B) —«a ¢ R, whichis a
contradiction. :

We second prove that the condition (5) implies (1). In the case when M is of type I
(see [3, p. 379] for the definition), R is irreducible. Take a fundamental root system F =
{eeq, -+, ar} Of R and denote by ap = nia1 + - -- + n,«, the highest root of R. Assume
that V = D, which is equivalent to the condition that (&, 32’) is an orthogonal symmetric Lie
algebra. Since

CC{H et|{a, H) >0 (x € F)},
there exist nonnegative constants yj, - - -, y, such that

H=yH+ - +yH (=0,

If there exist two positive constants y; > 0, y; > 0 (i # j), then from Proposition 2.1 there
existo, B € I?.,., such that

(@, Hy), (B.Hu)) >0, a+BeRy,

which contradicts Lemma 3.3. Hence H = y; fl,-.
If n; > 2, then from Proposition 2.2 there exist &, 8 € R4 such that

(0, HY, (B,H)>0, a+peR,;,

which contradicts Lemma 3.3. Hence n; = 1. In this case it is clear that the two Riemannian
metrics g; and g, are proportional. Hence (1) holds. In the case when M is of type II (see
[3, p. 379] for the definition), M is a compact connected simple Lie group L furnished with
a biinvariant Riemannian metric (, ) (see [3, p. 439]). Take a maximal Abelian subalgebra
t(l) of [. We denote by R(l), F(I) = {ai}1<i<r and ap = Y m;a; the root system of [ with
respect to t(I), a fundamental root system of R(l) and the highest root of R([), respectively.
We denote by { H;} the dual system of FQ,ie., (H;, aj) = §;j. Then Ad(L)H C (H € ) is
a canonical embedding of symmetric R-space if and only if H = xH; (x > 0, m; = 1). On
the other hand, V = D if and only if

a,BeRi(D, (@, H)>0,(8,H)>0,(a—B,H #0=>a+p ¢ R(D).

Hence by a similar argument above we can prove that the condition (5) implies (1).
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4. Orbits of isotropy groups.

For p € M, we consider the orbit Kp C M of the isotropy group K. B. Y. Chen and T.
Nagano [1] proved that for a fixed point p of the geodesic symmery s, with respect to o, Kp
is connected. Using a similar method, we have

PROPOSITION 4.1. Forany p in M, Kp = Kop. In particular, Kp is connected.

PROOF. Since M is complete ([3, p. 205]), there exists a geodesic c(t) such that c(0) =
o and ¢(1) = p. For any k in K, kc(t) is also a geodesic. Take maximal tori A and A’
in M containing the images c and kc, respectively. There exists ko € Ko such that A =
koA. Then the images c and kg lkc are contained in A, therefore the initial vectors ¢’(0)
and Ad(ky 1k)c’ (0) are in a. By using [3, p. 285, Prop. 2.2], there exists kj in Ko such that
Ad(ky)c’ (0) = Ad(k, 1)’ (0), which implies that kp = kok1p € Kop.

Since M = K Exp O ([3, p. 323, Theorem 8.6]), we may assume that p = Exp H,
He Q.
We define a closed subgroup N 1’(1 of K by

N}? = {k € K |kExp H = Exp H}
={k e K| exp(—H)kexpH € K}.

Then the mapping
W : K/NY — KExpH; kNf — kExpH

is a diffeomorphism between K/N& ¥ and K Exp H. Hence K Exp H has two Riemannian
metrics in a natural manner: the normal homogeneous Riemannian metric g, on K / NH ¥ Wwhich
is induced by the biinvariant Riemannian metric on G and the induced Riemannian metric g;
on K ExpH C M. We denote by D and V the Levi-Civita connections with respect to the
Riemannian metrics g, and g;, respectively. We can write

H=xHi+ ---+xHeQ, x>0, Zmixi <m.

THEOREM 4.2. Let M = G/K be an irreeducible Riemannian symmetric space of
compact type.

(1) The orbit K Exp H C M is a totally geodesic submanifold if and only if one of the
following conditions holds.

