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In the seminal paper of Gamarnik and Zeevi [17], the authors jus-
tify the steady-state diffusion approximation of a generalized Jackson
network (GJN) in heavy traffic. Their approach involves the so-called
limit interchange argument, which has since become a popular tool
employed by many others who study diffusion approximations. In
this paper we illustrate a novel approach by using it to justify the
steady-state approximation of a GJN in heavy traffic. Our approach
involves working directly with the basic adjoint relationship (BAR),
an integral equation that characterizes the stationary distribution of
a Markov process. As we will show, the BAR approach is a more nat-
ural choice than the limit interchange approach for justifying steady-
state approximations, and can potentially be applied to the study
of other stochastic processing networks such as multiclass queueing
networks.

1. Introduction. This paper considers open single-class queueing net-
works that have d service stations. Each station has a single server operating
under the first-in-first-out (FIFO) service discipline. Upon completing ser-
vice at a particular station, customers are either routed to another station, or
exit the network. There is a single class of customers at each station, meaning
that all customers are homogenous in terms of service times and routing.
A customer entering the network will exit in finite time with probability
one, hence the term open network. For each station, the external interar-
rival times (possibly null), service times, and routing decisions are assumed
to follow three separate i.i.d. sequences of random variables; the three se-
quences are assumed to be independent. Furthermore, the interarrival times,
service times and routing decisions are assumed to be independent between
different stations. Such a network is hereafter referred to as a generalized
Jackson network (GJN).
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In a seminal paper, Gamarnik and Zeevi [17] proved that for a sequence
of GJNs indexed by n = 1, 2, . . .,

(1.1) rnL
(n)(∞) ⇒ Z(∞) as n → ∞,

where the symbol ⇒ denotes convergence in distribution, {rn} is a sequence
of positive numbers that converge to zero, L(n)(∞) is a random vector whose
ith component represents the steady-state number of customers at station
i in the nth network, and Z(∞) is a random vector that has the stationary
distribution of a certain d-dimensional semimartingale reflecting Brownian
motion (SRBM) Z = {Z(t), t ≥ 0} that was first defined in [21]. Readers
are referred to the introduction of [17] for the importat motivation of this
problem, and a review of then recent literature. Gamarnik and Zeevi [17]
proved (1.1) under two key conditions: (a) the heavy traffic condition, and
(b) the exponential moment condition.

Condition (a) is standard and can be expressed in terms of a d-dimensional

vector ρ(n), where ρ
(n)
i is the traffic intensity at station i in the nth network.

This condition requires that ρ
(n)
i < 1 at each station i, and ρ

(n)
i → 1 as

n → ∞. The scaling parameter rn in (1.1) is closely tied to this heavy traffic

condition and describes how quickly each ρ
(n)
i converges to one. In particular,

rn goes to zero at the same rate as 1−ρ
(n)
i . Namely, limn→∞(1−ρ

(n)
i )/rn > 0

exists for each station i. Condition (b) requires that interarrival and service
times have finite exponential moments; such a condition is unnecessarily
strong. In a follow up work by Budhiraja and Lee [7], this condition is relaxed
to a new moment condition: (b’) interarrival and service times have finite
second moments, and the sequences (indexed by n) of square interarrival
and square service times are uniformly integrable. Conditions (a) and (b’)
in [7] represent the weakest possible conditions for (1.1) to hold.

In this paper, we prove (1.1) under conditions (a) and (b’); see Theo-
rem 2.1 in Section 2.4. Our proof of (1.1) uses a novel approach, and is
drastically different from the ones in [7] and [17]. This approach was used
in [28] to study the steady-state approximation of a single server queue in
heavy traffic. However, ours is the first paper to apply it to the network
setting. In addition to proving Theorem 2.1, the ideas laid out in this pa-
per can be applied to study steady-state diffusion approximations of other
systems of interest. One promising direction for future work is to generalize
this approach to study multiclass queuing networks, such as those studied
by Bramson and Dai [4]. We now outline the approach.

For θ ∈ R
d with θ ≤ 0, let ϕ(n)(θ) be the moment generating function

(MGF) of Z(n)(∞) = rnL
(n)(∞), defined in (4.1). To prove (1.1), we show
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that ϕ(n)(θ) converges to ϕ(θ), the MGF of Z(∞). To do so, it suffices to
prove that the pointwise limit of any convergent subsequence {ϕ(nk), k ≥ 1}
must be ϕ(θ), i.e.

(1.2) lim
k→∞

ϕ(nk)(θ) = ϕ(θ) for each θ ∈ R
d with θ ≤ 0.

Also associated with Z(∞) are boundary MGFs ϕj(θ) (j = 1, . . . , d), defined
in (2.26). By a uniqueness result in [13], we know that ϕ(θ) and its bound-
ary counterparts are characterized by a basic adjoint relationship (BAR)
given in (2.30). We know that ϕ(nk)(θ) also has associated boundary MGFs

ϕ
(nk)
j (θ) (j = 1, . . . , d) that are defined in (4.1). To prove (1.2), we show

in Proposition 4.1 that ϕ(nk)(θ) and its boundary counterparts satisfy BAR
(2.30) asymptotically. Namely, the limits ϕ∗(θ) = limk→∞ ϕ(nk)(θ), along

with ϕ∗
j (θ) = limk→∞ ϕ

(nk)
j (θ), satisfy BAR (2.30) exactly. On its own, this

result does not yet imply that ϕ∗(θ) = ϕ(θ).
Apriori, we cannot exclude the possibility that ϕ∗(θ) may be degenerate,

i.e. be the MGF of some nonnegative measure on R
d that has total mass

strictly less than 1 (or possibly 0). To invoke the uniquness result in [13]
and conclude that ϕ∗(θ) = ϕ(θ), we must also prove that ϕ∗(θ) is the MGF
of some probability measure, i.e. that it is not degenerate. For example,
ϕ∗(θ) ≡ 0 and ϕ∗

j (θ) ≡ 0 clearly satisfy BAR (2.30), but ϕ(θ) 	= 0. To this
point, we show that

(1.3) lim
θ↑0

ϕ∗(θ) = 1,

which implies that the sequence of probability measures corresponding to
{ϕ(nk), k ≥ 1} is tight; see Lemma 6.1. It turns out that condition (1.3) can
be verified algebraically from the fact that ϕ∗(θ) and ϕ∗

j (θ) (j = 1, . . . , d)
satisfy BAR (2.30). Most of the steps in this algebraic procedure are car-
ried out in Proposition 5.1. Once we have this proposition, showing (1.3)
becomes straightforward; see for instance, the proof of (6.3). The proof of
Proposition 5.1 requires that the reflection matrix of the SRBM be an M-
matrix. An M-matrix is an invertible square matrix whose diagonal entries
are non-negative, and off diagonal entries are non-positive [2, Chapter 6].
This condition is always satisfied in the GJN setting, because the reflection
matrix of the SRBM has the form (I − P t), where P routing matrix of the
GJN.

The procedure of considering a sequence ϕ(nk)(θ) → ϕ∗(θ) (and ϕ
(nk)
j (θ) →

ϕ∗
j (θ)), and then verifying (1.3) looks like an application of Lévy’s conver-

gence theorem [37, Section 18.1], with one key difference. Lévy’s result says
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that if a sequence of characteristic functions (CF) converges, and the limit
is continuous at zero, then the corresponding sequence of probability mea-
sures converges weakly to a limiting probability measure. Our use of MGFs
in this paper, instead of CFs, is not accidental. Applying Lévy’s theorem re-
quires knowing apriori that the sequence (or at least a subsequence) of CFs
converges, and for a complicated model like a GJN this is nigh impossible
to verify. In contrast, MGFs are monotone functions, and any sequence of
MGFs always has a convergent subsequence due to Helly’s selection principle
[10, Theorem 4.3.3].

To prove Proposition 4.1 (that ϕ(nk)(θ) and its boundary counterparts
satisfy BAR (2.30) asymptotically), we work with a continuous time Markov
process X(n) = {X(n)(t), t ≥ 0} that describes the dynamics of the nth GJN.
In addition to the queue length process L(n) = {L(n)(t), t ≥ 0}, this Markov
process also keeps track of the remaining interarrival times and remaining
service times at all stations. Although L(n) is a jump process taking values
� in Z

d
+, the other component of X(n) is a piecewise deterministic process

taking values (u, v) in R
2d
+ . Nevertheless, the stationary distribution of X(n)

satisfies a BAR (3.15) for all “good” test functions f(�, u, v). The BAR for
X(n) has two components. The first component involves the deterministic
process and the second involves the jump process; the latter is generally
difficult to analyze. To handle this difficulty, we choose f(�, u, v) to be an
exponential function of the state variable (�, u, v) of the form

f(�, u, v) = e〈θ,�〉+〈η,u〉+〈ζ,v〉,(1.4)

where (θ, η, ζ) ∈ R
3d are parameters and 〈·, ·〉 is the Euclidean inner prod-

uct (we actually use truncated versions of these functions to accommodate
general interarrival and service time distributions, which may not have expo-
nential moments, see (3.21)). By judiciously choosing η = η(θ) and ζ = ζ(θ)
as functions of θ ∈ R

d, we eliminate the jump term of the BAR (3.15),
leaving us with the jump free BAR (3.26). To obtain Proposition 4.1 from
this jumpless BAR (3.26), we perform Taylor expansion on η(θ) and ζ(θ)
to obtain their quadratic approximations (Lemma 4.1), and establish corre-
sponding error bounds (Lemma 4.2).

Both [7] and [17] focused on proving the tightness of {rnL(n)(∞), n ≥ 1}
by ingenuously constructing appropriate Lyapunov functions. Both papers
rely on the Lipschitz continuity of the Skorohod map corresponding to the
SRBM for their tightness argument. Such a map does not exist in the mul-
ticlass queueing network setting, which makes the generalization of results
from [7] and [17] to the multiclass setting difficult. Gurvich [19] is the only
paper that provides a sufficient condition for proving (1.1) in the multiclass



STEADY-STATE HEAVY TRAFFIC APPROXIMATION: BAR APPROACH 147

setting. In addition to the strong exponential moment assumption, [19] as-
sumes a strong state space collapse (SSC) condition: (c) fluid solutions of a
critically loaded fluid model converge to their equilibria at a “uniform linear
rate” in finite time. Gurvich [19] focused on generalizing the approach in
[17]. In particular, he retained the strong exponential moment assumption.
In a recent paper, Ye and Yao [38] focused on generalizing the approach in
[7] to resource-sharing networks that lie outside of the multiclass queueing
network setting. Using a multiclass queueing network example, in Section 5
of [38], the authors outline the steps needed for generalizing their approach
to the multiclass queueing network setting. The authors are able to keep the
weak moment condition (b’), relaxing condition (c) to condition (c’): fluid
solutions converge to their equilibria “uniformly fast”, but not necessarily in
finite time. However, they imposed a strong “bounded workload condition”,
which is difficult to check in general.

The approach of Gamarnik and Zeevi [17] is known as the limit in-
terchange argument, and has since been used by others to study steady-
state approximations of various queueing systems. In the single server set-
ting, Katsuda [25] studied a multiclass single server queue with feedback,
and Zhang and Zwart [39] studied a limited processor sharing queue. In
the many-server setting, Tezcan [36] considered a parallel-server system
with multiple server pools and no customer abandonment, Gamarnik and
Stolyar [16] examined a multiclass, many-server queue with abandonment,
where customer service and patience times are exponentially distributed
with means varying between different customer classes, and Dai et al. [12]
considered a many-server queue with abandonment, where service times fol-
low a phase-type distribution. In recent years, several papers [5, 6, 18, 20, 23]
have gone beyond limit theorems, and establish rates of convergence to the
approximating distribution. The framework underlying those papers (except
for [20]) is known as Stein’s method [35, 9, 32].

The limit interchange and Stein method frameworks represent the two
general approaches used to establish convergence of steady-state distribu-
tions. Our paper adds a third approach to this set. Each approach has its
own pros and cons. The Stein approach is able to provide rates of conver-
gence, which is a step beyond just convergence, but this comes at a cost.
Successfully applying it requires deeper knowledge about the underlying sys-
tem than either the limit interchange approach, or the one presented in this
paper. In particular, Stein’s method has not been applied to queueing net-
works and has so far been limited to systems with a single station. The limit
interchange approach has been the prominent method in the past decade. At
its core, it requires the use of a Lyapunov function to prove tightness. How-
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ever, each stochastic system requires a separate Lyapunov function. Finding
one is typically very difficult and can be considered an art. In contrast, the
method in this paper is algorithmic in nature, and requires no guesswork
to find any Lyapunov function. For instance, there is little wiggle room in
choosing the exponential test function in (1.4), and our tightness argument
in Section 5 is algebraic and “procedural”. In terms of generality of our
method, multiclass queueing networks do add an extra layer of difficulty to
our approach. Namely, the presence of SSC in those networks and the fact
that the reflection matrix of the SRBM no longer has to be an M-matrix. It
is the subject of ongoing research to extend our approach to the multiclass
setting.

The rest of the paper is structured as follows. In Section 2, we introduce
the sequence of GJNs, the heavy traffic condition, describe the approximat-
ing SRBM, and state our main results. In Section 3, we derive the BAR
(3.15) for each GJN in the sequence, and introduce conditions on test func-
tions under which the jump term there disappears. Section 4 is devoted to
proving Proposition 4.1, which states that the MGFs of the queue lengths
of the GJN approximately satisfy the BAR of the SRBM. In Section 5 we
present Proposition 5.1, which we use together with Proposition 4.1 to prove
our main result, Theorem 2.1, in Section 6. We defer proofs of certain tech-
nical lemmas to the Appendix.

1.1. Notation. All random variables and stochastic processes are defined
on a common probability space (Ω,F ,P), and all stochastic processes X =
{X(t), t ≥ 0} are assumed to be right continuous on [0,∞), and having
left limits on (0,∞). For a sequence of random variables {Yn, n ≥ 1} and
a random variable Y , we write Yn ⇒ Y if Yn converge in distribution to
Y . For an integer d ≥ 1, Rd denotes the d-dimensional Euclidean space,
and Z

d
+ and R

d
+ denote the spaces of d-dimensional vectors whose elements

are non-negative integers and non-negative real numbers, respectively. For
vectors x, y ∈ R

d, we write xi to denote the ith component of x, 1 ≤ i ≤ d.
Furthermore, we write x ≤ y if xi ≤ yi for all i = 1, ..., d and we let 〈x, y〉
be their Euclidean inner product. All vectors are understood to be column
vectors. A function f : Rd → R is said to be non-decreasing if x ≤ y implies
f(x) ≤ f(y). For a vector x ∈ R

d, define the sup-norm ||x||∞ = supi|xi|.
For integers a, b with a > b, we define

∑b
i=a = 0. For integers i, j, we let

δij be the Kronecker delta; i.e. δij = 1 if i = j, and zero otherwise. We let
xT and AT denote the transpose of a vector x and matrix A, respectively.
We reserve I for the identity matrix, e for the vector of all ones and e(i)

for the vector that has a one in the ith element and zeroes elsewhere; the



STEADY-STATE HEAVY TRAFFIC APPROXIMATION: BAR APPROACH 149

dimensions of these vectors will be clear from the context.

2. Heavy traffic approximation. In this section, we introduce the
generalized Jackson network and state the main results of this paper.

2.1. Network description. To be able to state our main results, we first
introduce a generalized Jackson network, and define a Markov process that
describes it. This network has d stations, numbered 1, 2, . . . , d. Let J =
{1, 2, . . . , d}. Each station has a single server that serves customers in the
first-in-first-out (FIFO) manner. A station may have customers arriving from
outside the network; we refer to such arrivals as external arrivals. A customer
who completes service at a station either goes to another station or leaves
the network. The following is a mathematical description of a GJN.

Let E be the subset of J whose members are the stations that have
external arrivals. External arrivals at station i ∈ E follow a renewal process
with i.i.d. interarrival times

{Te,i(m), m = 1, 2, . . . , },(2.1)

and we let Te,i be a nonnegative random variable having the distribution of
the interarrival times. We assume that Te,i has finite variance and a non-zero
mean. External arrivals at different stations are independent.

Service times at station i are i.i.d. random variables

{Ts,i(m), m = 1, 2, . . . , },(2.2)

and we let Ts,i be a nonnegative random variable having the distribution
of the service times. We assume that Ts,i has finite variance and a non-
zero mean. Service times at different stations are independent. Service time
sequences and external interarrival time sequences are assumed to be inde-
pendent.