(i) H=(7/2)H,; (m;i =2),
(i) H=(7/2)H; (mi=1),
(i) H = (w/2)(H; +Hj) (mi=mj=1).
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(2) The pair (%, ng ) is an orthogonal symmetric Lie algebra, where we put n;’ =

L(N 1’(" ) if and only if one of the following conditions holds.
(i) H=@/2)H; (mi =2),
(i)Y H =nxH; (m=10<x<1),
(ii)y H=n(xH +Q—-x)H;) (m; = mi=10<x<1).
(3) The Riemannian metrics g, and g; are proportional if and only if one of the follow-
ing conditions holds.

(), @iy, (i) in (2) and
() H=(/3)H mi=2),
|V H=(x/3)H, (m; = 3),
(vi) H=(71’/3)(Hi+Hj) (m; = l’mj =2),
(vil) H = (r/3)(H; + Hj) (m; = mj = 1),
k(Viii) H=n/3)(Hi+Hj + Hy) (m; = mj=m;=1).

(4) V =D ifand only if the condition (3) holds.
In particular, the condition (1) implies (2) and (2) implies (3).

PROOF. From Lemma 1.3, there exists an admissible subset A C F such that H € Q4.
From Lemma 1.1, we have

Texp (K Exp H) = (exp H)«(Ad(exp(—H))(®)m = (exp H)s Y m,

AERL\RZ
= Z m;.

AERL\RA
We denote by o’ the origin of K/N§ . Then we have:
T,(K/N{)=mHt= D & 4.2)
AeRL\RE
Hence
{Ta(Z (exp H)«T) | € Ry \RY}, {Sala e Ry \R%)
are orthonormal bases of Tgxp (K Exp H) and Ty(K /N ,’g ), respectively. The linear isomor-
phism (¥,) is given by
(W)o : ()T = (Ad(exp(—H))®)m; X > (Ad(exp(—H)) X)m .

In order to show this theorem, we prove some lemmas.

LEMMA 4.3. The condition (1) in Theorem 4.2 holds if and only if sin{a, H) € {0, 1}

for any & € R,. Moreover this is equivalent to the condition sin{\, H) € {0, 1} for any
A€ R+.

PROOF. We denote by h the second fundamental form of K Exp H C M. It is known
by [13, p. 122] that

hexpr(Ta, Tg) = cot(B, H)([Ta, SgD)T for o, B e Ry \ R4,
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where ()T is the (a + ZAeRﬁ m, )-component of (-). In particular,

hxp i (To, Ty) = —cot{a, H)@ for a € Ry \RE.
Hence we get the conclusion.
We assume that M is of type I for the time being.

LEMMA 4.4. The condition (1) in Theorem 4.2 holds if and only if one of the following
conditions holds.

il H=@/2)H €ca (ni =2),
ii] H=@/2)H €a (ni =1),
liii] H=@/2)(Hi+Hj)ea (ni=n;=1).

Moreover these are equivalent to the following conditions.

i) H=(x=/2)H; (mi =2),
() H = (7/2)H; (mi =1),
(i) H=@/2)(H;+Hj) (mi=mj=1).

PROOF. From Lemma 4.3, we have

K Exp H C M is a totally geodesic submanifold
< sin{A, H) € {0, 1} (A € Ry)
< (A HYe{0,7/2, 7} (A€ Ry)
& H is one of (i), (i) and (iii) .
Since
HeQcC{Het|0< (o H) <m (¢ e FUl{a))},
a similar argument implies that

K Exp H C M is a totally geodesic submanifold
< H is one of [i], [ii] and [iii] .

LEMMA 4.5. The condition (2) in Theorem 4.2 holds if and only iffor o, B € R4 \R%
the following two conditions hold.

( + B, H) # 7 impliesa + B ¢ R,
(¢ — B, H) # 0 impliesa —B ¢ R.
PROOF. (&, n;’ ) is an orthogonal symmetric Lie algebra
& [T, @PTTcnf
< [Ad(exp(—H))Se, Ad(exp(—H))Sgl C ¢ (o, B € Ry \ RY)
% cos{a, H) sin(B, H)[Sqy, Tg] + sin{a, H) cos(B, H)[Ty, Sg] = 0.
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From Lemma 1.1, we have

cos{a, H) sin(B, H)[Sa, Tl + sin{a, H) cos(B, H)[Ty, Sg]

= J;__l cos(B, H) sin{e, H)([Xa, Xg] — [X—a, X—p] — [X—o, Xp] + [Xa, X—p])
+ J? cos(a, H) sin(B, H)([Xg, Xa] — [X—pg, X_o] — [X_p, Xa] + [Xp, X—a])
= J? sin(e + B, H)([Xa, Xp] — [X—a, X))
+ Jf sin{fe — B, H)([Xa, X—p] — [X—a, Xg)) .