A customer that completes service at station i ∈ J goes to station j ∈ J
with probability pij or exits the network with probability pi0 = 1−

∑
j∈J pij ,

independently of everything else. Let P be the d × d square matrix whose
(i, j)th entry is pij for i, j ∈ J .

This queueing network is referred to as a generalized Jackson network
(GJN). We now introduce a Markov process for describing the GJN. For
time t ≥ 0, denote the number of customers, the residual external arrival
time, and the residual service time at station i ∈ J by Li(t), Re,i(t) and
Rs,i(t), respectively. We set Re,i(t) = 0 for i ∈ J \ E , and Rs,i(t) = Ts,i(m)
if no customer is in service at station i at time t, and the service time of the
next customer at station i is Ts,i(m). In Section 2.1 of [11] and Section 2.1.1
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of [7], Rs,i(t) is defined to be zero if no customer is in service at time t. Our
definition will make it slightly easier to derive condition (3.19) in Section 3.1
to annihilate the jump term in (3.15) there.

Denote the vectors whose entries are Li(t), Re,i(t) and Rs,i(t) by L(t),
Re(t) and Rs(t), respectively. Throughout the paper we refer to {L(t), t ≥ 0}
as the queue length process (even though it includes customers currently in
service as well). Let X(t) = (L(t), Re(t), Rs(t)), then X = {X(t), t ≥ 0} is a
Markov process with state space Z

d
+ × R

2d
+ .

The GJN is a natural generalization of the Jackson network, but its sta-
tionary distribution is hard to get. This motivates the study of heavy traffic
approximations in [30] and [24]. To introduce the notation of heavy traffic,
we introduce a sequence of generalized Jackson networks in the next section.

2.2. A sequence of networks and their assumptions. Consider a sequence
of GJNs indexed by n = 1, 2, . . .. We denote the nth GJN by superscript
(n). For example, X(t), L(t), Re(t), Rs(t) are denoted by X(n)(t), L(n)(t),

R
(n)
e (t), R

(n)
s (t), respectively. We assume the routing matrix P = (pij) is

independent of n. The networks are assumed to be open, i.e., the matrix
(I − P ) is invertible; the inverse is given by

(2.3) (I − P )−1 = I + P + P 2 + . . . .

For i ∈ E , we denote the mean and variance of T
(n)
e,i by 1/λ

(n)
e,i and (σ

(n)
e,i )

2,
respectively. For notational simplicity, we adopt the conventions that λe,i = 0

and (σ
(n)
e,i )

2 = 0 for i ∈ J \ E . Similarly, for j ∈ J , we denote the mean and

variance of T
(n)
s,j by 1/λ

(n)
s,j and (σ

(n)
s,j )

2, respectively. Let λ
(n)
a,i for i ∈ J be

the solution of the traffic equation:

λ
(n)
a,i = λ

(n)
e,i +

∑
j∈J

λ
(n)
a,j pji, i ∈ J .

Then λ
(n)
a,i can be interpreted as the total arrival rate at station i. The traffic

equation can be written as the vector valued equation:

(2.4) λ(n)
a = λ(n)

e + P tλ(n)
a ,

where P t is the transpose of P . Equation (2.4) has a unique solution given

by λ
(n)
a = (I − P t)−1λ

(n)
e .

We assume the following heavy traffic conditions: there exists a positive
vector b ∈ R

d
+, and a sequence of positive numbers rn such that

λ(n)
s − λ(n)

a = b rn, n ≥ 1,(2.5)
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lim
n→∞

rn = 0.(2.6)

It will be convenient to express condition (2.5) in terms of the primitive data

λ
(n)
e and λ

(n)
s . For this, we substitute λ

(n)
a = λ

(n)
s − b rn into both sides of

(2.4) to get

λ(n)
s − λ(n)

e − PTλ(n)
s = rnRb,(2.7)

where

(2.8) R = I − PT.

Note that rn is chosen to be 1/
√
n in [30] and much of the literature as well,

but it is intuitively clear that this is not essential as long as (2.5) holds and
rn converges to zero as n → ∞. For example, some authors take rn = 1/n
(see, e.g., [8]). In this paper, we do not make any specific choice for rn;
this conveys the same spirit of Kingman [26]’s heavy traffic approximation
(see [28] for details). We make the following moment assumptions on the
sequence of networks:

σ
(n)
e,i → σe,i < ∞, λ

(n)
e,i → λe,i > 0 for each i ∈ E ,(2.9)

σ
(n)
s,j → σs,j < ∞ for each j ∈ J .(2.10)

In addition, we assume{(
T
(n)
e,i

)2
, n ≥ 1

}
is uniformly integrable for each i ∈ E ,(2.11) {(

T
(n)
s,j

)2
, n ≥ 1

}
is uniformly integrable for each j ∈ J .(2.12)

Following traffic equation (2.4), conditions (2.5), (2.6), and (2.9) imply that

(2.13) λ
(n)
a,j → λa,j , and λ

(n)
s,j → λs,j = λa,j for j ∈ J ,

where λa = (I − P t)−1λe.
The diffusion approximation focuses on the sequence L(n) = {L(n)(t), t ≥

0}, which is the first component of X(n). Clearly, L(n) is not a Markov
process in general, but the standard approach in the literature (e.g. [24, 30])
shows that the diffusion-scaled process Z(n) = {Z(n)(t), t ≥ 0}, defined as

Z(n)(t) = rnL
(n)

(
t/r2n

)
, t ≥ 0,(2.14)

converges in distribution to a semimartingale reflecting Brownian motion
(SRBM) Z = {Z(t), t ≥ 0} (to be defined in Section 2.3). The heavy traffic
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assumptions (2.5) and (2.6) are crucial for the time and space scalings in
(2.14) to be correct.

We also assume that for each n,

(2.15) X(n) = {X(n)(t), t ≥ 0} is positive Harris recurrent.

This assumption is satisfied under heavy traffic condition (2.5) and some
additional regularity assumptions on the interarrival time distributions; see,
for example, Theorem 3.8 of Down and Meyn [15] and Theorem 5.1 of Dai
[11]. Since X(n) is positive Harris recurrent, it has a unique stationary dis-
tribution. We let X(n)(∞) be the vector having that stationary distribution.

SinceX(n) is assumed to have a stationary distribution, L(n) has a station-
ary distribution. We use L(n)(∞) and Z(n)(∞) to denote the random vectors
having the stationary distributions of L(n) and Z(n), respectively. Note that
the stationary distribution of Z(n) is independent of the time scaling in

(2.14) for each fixed n. Furthermore, it is clear that Z(n)(∞)
d
= rnL

(n)(∞).
For future reference, we use π(n) to denote the stationary distribution of
Z(n). As stated in (1.1), the primary result of this paper is to prove that
Z(n)(∞) ⇒ Z(∞), where Z(∞) has the stationary distribution of the SRBM
Z, which we now define.

2.3. Semimartingale reflecting Brownian motions and BAR. Recall the
matrix R, defined in (2.8), and set

μ = −Rb ∈ R
d,(2.16)

where b is given in (2.5). Let Σ = (Σij) be a d× d symmetric matrix given
by

Σij =
∑
k∈J

λs,k

[
pki(δij − pkj)(2.17)

+ λ2
s,kσ

2
s,k(pki − δki)(pkj − δkj)

]
+ λ3

e,iσ
2
e,iδij ,

where δij is the Kronecker delta, pij are the routing probabilities in the GJN,
and the quantities λe,i, σe,i, σs,i, and λs,i are given in (2.9), (2.10), and (2.13),
respectively. The matrix Σ is always non-negative definite. Throughout the
document, we assume that

(2.18) Σ is positive definite,

which is a standard assumption in both [17, 7]. Associated with the data
(μ,Σ, R) is Z = {Z(t), t ≥ 0}, a semimartingale reflecting Brownian motion
(SRBM) that satisfies

Z(t) = ξ(t) +RY (t), t ≥ 0,(2.19)
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ξ is a d-dimensional Brownian motion with drift μ(2.20)

and covariance matrix Σ,

Y (0) = 0, each component of Y is non-decreasing, and(2.21) ∫ ∞

0
Zj(t)dYj(t) = 0, j ∈ J .(2.22)

The matrix R is called the reflection matrix of Z. Recall that an M-matrix
is an invertible square matrix whose diagonal entries are non-negative, and
off diagonal entries are non-positive [2, Chapter 6]. Since R in (2.8) is an
M-matrix, it follows from [21] that the SRBM Z exists and is unique as a
strong solution to (2.19)–(2.22).