Hence we get

(&, ng) is an orthogonal symmetric Lie algebra

sin{e + B, H)[Xq, X1 =0, S,
[Siﬂ(a—ﬁ, H)[Xa,X—ﬂ] =0 (a’ﬁ € R+\R+).

By a similar argument in the proof of Lemma 3.3, we have
(&, ng) is an orthogonal symmetric Lie algebra

@+ B, H #n=>a+p &Ry,

>3 DA
(@ — B, H)#0=>a—B ¢R (@, B € Ry \RY).

<

LEMMA 4.6. The condition (2) in Theorem 4.2 holds if and only if one of the following
conditions holds.
[l H=@/)H ea (ni =2),
[iify H=nxH;€a ni=10<x<1),
iy H=mn@xH +(1—-x)Hj)ea (ni=nj=1,0<x<1).

Moreover these are equivalent to the following conditions.

® H = (% /2)H; (m; =2),
(iiy H =nxH; m;i=1,0<x<1),
(i) H=nrnxHi+(1-x)Hj) (mi=mj=10<x<1).

PROOF. First we prove that (&, n’,? ) is an orthogonal symmetric Lie algebra if and only
if H is one of [i], [ii} and [iii]’. It is clear that if H is one of [i], [ii]’ and [iii]’, then (&, n’,? ) is
an orthogonal symmetric Lie algebra. Hence we prove the converse.

We can write

r
H=y1ﬁ1+“‘+)’rﬁrs yi=0, Zni}’i <m.
i=1

Assume that ag is not in R (i.e., (o, H) < 7). Put

y=ai+ e e Ry,
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then O < (y, H) < wifand only if y ¢ R4. If R # A,, thenap — ¥ € R4. So by Lemma
4.5, we have

(@o —y, H) =0,
which implies that

ni#l=y =0. .
The above relation holds even if R is of type A,. If y;, y i >0G # j), by Proposition 2.1
there exist «, 8 € R such that

r r
a=Zakak, ﬁ=2bkakek+, a>1, b;j>1, a+ﬂ€1§+.
k=1 k=1

We have
O<(a+B,H) <(x,H) <m,
which contradicts Lemma 4.5. Hence we get [ii] H = xﬁ,- ni=1,0<x <1).
Next we assume g € R% (i.e., (ag, H) = 7).
In the case when H = x H;. If n; = 1 then K Exp H is a single point {o}. If n; = 2, then
[i] holds. If n; > 3, then by Proposition 2.4 there exists « € R such that

,
a=2akak, a =1, cx+ai€1§+.
k=1

Then
a, 0 ¢ RS, (a+a;, H) <(a, H)=m,
which is a contradiction.
In the case when H = y; H; + y j H j» by Proposition 2.1 there exist «, B € R such that

r r
a:Zakak, ﬂ:Zbkak, a =1, bj=1, a'-l-ﬂEI.é_‘_.
k=1 k=1

Then by Lemma 4.5, we have
' (@ + B, H) =7 = (ag, H) .

Hence we get n; = nj = 1 ([iii]’).

In the case when y;, yj, yx > 0. By changing the indices i, j and k, we can suppose ai
does not lie between «; and «; in the Dynkin diagram. Let o’ be the sum of all simple roots
which lie between «; and o in the Dynkin diagram. Put @ = «; + o/, 8 = «;, then we have
@, B ¢ R4 and

a+BeRt, (@a+p H) <(aH=m,
which is a contradiction.

Hence we have (¢, ng ) is an orthogonal symmetric Lie algebra if and only if H is one of
[il, [ii]’ and [iii)'.