Again, because R is an M-matrix and condition

(2.23) R−1μ = −b < 0

is satisfied, it follows from [22] that the SRBM Z has a unique stationary
distribution π on (Rd

+,B(Rd
+)), where B(Rd

+) is the Borel field of Rd
+. We

now discuss the characterization of π.
Let Eπ denote the expectation when Z(0) has distribution π. For j ∈ J ,

define the boundary probability measure πj by

πj(B) =
1

Eπ[Yj(1)]
Eπ

[∫ 1

0
1(Z(t) ∈ B)dYj(t)

]
, B ∈ B(Rd

+).

We know that Eπ[Yj(1)] < ∞ by [22, Theorem 1]. Note that Yj(t) increases
only on the face

Fj = {x ∈ R
d
+ : xj = 0}, j ∈ J .

Therefore, πj concentrates on Fj , but we define it on R
d
+ for notational

simplicity.
The following lemma gives a characterization of the stationary distribu-

tion π and its associated boundary measures π1, . . ., πd.

Lemma 2.1. (a) The stationary distribution π and its associated bound-
ary measures π1, . . ., πd must satisfy the following basic adjoint relationship
(BAR) ∫

R
d
+

Gf(x)π(dx) +
∑
j∈J

Eπ[Yj(1)]

∫
R
d
+

〈∇f(x), R(j)〉πj(dx) = 0,(2.24)

for each f ∈ C2
b (R

d
+),
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where R(j) is the jth column of R, C2
b (R

d
+) is the set of functions f on R

d
+

such that f , its first order derivatives, and its second order derivatives are
bounded and continuous, and

(2.25) Gf(x) =
1

2

d∑
i,j=1

Σij
∂2f

∂xi∂xj
(x) +

d∑
j=1

μj
∂f

∂xj
(x).

(b) Conversely, assume that π, π1, . . ., πd are probability measures on R
d
+

satisfying BAR (2.24). Then π must be the stationary distribution of the
(μ,Σ, R)-SRBM, and π1, . . ., πd the corresponding boundary measures.

Proof. Part (a) follows from [22]. Part (b) follows from [13].

We denote the moment generating functions (MGFs) of π and πj by ϕ
and ϕj , respectively. Namely, for θ ∈ R

d with θ ≤ 0,

ϕ(θ) = Eπ[e
〈θ,Z(0)〉],(2.26)

ϕj(θ) =
1

Eπ[Yj(1)]
Eπ

[∫ 1

0
e〈θ,Z(t)〉dYj(t)

]
, j ∈ J .

We also define

γ(θ) =
1

2
〈θ,Σθ〉+ 〈−Rb, θ〉,(2.27)

γj(θ) = 〈R(j), θ〉, θ ∈ R
d, j ∈ J .

Plugging f(x) = e〈θ,x〉 into (2.24), the BAR (2.24) becomes

γ(θ)ϕ(θ) +

d∑
j=1

Eπ[Yj(1)]γj(θ)ϕj

(
θ
)
= 0,(2.28)

for each θ ∈ R
d with θ ≤ 0,

and we now use it to show that

(2.29) Eπ[Yj(1)] = bj , j ∈ J .

To do so, we let θ = αe(k), where α ≤ 0 is a real number and k ∈ J . Dividing
both sides of (2.28) by α and taking α ↑ 0, we obtain

−〈Rb, e(k)〉+
d∑

j=1

Eπ[Yj(1)]〈R(j), e(k)〉 =
d∑

j=1

(
Eπ[Yj(1)]− bj

)
rkj = 0
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for all k ∈ J , where rkj is the (k, j)th entry of R. In vector form, this is
equivalent to

R
(
Eπ[Y (1)]− b

)
= 0,

and since R is invertible, (2.29) follows. Therefore, (2.28) can be rewritten
in the more practical form

γ(θ)ϕ(θ) +
d∑

j=1

bjγj(θ)ϕj

(
θ
)
= 0, for each θ ∈ R

d with θ ≤ 0.(2.30)

We refer to this as the MGF version of the BAR.
It is shown in the appendix of the arXiv version of [14] that the MGF

version of the BAR (2.30) and the standard version the BAR (2.24) are
equivalent. Thus, it follows from the characterization obtained in [13] that
ϕ(θ) and ϕj

(
θ
)
are the unique moment generating functions that satisfy

(2.30).

2.4. Main results. Recall that π(n) is the stationary distribution of Z(n)

and for j ∈ J , define π
(n)
j to be the distribution of

[
Z(n)(∞)

∣∣Z(n)
j (∞) = 0

]
.

We are now ready to present our main results.

Theorem 2.1. Consider the sequence of GJNs indexed by n. Assume
the heavy traffic conditions (2.5) and (2.6), positive recurrence condition
(2.15), and moment conditions (2.9)–(2.12) hold. Then,

(a) As n → ∞, the stationary distribution π(n) of Z(n) converges weakly to
π, the stationary distribution of the SRBM Z.

(b) For each j ∈ J , π
(n)
j converges weakly to πj, the corresponding boundary

measure on Fj.

Part (b) appears to be new. As mentioned in Section 2.2, Part (a) of the
theorem is known, but we prove it using a new approach. To elaborate on
this approach, we first discuss the existing approach that uses process limit
and tightness.

Assuming the distribution of Z(n)(0) converges, Reiman [30] proves that
the scaled queue length process {Z(n)(t), t ≥ 0} converges in distribution to
the SRBM Z; we refer to this as the process limit. Namely,

Z(n)(·) ⇒ Z(·) as n → ∞,(2.31)

Also, it is proved in [22] that

(2.32) Z(t) ⇒ Z(∞) as t → ∞,
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where Z(∞) is a random vector having distribution π. From (2.31) and
(2.32), it is not surprising that Z(n)(∞) ⇒ Z(∞), which is the content
of part (a) of Theorem 2.1. Here, Z(n)(∞) is the random vector having
the stationary distribution of {Z(n)(t), t ≥ 0}. As we mentioned earlier,
part (a) of Theorem 2.1 was already proved by Gamarnik and Zeevi [17],
and Budhiraja and Lee [7]. Both sets of authors rely on the process limit
result (2.31), and reduce the problem to showing tightness of the stationary
distributions {π(n) : n = 1, 2, . . .}. Together with the process limit, this
tightness implies (1.1). Our proof of Theorem 2.1 will not use the process
limit (2.31). Instead, we work directly with the BAR associated with each
network in the sequence, which we now derive in Section 3.

3. Network dynamics and basic adjoint relationship. In Sec-
tion 3.1 we derive the BAR for the GJN and describe a special class of
test functions for which the BAR reduces to a very simple expression. In
Section 3.2, we focus on a family of exponential test functions that belong
to this special class. This lays down the foundation for Section 4, where we
compare the BAR of the GJN to that of the approximating SRBM.

3.1. Network dynamics and tractable BAR. In this section, we derive
the BAR (3.15) for a GJN using sample path dynamics of the network.
The main result of this section is Lemma 3.1 below. It describes a special
class of functions for which the BAR has a simple form. This lemma can
be compared to the BAR in Miyazawa [29], which studies a heterogeneous
multiserver queue. However, our approach is different and we make detailed
comments on this difference at the end of this section.