We will show that H is one of (i), (ii)’ and (iii)’ if and only if H is one of [i], [ii]’ and
[iii)’ using the following theorem.
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THEOREM 4.7 ([11, Chap. 11, §5]). Renumbering «; if necessary, let

ai, e , Ok, ?k+l,"',al, al+1,"‘,amj’
F = ¢ ¢ a b
Qp(1), = > %p(k)

Here a; < opy means that o; and ap(;) are transformed each other by Satake involution.
Then the dual system {H; }1<i<i of
Al =0, 0, A = Qg |
F = { 1 1 k= Qg }

Al = Okl = Qkyl, - M =0 =0
is given by

H =H+Hyy (1<i<k),

Hi=H k+1=<j<D.

(i) If H = (x/2)H; (m; = 2), then K Exp H is a totally geodesic submanifold in M.
Hence by Lemma 4.4, H is one of [i], [ii] and [iii]. Since {ao, H) = (6, H) = n, H is [i] or
[iii].

(i)Y IfH = nxH; (m; = 1,0 < x < 1), then K Exp(w/2)H; is a totally geodesic
submanifold in M. Since (g, (7/2)H;) < 7, (w/2)H; = (n/2)I:Is for some s with ng = 1.
Hence H is [ii].

(iily IfH =n(xH; + (1 —x)Hj) (mi =m; =1,0 < x < 1), the above argument
implies that H; = I:Is, Hj = fI, for some s, t with ny = n, = 1. Hence H is [iii]’.

] IfH = (Jt/2)1§,- € a (n; = 2), then K Exp H is a totally geodesic submanifold in
M. Since (ag, H) = 7, H is (i) or (iii)’.

[ IfH = nxH; €a (ni = 1,0 < x < 1), then a similar argument in (ii)’ implies
that H; = H, for some s with mg = 1. H is (ii)’.

[iii]] In the case when H = r(xH; + (1 — x)I:Ij) cani=n;j=10<x<1).If
ﬁi € a, which is equivalent to H ;i € a,then a similar argument in (ii) implies ﬁ,- = Hj, H =
H; for some s,t with mgy = m, = 1. Hence H is (iii)’. So we assume that H; ¢ a, which
is equivalent to H ;i ¢ a. From the lemma below, we have [iii] H = (7 /2)I-I,- + (T /Z)ﬁ p(i)-
Hence H is (i).

Hence we complete the proof of Lemma 4.6.

LEMMA 4.8. For H;, ﬁj ¢a( < j)andx,y # 0, the condition H = xH; +yﬁj €
a implies j = p(i), x = y.

PROOF. Since H;, H j ¢ a, we have o;, aj ¢ a by Theorem 4.7. Since {(;, H) = x #
0 and H is in a, we have «; ¢ b. Similarly we have a; ¢ b. Hence we have

l’]e{l”k’p(l)’sp(k)}'

We write

HS=YS+ZS (YsEa’ZsEBaSe{1,"‘,k,p(1)9"’,p(k)})-
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Since {H)} span t, {Z1, - -+, Zk, Zi41, - - -, Zm} span b. On the other hand, dimb = dim t —
dima =k +m —1I. Hence {Z;, ---, Zx, Z;11, - - -, Z;n} is a basis of b. Therefore we get the
assertion.

LEMMA 4.9. The condition (3) in Theorem 4.2 holds if and only if sin{«a, H) is a
constant for « € R \Rj‘_.

PROOF. The Riemannian metrics g» and g; are proportional if and only if there exists
a positive constant ¢ such that

(X,Y) =c(¥X,¥Y) for X,Yemit.
Since ¥, Sy = — sin{e, H)T,, this condition is equivalent to
sin{a, H) = constant (x € R, \ﬁf_) .

If H is one of (i)—(viii) in Theorem 4.2, then it is clear that g, and g; are proportional by
Lemma 4.9. To show the converse, take an admissible subset A such that H is in Q4.
(I) Inthe case when (5, H) < 7.

) k
H=xH,~+ - -+x;;H;,, xii>0(01=<s<k), Zm,-sxis <.
s=1

In the case when (A, H) = constant € (0, 7) (A € R4 \ R4). We have

k
xip= (i, HY= (8, H) =) mix,, (1<s<k),
s=1

which implies that (ii) H =#xH; (m; = 1,0 < x < 1).
In the case when

Ry\RA=AUB, A B#0, n—(A,H):(B,H):cG(O,%).