We first describe the network dynamics in terms of network primitives.
We fix a network in the sequence and temporarily drop the index n for the
remainder of the section. For station j ∈ J , we introduce the sequence of
i.i.d. random vectors

{φ(j)(m) ∈ Z
d
+, m = 1, 2, . . .}(3.1)

with

P(φ(j)(1) = e(k)) = pjk, k ∈ J
P(φ(j)(1) = 0) = 1−

∑
k∈J

pjk = pj0,

where pjk is the probability that a customer goes to station k after com-
pleting service at station j. These random vectors represent the routing of
customers after completion of service at station j.
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Recall the definition of X = {X(t), t ≥ 0} from Section 2.1, and let

X(0) = (L(0), Re(0), Rs(0)) ∈ Z
d
+ × R

2d
+

be the initial state of the network. We recall the sequences of interarrival
and service times from (2.1) and (2.2), and for each integer q ≥ 1 we define
the primitive processes

Ui(q) = Re,i(0) +

q−1∑
m=1

Te,i(m), i ∈ E ,(3.2)

Vj(q) = Rs,j(0) +

q−1∑
m=1

Ts,j(m), j ∈ J ,(3.3)

Φ(j)(q) =

q∑
m=1

φ(j)(m), j ∈ J .(3.4)

For station j ∈ J , and time t ≥ 0, let Ej(t) and Dj(t) be the total number of
external arrivals and total number of departures, respectively, on the interval
[0, t]. Let

Bj(t) =

∫ t

0
1(Lj(s) ≥ 1)ds, j ∈ J(3.5)

be the cumulative busy time of the server at station j. We can then define

Sj(q) = inf{t > 0 : Bj(t) = Vj(q)}, j ∈ J , q ≥ 1,(3.6)

to be the time of the qth service completion at station j. Recalling that only
stations in E have external arrivals, we see that for every t ≥ 0 and on every
sample path,

Ei(t) = max
{
q ∈ Z+ : Ui(q) ≤ t

}
, i ∈ E ,(3.7)

Ei(t) ≡ 0, i ∈ J \ E ,
Dj(t) = max

{
q ∈ Z+ : Sj(q) ≤ t

}
, j ∈ J .(3.8)

Furthermore, one may check that the queue lengths, residual interarrival
times and residual service times satisfy

Lj(t) = Lj(0) + Ej(t)−Dj(t) +
∑
k∈J

Φ
(k)
j (Dk(t)), j ∈ J ,(3.9)

Re,i(t) = Ui(Ei(t) + 1)− t, i ∈ E ,
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Re,i(t) ≡ 0, i ∈ J \ E ,
Rs,j(t) = Vj(Dj(t) + 1)−Bj(t), j ∈ J .

In the last equation, we have adopted the convention that when station j is
empty at time t, the remaining service time Rs,j(t) is set to be the service
time of the next customer at this station. Clearly,

∂

∂t
Re,i(t) = −1, for i ∈ E(3.10)

∂

∂t
Rs,j(t) = −1(Lj(t) > 0), for j ∈ J ,

where the derivatives at a jump time t are interpreted as the right derivatives.
With the network dynamics rigorously defined, we proceed to derive a BAR
for the network.

Let D be the space of all bounded functions f(�, y) : Z
d
+ × R

2d
+ → R

defined as follows. For any i = 1, . . . , 2d, fix (x, (yk)k 	=i) ∈ Z
d
+ × R

2d−1
+

and view f(x, y) as a one dimensional function in the yi component. We
require that this one dimensional function be continuously differentiable at
all but finitely many points, and have bounded derivatives whose bound is
independent of the point (x, (yk)k 	=i). For instance, D contains the space of
all bounded functions f : Zd

+ × R
2d
+ → R, such that for any � ∈ Z

d
+, the

function f(�, ·) : R
2d
+ → R is continuously differentiable with a bounded

derivative, whose bound is independent of �. The reason for enforcing the
component-wise conditions on the set D is that the test functions we use in
this paper always have some form of truncation, which prevents them from
being everywhere differentiable in the variable belonging to R

2d
+ .

Now for any f ∈ D, and any interval [t, t+h] ⊂ R+ free of jumps, we can
use the fundamental theorem of calculus together with (3.10) to see that

f(X(t+ h))− f(X(t)) =

∫ t+h

t
Af(X(s)) ds,

where

Af(x) = −
∑
i∈E

∂f

∂ui
(x)−

∑
j∈J

∂f

∂vj
(x)1(�j > 0),(3.11)

x = (�, u, v) ∈ Z
d
+ × R

d
+ × R

d
+.

For the remainder of this section, we let ν denote the stationary distribution
of X, and let Pν be the probability measure conditioned on X(0) having the
distribution ν. To deal with the jumps of X, we introduce some notation.
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We know that the jumps of the process X correspond to external arrivals
and departures at various stations. We use the term event to refer to a single
external arrival or departure. At time instance s, there may be simultaneous
events. A jump of X at time s constitutes all the events that occur at s.
Since we assumed that ETe,i > 0 and ETs,j > 0 for all i ∈ E and j ∈ J , it
follows from basic renewal theory (see for instance [31, Theorem 3.3.1]) that∑

i∈E
Eν

[
Ei(t)− Ei(0)

]
+

∑
j∈J

Eν

[
Dj(t)−Dj(0)

]
< ∞.(3.12)

The finiteness of Eν

[
Dj(t)−Dj(0)

]
comes from the fact that {Dj(t), t ≥ 0} is

dominated by the renewal process corresponding to the times {Vj(q), q ≥ 1}.
Therefore, for every t > 0 we know that Pν-almost surely, the process X has
finitely many events on the interval (0, t]. It follows that Pν-almost surely,

the process X has countably many jumps on the interval (0,∞),

and every jump instant on this interval has finitely many events.(3.13)

In what follows, we deal only with the sample paths where (3.13) holds.
Suppose now that k events occur simultaneously at time s. We can order
them in an arbitrary manner, provided that we do not violate the network
dynamics. For example, if station s is empty at time s−, and experiences
both an arrival and departure at time s, then the arrival must happen first.
The particular order assigned to the simultaneous events does not matter,
because (3.13) implies there are always finitely many events at a time in-
stance. We can therefore order all of the events that occur on the interval
(0,∞), and represent them as δ1 < δ2 < . . ., where δm represents the mth
event to occur after time 0. We let T (δm) represent the time at which the
mth event happens.

Now for integer m ≥ 1, we write Xδm to represent the value of the pro-
cess immediately after the mth event has been applied to it. Our use of
Xδm as opposed to X(T (δm)) is intentional. If δm1 and δm2 represent two
simultaneous arrivals to some station, then X(T (δm1)) = X(T (δm2)), but
Xδm1

	= Xδm2
. We also write Xδm− to represent the value of the process X

right before the mth event is applied to it, but after the first m − 1 events
have been applied.

From (3.12), we see that

Eν

[ ∞∑
m=1

1(0 < T (δm) ≤ t)

]
(3.14)

=
∑
i∈E

Eν

[
Ei(t)− Ei(0)

]
+

∑
j∈J

Eν

[
Dj(t)−Dj(0)

]
< ∞.
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By isolating times when jumps occur, one can verify that for any t > 0 and
f ∈ D,

f(X(t)) = f(X(0)) +

∫ t

0
Af(X(s))ds

+
∞∑

m=1

(
f(Xδm)− f(Xδm−)

)
1(0 < T (δm) ≤ t), Pν-almost surely.

Since f ∈ D is bounded, we can take the expectation under ν to see that

Eν

[ ∫ t

0
Af(X(s))ds

]
+ Eν

[ ∞∑
m=1

(
f(Xδm)− f(Xδm−)

)
1(0 < T (δm) ≤ t)

]
= 0.

Furthermore, we know that Af(x) is bounded for all x ∈ Z
d
+×R

2d
+ , meaning

we can apply the Fubini-Tonelli theorem to interchange the expectation with
the integral in the first term. Stationarity implies that

Eν

[
Af(X(s))

]
= Eν

[
Af(X(0))

]
, for all s ∈ [0, t].

We therefore have the intermediate result

Eν

[
Af(X(0))

]
+ Eν

[
1

t

∞∑
m=1

(
f(Xδm)− f(Xδm−)

)
1(0 < T (δm) ≤ t)

]
= 0.

We now use (3.14) and the boundedness of f ∈ D to apply the Fubini-Tonelli
theorem again and arrive at the BAR for the GJN:

Eν

[
Af(X(0))

]
(3.15)

+
1

t

∞∑
m=1

Eν

[(
f(Xδm)− f(Xδm−)

)
1(0 < T (δm) ≤ t)

]
= 0, f ∈ D.

Before proceeding further, let us pause and discuss the implications of (3.15).
The equation above encodes information about the distribution ν. To access
this information, we choose various test functions f ∈ D and plug them into
(3.15). However, (3.15) is of limited practical use for most test functions
because the jump term is hard to handle analytically. To get around this
difficulty, we now describe how to engineer f ∈ D so that the jump terms
above vanish. Roughly speaking, the idea is to ensure that

E[f(X(s))|X(s−) = x] = f(x)
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at each jump time s and for each state x, i.e. the test function remains
unchanged in expectation after a jump. In Section 3.2, we describe a family
of exponential test functions satisfying the above property, which is also rich
enough to asymptotically characterize the distribution of the queue lengths.

It may be helpful for the reader to compare the arguments that follow to
the proof of Lemma 2.3 in [29, Appendix A.2], where the author also seeks to
find test functions for which the jump terms vanish. In that paper, simultane-
ous events are handled by an approach that is slightly different from ours. To
make the jump terms vanish, we now analyze the terms f(Xδm)− f(Xδm−).
If the event δm corresponds to the qth external arrival to station i ∈ E , then

Xδm = Xδm− + (e(i), Te,i(q)e
(i), 0),

where (e(i), Te,i(q)e
(i), 0) ∈ Z

d
+ × R

d × R
d. Since Te,i(q) is independent of

Xδm− and Ui(q), we have

Eν

[(
f(Xδm)− f(Xδm−)

)
1(0 < Ui(q) ≤ t)

]
= 0(3.16)

if

(3.17) E

[
f(�+ ei, u+ Te,i(q)e

(i), v)
]
= f(�, u, v), i ∈ E ,

for every feasible state (�, u, v) ∈ Z
d
+ × R

2d
+ with ui = 0. Similarly, if δm

corresponds to the qth departure from station j ∈ J , then

Xδm = Xδm− + (−e(j) + φ(j)(q), 0, Ts,j(q)e
(j)).

Since Ts,j(q) and φ(j)(q) are independent of Xδm− and Sj(q), we have

Eν

[(
f(Xδm)− f(Xδm−)

)
1(0 < Sj(q) ≤ t)

]
= 0(3.18)

if

(3.19) E

[
f(�− ej + φ(j)(q), u, v + Ts,j(q)e

(j))
]
= f(�, u, v), j ∈ J ,

for every feasible state (�, u, v) ∈ Z
d
+ × R

2d
+ with �j > 0 and vj = 0.

We summarize our analysis in the following lemma.

Lemma 3.1. Assume that X is positive Harris recurrent and X(0) fol-
lows the stationary distribution of X. For any function f ∈ D satisfying
conditions (3.17) and (3.19), the basic adjoint relationship (3.15) reduces to∑

i∈E
E

[ ∂f
∂ui

(X(0))
]
+

∑
j∈J

E

[ ∂f
∂vj

(X(0))
]

(3.20)
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−
∑
j∈J

E

[ ∂f
∂vj

(X(0))1(Lj(0) = 0)
]
= 0.

Proof. Apply (3.16), (3.18), and the definition of A in (3.11) to (3.15).

Remark 3.1. The idea of engineering a test function to kill the jump
terms in (3.15) first appeared in the work of Miyazawa [28] for a single server
queue, which is further studied for a multiserver queue with heterogeneous
servers in [29]. The novel feature of the present paper is the careful consider-
ation of tightness in Section 5. This issue was not present in [28, 29] because
those papers deal with a single queue as opposed to a queueing network.

In the next section, we describe a useful family of exponential test func-
tions that satisfies (3.17) and (3.19).

3.2. Exponential test functions for a sequence of GJNs. We consider the
sequence of Markov processes {X(n), n ≥ 1} from Section 2.2. Recall our
goal, which is to show that the MGF of Z(n)(∞) = rnL

(n)(∞) asymptotically
satisfies the BAR (2.30) of the approximating SRBM. As a first step, we have
already derived a BAR for X(n). We now describe a family of exponential
test functions that satisfy conditions (3.17) and (3.19).

For all n ∈ Z+, let us first define the truncation function g(n) : R → R as

g(n)(y) = min(y, 1/rn), y ∈ R.

Now for each θ ∈ R
d, η ∈ R

d and ζ ∈ R
d, define f

(n)
θ,η,ζ : Z

d
+ × R

2d
+ → R+ as

f
(n)
θ,η,ζ(x) = e〈θ,�〉+

∑
i∈E ηig

(n)(ui)+
∑

j∈J ζjg
(n)(vj),(3.21)

for x = (�, u, v) ∈ Z
d
+ × R

2d
+ .

It is not hard to verify that f
(n)
θ,η,ζ ∈ D. Our in (3.21) is meant to resemble

a moment generating function. Indeed, if η and ζ were allowed to be inde-
pendent of θ and if we chose g(n)(y) = y, then this family of test functions
would characterize the stationary distribution of X(n) via its BAR (3.15).

However, applying (3.15) to f
(n)
θ,η,ζ is of little practical use, because the jump

terms become too complicated to work with.

Instead, we want to choose f
(n)
θ,η,ζ to satisfy the conditions of Lemma 3.1,

so that we can use (3.20) instead. To do so, we must choose η and ζ as
functions of θ (i.e. η = η(n)(θ) and ζ = ζ(n)(θ)), significantly reducing the
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size of this family of functions. Following the logic behind (3.17) and (3.19),
we choose η(n)(θ) and ζ(n)(θ) to satisfy

eθiE
(
eη

(n)
i (θi)g

(n)(T
(n)
e,i )) = 1, i ∈ E ,(3.22)

tj(θ)E
(
eζ

(n)
j (θ)g(n)(T

(n)
s,j )) = 1, j ∈ J ,(3.23)

where

tj(θ) = e−θj
(∑

k∈J
pjke

θk + pj0

)
.

We have rewritten η
(n)
i (θ) as η

(n)
i (θi) because it is independent of θk for

k 	= i. For the remainder of the paper, we write

f
(n)
θ (x) = f

(n)

θ,η(n)(θ),ζ(n)(θ)
(x).

This reduced family of test functions can only characterize the distribution
of Z(n)(∞) asymptotically as n → ∞, which is enough for our purposes. The

following lemma is similar to Lemma 2.3 of [29], and says that f
(n)
θ satisfies

the conditions of Lemma 3.1.

Lemma 3.2. There exists M > 0 such that for all θ ∈ R
d with ‖θ‖ ≤ M ,

the solutions η
(n)
i (θi) and ζ

(n)
j (θ) to (3.22)–(3.23) are well defined and finite

for all n ≥ 1, i ∈ E and j ∈ J . Furthermore, conditions (3.17) and (3.19)

are satisfied for f = f
(n)
θ .

Proof. Once we assume that η
(n)
i (θi) and ζ

(n)
j (θ) are well defined and

finite, the second claim of the lemma becomes trivial to verify by (3.22) and
(3.23). We now check that these functions are well defined for all θ ∈ R

d

with ‖θ‖ ≤ M . The argument to show that η
(n)
i (θi) is well defined is simple,

and is repeated here from Section 2.3 of [29]. For i ∈ E , let

G
(n)
e,i (y) = E

(
eyg

(n)(T
(n)
e,i )), y ∈ R,

be the moment generating function of g(n)(T
(n)
e,i ). Then G

(n)
e,i (y) exists for

all y ∈ R because g(n)(T
(n)
e,i ) is a bounded random variable for every n.

Furthermore, the inverse (G
(n)
e,i )

−1 exists as G
(n)
e,i (y) is strictly increasing.

Observe however that this inverse is only defined on the interval(
lim

y→−∞
G

(n)
e,i (y), limy→∞

G
(n)
e,i (y)

)
=

(
P(T

(n)
e,i = 0),∞

)
.



164 A. BRAVERMAN, J. G. DAI, AND M. MIYAZAWA

Hence, (3.22) yields

η
(n)
i (θi) = (G

(n)
e,i )

−1(e−θi), θi ∈
(
−∞,− log(P(T

(n)
e,i = 0))

)
,

with the convention that − log(0) = ∞. We know that there exists some
Me,i > 0 such that

0 < Me,i < − log(P(T
(n)
e,i = 0)), n ≥ 1

because P(T
(n)
e,i = 0) 	= 1 for any n ≥ 1, and limn→∞ P(T

(n)
e,i = 0) 	= 1. The

former is true because 1/E(T
(n)
e,i ) = λ

(n)
e,i < ∞ for each n, and the latter

follows from (2.9) and the fact that λe,i < ∞ there. Hence, η
(n)
i (θi) is well

defined and finite for all θi ∈ (−∞,Me,i). We now derive a similar expression

for ζ
(n)
j (θ). For j ∈ J and y ∈ R, define

G
(n)
s,j (y) = E

(
eyg

(n)(T
(n)
s,j )),

and observe that (G
(n)
s,j )

−1 exists because G
(n)
s,j (y) is an increasing function.