Since § € A, we have
k

c=m—(8,Hy=m—) mx,.
s=1

If there exists a restricted simple root A;, such that A;_ € A, then
c=nm—(Ai,, HY=m —x;, .
Hence (ii) H = wnxH; (m; = 1,0 < x < 1). Hence we assume that {};, - o, A} C B.
c=Ai,,H)y=x;;, (1<s=<k).

From Proposition 2.3, there exist a simple root A;, with0 < (A;,, H) < wand ' € a
with (u/, H) = 0 such that

p=8—X, —u € Ry .
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Since 0 < {(u, H) < (8, H), we have u € B. Hence
k

c=<u,H>=c(Zm,~,—1),

s=1

which implies that
k
Z mi,=2, c= i .
3
s=1
Hence we have
(ivy H=@x/3)H; (m; =2) or

(vi)) H=(u/3)(Hi+Hj) (mi=m;=1).
(II) In the case when (§, H) = m. We can write

k
H=x,‘1Hil+"'+xikHik9 xis>0(15s5k)’ Zmis-xis=7t~
s=1

In the case when (A, H) = ¢ (A € Ry \ R%). We have
c=(i,,H)=xi;,, (1=<s5<k).
From Proposition 2.3, there exist a simple root A;, with 0 < (A;,, H) < 7 and uw ea
with (u’, H) = 0 such that
[L=8—)\.i‘—M,€R+.

If (u, H) = 0, then (A;, H) = 0 and K Exp H is a single point {o}. Hence we may assume
uw € Ry \’R,_A,_. Then

k
c=(pL,H)=c(Zm,'s—1):(6,H)——c=7t—c,

s=1

which implies that
k
(4
Cc = E , szzl mi, = 2.

(i) H=(@/2)H; (m; =2) or
(i) H=@/2)(H;+Hj) (mi=mj=1).
In the case when

Ri\RA=AUB, A B#0, n—(A,H):(B,H):ce(o,%).

Hence we have

Since
w—c (A;. €A),
we may put

H=c(Hj+---+Hj)+ @ —c)Hj,, ++Hj).
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Since B # @, we have p > 0. Since (8, H) = 7, we have
w—c= (3, H)

k
= Z mjs'xjs
s=1

P k
=Cijs + (T —o¢) Z mj, ,
s=1

s=p+1

which implies that H is (iii)’ or

H=c(Hjl+---+ij), mj1+---+mjp>2.

Ifmj +---+mj, =3, then

n = (8, H) =3c, c=%
and
(v) H=(n/3)H, (m; =3),
(m,-=1,mj=2) or

~vi)  H = (n/3)(H; + Hj)
“vil) H = (u/3)(Hi + Hj + H) (mi=m; =my =1).

Ifmjy+.--+m j» = m > 3, then by Proposition 2.3 there exist A, u, v € R such that

(A,Hy=c, (u,H)=2c, (v,H)=3c.

Since (8, H) = mc = 7, we have A, u, v € R \ R4, which contradicts the assumption.
For X € &, we define a Killing vector field X* on K/N 11(1 by

exp(tX)kNH .
t=0
We also denote by the same symbol X+ the corresponding vector field on K Exp H.

d
(X+)kN}(’I = E

LEMMA 4.10. For X €&,
(Vx+XNexp = the (Ad(exp(— H))€)m-component of
— [(Ad(exp(—H))X)m, (Ad(exp(—H))X)e],

(Dx*X*)O, = —[X(ng)l, anlg] .
LEMMA 4.11. The condition (4) in Theorem 4.2 holds if and only if for a, B € f(’+ \
Rﬁ the condition sin{a + B, H) sin{a — B, H) # 0 implies o« &+ 8 ¢ R.
PROOF. From Lemma 4.10, we have

V=D & for X € (ni)+,
Ad(exp H)[(Ad(exp(— H)) X)m, (Ad(exp(—H))X)¢] C m.

This condition is equivalent to the following condition:
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For X,Y € (n¥)*,

Ad(exp H){[(Ad(exp(—H))X)m, (Ad(exp(—H))Y)e]
+ [(Ad(exp(—H))Y)m, (Ad(exp(—H))X)e]} C m.

Using (4.2), we have

V =D & (sin?(B, H) cos?(a, H) — sin®(a, H) cos® B, H)[Sy, Sg] =0
& sinfo + B, H) sin{a — B, H)[Sy, Sg1 =0 (o, B € R4+ \RY).
By a similar argument in the proof of Lemma 3.3, we have the assertion.