Define χ
(n)
j (y) as

χ
(n)
j (y) = (G

(n)
s,j )

−1(e−y), y ∈
(
−∞,− log(P(T

(n)
s,j = 0))

)
,(3.24)

and let Ms,j > 0 be such that

0 < Ms,j < − log(P(T
(n)
s,j = 0), n ≥ 1.

We conclude that ζ
(n)
j (θ) is well defined and satisfies

ζ
(n)
j (θ) = χ

(n)
j (log tj(θ)) = (G

(n)
s,j )

−1
( 1

tj(θ)

)
,(3.25)

for θ such that log tj(θ) < Ms,j ,

where tj(θ) is defined in (3.23).

We now present the BAR for this special family of exponential test func-
tions.

Lemma 3.3. Assume that X(n) is positive Harris recurrent, and let

X(n)(∞) = (L(n)(∞), R(n)
e (∞), R(n)

s (∞))
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have the stationary distribution of X(n). Then∑
i∈E

η
(n)
i (θi)E

[
1(R

(n)
e,i (∞) < 1/rn)f

(n)
θ (X(n)(∞))

]
(3.26)

+
∑
j∈J

ζ
(n)
j (θ)E

[
1(R

(n)
s,j (∞) < 1/rn)f

(n)
θ (X(n)(∞))

]
−

∑
j∈J

ζ
(n)
j (θ)E

[
1(R

(n)
s,j (∞) < 1/rn, L

(n)
j (∞) = 0)f

(n)
θ (X(n)(∞))

]
= 0

for all ‖θ‖ ≤ M , where M > 0 is as in Lemma 3.2.

Proof. This lemma follows immediately from applying Lemmas 3.1 and

3.2 to the test function f
(n)
θ (x) from (3.21), because its right side partial

derivatives are

∂

∂ui
f
(n)
θ (x) = η

(n)
i (θi)1(ui < 1/rn)f

(n)
θ (x), i ∈ E ,

∂

∂vj
f
(n)
θ (x) = ζ

(n)
j (θ)1(vj < 1/rn)f

(n)
θ (x), j ∈ J .

In order for Lemma 3.3 to be of practical use, we need to know the behav-

ior of η
(n)
i (θi) and ζ

(n)
j (θ); however, these functions are defined implicitly. In

the next section, we use quadratic approximations of η
(n)
i (θi) and ζ

(n)
j (θ) to

convert (3.26) into a more convenient expression that resembles (2.30).

4. Approximate BAR. This section is devoted to proving Proposi-
tion 4.1, which we now state.

Proposition 4.1. Assume that all conditions stated in Theorem 2.1 are
satisfied. Recall the definitions of γ(θ) and γj(θ) from (2.27). For j ∈ J and
θ ≤ 0, define

ϕ(n)(θ) = E[e〈θ,Z
(n)(∞)〉],(4.1)

ϕ
(n)
j (θ) = E[e〈θ,Z

(n)(∞)〉|Z(n)
j (∞) = 0].

Let

ε(n)(θ) = γ(θ)ϕ(n)(θ) +
∑
j∈J

bjγj(θ)ϕ
(n)
j (θ) n ≥ 1, θ ≤ 0,(4.2)
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then

lim
n→∞

sup
θ<0

0<‖θ‖≤M

|ε(n)(θ)|
‖θ‖ = 0,

where M > 0 is as in Lemma 3.2.

This result states that the steady state distributions of the queue lengths
asymptotically satisfy (2.30) as n → ∞. It plays an essential role in the
proof of Theorem 2.1 in Section 6.

The idea behind the proof is to use (3.26) as a starting point, and use

quadratic approximations of η
(n)
i (θi) and ζ

(n)
j (θ) to arrive at (4.2). In Sec-

tion 4.1 we use Taylor expansion to obtain the quadratic approximations

of η
(n)
i (θi) and ζ

(n)
j (θ). We then show that under heavy traffic scaling, the

associated approximation error vanishes in an appropriate fashion. We prove
Lemma 4.1 in Section 4.3.

4.1. Taylor expansions. We begin with a general lemma, which describes
the behavior of functions that are implicitly defined in a manner similar to

η
(n)
i (θi) in (3.22). The lemma is similar to Lemma 2.4 of [29].

Lemma 4.1. Let H be a bounded, non-negative random variable with
EH > 0 and set

λH =
1

EH
, σ2

H = Var(H).

Then the function f(x) : R → R satisfying

E(ef(x)H) = e−x, x ∈
(
−∞,− log(P(H = 0))

)
,

is well defined and finite, with the convention that − log(0) = ∞. Further-
more,

(a) f(x) is infinitely differentiable.
(b) f(x) is decreasing and concave.
(c) For any K ∈ (0,− log(P(H = 0)), f(x) satisfies∣∣∣f(x) + λHx+

1

2
λ3
Hσ2

Hx2
∣∣∣ ≤ cH(x),(4.3)

|f(x)| ≤ max{λH , |f(K)|/K}|x|, |x| ≤ K,(4.4)

where

cH(x) =
x2

2
sup

|y|<|x|
|f ′′(y)− f ′′(0)|.(4.5)
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The proof of this lemma is deferred to Section A.1. We now apply it to

obtain expansions of η
(n)
i (θi) and ζ

(n)
j (θ). Let M > 0 be as in Lemma 3.2.

Set

1

λ̃
(n)
e,i

= E(g(n)(T
(n)
e,i )),

(
σ̃
(n)
e,i

)2
= Var(g(n)(T

(n)
e,i )), i ∈ E ,

1

λ̃
(n)
s,j

= E(g(n)(T
(n)
s,j )),

(
σ̃
(n)
s,j

)2
= Var(g(n)(T

(n)
s,j )), j ∈ J .

Observe that the uniform integrability assumptions (2.11) and (2.12), to-
gether with the definition of g(n)(x), imply that for all i ∈ E and j ∈ J ,

λ̃
(n)
e,i → λe,i, λ̃

(n)
s,j → λs,j , σ̃

(n)
e,i → σe,i, and σ̃

(n)
s,j → σs,j(4.6)

(cf. (2.9), (2.10) and (2.13)). Lemma 4.1 now trivially applies to η
(n)
i (θi) to

obtain ∣∣∣η(n)i (θi) + λ̃
(n)
e,i θi +

1

2

(
λ̃
(n)
e,i

)3(
σ̃
(n)
e,i

)2
θ2i

∣∣∣ ≤ c
(n)
e,i (θi),(4.7)

|η(n)i (θi)| ≤ ĉ
(n)
e,i (M)|θi|, |θi| ≤ M,(4.8)

where c
(n)
e,i corresponds to cH in (4.5) and for any K ∈ (0,M ], we define

ĉ
(n)
e,i (K) as

ĉ
(n)
e,i (K) = max

{
λ̃
(n)
e,i , |η

(n)
i (K)|/K

}
.

Recall that ζ
(n)
j (θ) = χ

(n)
j (log tj(θ)), where χ

(n)
j is defined in (3.24) and

log tj(θ) = −θj + log
(∑

k∈J
pjke

θk + pj0

)
∈ C∞(Rd).

By Taylor expansion, one can verify that log tj(θ) satisfies∣∣∣ log tj(θ)− (
− θj +

∑
k∈J

pjkθk

)
(4.9)

+
1

2

(∑
k∈J

θ2kpjk −
(∑
k∈J

θkpjk
)2)∣∣∣ ≤ c1,j(θ),∣∣∣ log2 tj(θ)− (

− θj +
∑
k∈J

pjkθk

)2∣∣∣ ≤ c2,j(θ),
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where

c1,j(θ) =
1

6
sup

‖y‖≤‖θ‖

∣∣∣∣∣ ∑
k,l,m∈J

θkθlθm
∂3 log tj

∂θk∂θl∂θm
(y)

∣∣∣∣∣,(4.10)

c2,j(θ) =
1

6
sup

‖y‖≤‖θ‖

∣∣∣∣∣ ∑
k,l,m∈J

θkθlθm
∂3 log2 tj
∂θk∂θl∂θm

(y)

∣∣∣∣∣.
Note that both c1,j(θ) and c2,j(θ) are finite for each θ and j ∈ J because
log tj(θ) belongs to C∞(Rd).