It is clear that if g, and g; are proportional then V = D. In order to show the converse,
we prove the following lemma.

LEMMA 4.12. Foranya, B € R \’I@fL (x # B), there exists a sequence {y; }1<i<k of
roots such that

a=y.v, =B vieRi\RY,
Vici+v €R or yici—vieR (1<i<k).

PROOF. We define an equivalence relation ~ on Ry \ ’f;’,ﬁ as follows: For o, B €
R4 \ R4, a ~ B if and only if one of the following two conditions holds.

=248,
There exists a sequence Yo = &, Y1, -+, ¥k = B in I§+\7§,ﬁ
suchthaty,_1+y¥: € R or yi-1—vi€R (1 =<i=<k).

Fora € Ry \ 7~2£, we denote by C(«) the equivalence class of a. There exists a simple
root o; € F such that a; € §+ \ ’ﬁfr. If C(a;) # C(«), then spanC(¢;)LspanC(a). On
the other hand, since the Dynkin diagram of R is connected, spanC(e;) = t. Hence we get
C(ai) = Ry \ R%. Therefore we get the assertion.

We show that if V = D then g; and g, are proportional. For o, 8 € §+ \ ﬁfr (a # B),
take a sequence {y;} as in Lemma 4.12. Since V = D, we have

sin{y;—1 + yi, H)sin{yi—1 — yi, H) =0,
which implies that
sin{a, H) = sin(yg, H) = - - - = sin{yk, H) = sin(f, H) .

Thus we complete the proof of Theorem 4.2 when M is of type 1.
When M = L is of type II, we use the same notation as in §3. For H € t(I) with
0 < (H/2, Ié.,.([)) < m, we consider the submanifold exp(Ad(L)H) C L. By a similar
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argument above we have the following

exp(Ad(L)H) C L is a totally geodesic submanifold
& sin(H/2,a) € {0,1} for « e Ry(l)
() H/2=(7/2)H; (m; =2),
& (1G) H/2=(7/2)H; (mi =1),
(ii)) H/2=(w/2)(H; +H;) (mi=m;=1).
We define a closed subgroup ZZXP Hof L by

Z7®" —taeLlaexpHa ' =expH}.

We denote by 3?‘13 7 the Lie algebra of Z;Xp 7

The pair (1, 35 7) is an orthogonal symmetric Lie algebra

& fora, B e Ro() withO < (a, H/2), (8, H/2) < T,

[<a+ﬂ,H/2> #r=>a+p¢RQD,
(0~ B, H/2) #0= a—p ¢ RO

@) H/2 = (/2)H; (m; =2),
< {G) H/2=nxH; mi=1,0<x<1),
(i)’ H/2 =n(xH; + (1 —x)Hj) (mi=m;=1,0<x <1).

The Riemannian metrics g, and g; are proportional

& sin(a, H/2) = constant for a € R..(1) with 0 < (o, H/2) < 7.

[ (i) (i), (iii) or,
(ivy, H/2=(x/3)H; (m; =2),
g [0 H/2 = (7/3)H; (m; =3),
(viy H/2= (w/3)(H; + Hj) (mi=1,mj; =2),
(vil) H/2 = (7w/3)(H; + Hj) mi=m;=1),
| (vill) H/2=(x/3)(H;+Hj+Hy) (mi=mj=m=1).

V =D ofora, B € Ry () with O < (a, H/2), (8, H/2) < 7,
sin{ + B, H/2)sin{a — B, H/2) #0=>a + 8 ¢ R(l)
< g, and g; are proportional .
Thus the Theorem 4.2 is proved.

COROLLARY 4.13. When M is an adjoint space (see [3, p. 327] for the definition),
then Kp (p € M) is a totally geodesic submanifold in M if and only if Kp = Mt (p), i.e., p
is a fixed point of the geodesic symmetry s, at o.

PROOF. Put

I'G,K)={H €a|expH € K}.
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Then p = Exp H (H € Q) is fixed by s, if and only if 2H € I'(G, K). When M is an adjoint
space, then

'G,Ky={Heua|(H,R) CZ}.
Hence we get the assertion.
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