Applying Lemma 4.1 to χ
(n)
j , together with the Taylor expansions above,

we have the following result about ζ
(n)
j (θ). For each j ∈ J and n ≥ 1,∣∣∣ζ(n)j (θ) + λ̃

(n)
s,j

(
− θj +

∑
k∈J

pjkθk

)
(4.11)

+
1

2
λ̃
(n)
s,j

(∑
k∈J

θ2kpjk −
(∑
k∈J

θkpjk
)2)

+
1

2

(
λ̃
(n)
s,j

)3(
σ̃
(n)
s,j

)2(− θj +
∑
k∈J

pjkθk

)2∣∣∣ ≤ c
(n)
s,j (θ),

|ζ(n)j (θ)| ≤ ĉ
(n)
s,j (M)‖θ‖, ‖θ‖ ≤ M,(4.12)

where

c
(n)
s,j (θ) = sup

|y|≤|log tj(θ)|

1

2
log2 tj(θ)

∣∣∣(χ(n)
j

)′′
(y)−

(
χ
(n)
j

)′′
(0)

∣∣∣(4.13)

+ λ̃
(n)
s,j c1,j(θ) +

1

2

(
λ̃
(n)
s,j

)3(
σ̃
(n)
s,j

)2
c2,j(θ),

c1,j(θ) and c2,j(θ) are as in (4.10), and for any K ∈ (0,M ],

ĉ
(n)
s,j (K) = cLip,j(K)max

{
λ̃
(n)
s,j , |χ

(n)
j (K̂)|/K̂

}
,(4.14)

K̂ = sup
‖θ‖≤K

|log tj(θ)|, and cLip,j(K) = sup
0<‖θ‖≤K

|log tj(θ)|
‖θ‖ .

We know cLip,j(K) < ∞ because log tj(θ) ∈ C∞(Rd) and is therefore is
locally Lipschitz.

4.2. Error bounds. In order for the quadratic approximations of η
(n)
i (θi)

and ζ
(n)
j (θ) to be useful, we need the error bounds c

(n)
e,i (θ) and c

(n)
s,j (θ) to be
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small. Recall that (3.26) is a statement about the unscaled vector X(n)(∞),
but (4.2) deals with the scaled queue length vector Z(n)(∞) = rnL

(n)(∞).
From the form of the test function in (3.21), we see that by replacing θ
by rnθ, (3.26) becomes a statement about the scaled queue length Z(n)(∞).
Under the heavy traffic scaling, the errors from the quadratic approximations
vanish asymptotically in neighborhoods of the origin. The following lemma
presents this statement formally.

Lemma 4.2. Let M > 0 be as in Lemma 3.2. For any K > 0 such that
rnK ≤ M ,

lim
n→∞

sup
0<|θi|<K

c
(n)
e,i (rnθi)

r2nθ
2
i

= 0, i ∈ E ,(4.15)

and

lim
n→∞

sup
0<‖θ‖<K

c
(n)
s,j (rnθ)

r2n‖θ‖2
= 0, j ∈ J .(4.16)

This lemma is proved in Section A.2. Our next result states that the

functions η
(n)
i (θi) and ζ

(n)
j (θ) are locally Lipschitz in small neighborhoods

of the origin, with Lipschitz constants that do not depend on n. Its proof is
postponed to Section A.3.

Lemma 4.3. Let M > 0 be as in Lemma 3.2. For i ∈ E and j ∈ J , and
K ∈ (0, rnM ],

sup
n≥1

ĉ
(n)
e,i (rnK) < ∞ and sup

n≥1
ĉ
(n)
s,j (rnK) < ∞.

In the rest of this section, we will frequently use the following bound.

Recall the definition of f
(n)
rnθ

(x) from (3.21), where x = (�, u, v) ∈ Z
d
+ × R

2d
+ .

Using (4.8), (4.12), and Lemma 4.3, it follows that for any K ∈ (0,M ], we
can define cf (K) to satisfy

sup
n≥1

sup
θ<0

‖θ‖≤K

f
(n)
rnθ

(x)(4.17)

= sup
n≥1

sup
θ<0

‖θ‖≤K

e〈rnθ,�〉+
∑

i∈E η
(n)
i (rnθi)g

(n)(ui)+
∑

j∈J ζ
(n)
j (rnθ)g(n)(vj)

≤ cf (K) ≡ sup
n≥1

e
∑

i∈E ĉ
(n)
e,i (rnK)K+

∑
j∈J ĉ

(n)
s,j (rnK)K < ∞.
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This bound holds for all x ∈ Z
d
+ × R

2d
+ . We now state several lemmas that

we will use to prove Proposition 4.1.

Lemma 4.4. Recall the heavy traffic condition (2.5). For any station
j ∈ J ,

P(L
(n)
j (∞) = 0) = 1− λ

(n)
a,j /λ

(n)
s,j = rnbj/λ

(n)
s,j .

Lemma 4.5. The sequences {R(n)
e,i (∞), n ≥ 1} and {R(n)

s,j (∞), n ≥ 1} are
uniformly integrable for all i ∈ E and j ∈ J .

We would like to point out that Lemmas 4.4 and 4.5 are not novel, and can
be proved using the well developed theory of Palm calculus (see for example
[1, Chapter 1] or [3, Chapter 4]). However, to keep this paper self-contained,
we avoid using Palm calculus and prove these lemmas in Section A.4 using
the BAR (3.15).

Lemma 4.6. Let M > 0 be as in Lemma 3.2, and K ∈ (0, rnM ]. The
following statements are true:

lim
n→∞

sup
θ<0

0<‖θ‖≤K

1

‖θ‖

∣∣∣− 1

r2n

(∑
i∈E

η
(n)
i (rnθi) +

∑
j∈J

ζ
(n)
j (rnθ)

)
− γ(θ)

∣∣∣(4.18)

= 0,

lim
n→∞

sup
θ<0

‖θ‖≤K

∣∣∣E[f (n)
rnθ

(X(n)(∞))
]
− ϕ(n)(θ)

∣∣∣ = 0,(4.19)

lim
n→∞

sup
θ<0

‖θ‖≤K

1

rn

∣∣∣E[1(L(n)
j (∞) = 0)

(
f
(n)
rnθ

(X(n)(∞))− e〈θ,Z
(n)(∞)〉)]∣∣∣(4.20)

= 0, j ∈ J .

The proof of this lemma is postponed until Section A.5.

4.3. Proof of Lemma 4.1. We now prove Proposition 4.1 using the auxil-
iary lemmas stated in the previous section. As a starting point, we multiply
(3.26) by −1/r2n to see that

0 = − 1

r2n
E
[
f
(n)
rnθ

(X(n)(∞))
](∑

i∈E
η
(n)
i (rnθi) +

∑
j∈J

ζ
(n)
j (rnθ)

)
(4.21)

+
1

r2n

∑
j∈J

ζ
(n)
j (rnθ)E

[
1(L

(n)
j (∞) = 0)f

(n)
rnθ

(X(n)(∞))
]
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− 1

r2n

∑
j∈J

ζ
(n)
j (rnθ)

× E
[
1(R

(n)
s,j (∞) ≥ 1/rn, L

(n)
j (∞) = 0)f

(n)
rnθ

(X(n)(∞))
]

+
1

r2n

∑
i∈E

η
(n)
i (rnθi)E

[
1(R

(n)
e,i (∞) ≥ 1/rn)f

(n)
rnθ

(X(n)(∞))
]

+
1

r2n

∑
j∈J

ζ
(n)
j (rnθ)E

[
1(R

(n)
s,j (∞) ≥ 1/rn)f

(n)
rnθ

(X(n)(∞))
]
.

We claim that the last three lines are negligible. For this, we wish to show
that

lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖
1

r2n

∣∣∣∑
j∈J

ζ
(n)
j (rnθ)E

[
1(R

(n)
s,j (∞) ≥ 1/rn)f

(n)
rnθ

(X(n)(∞))
]∣∣∣

= 0,

then similar statements hold for the remaining two lines. Observe that for
each j ∈ J ,

sup
θ<0

0<‖θ‖≤M

1

r2n‖θ‖

∣∣∣ζ(n)j (rnθ)E
[
1(R

(n)
s,j (∞) ≥ 1/rn)f

(n)
rnθ

(X(n)(∞))
]∣∣∣

≤ ĉ
(n)
s,j (rnM)cf (M)

1

rn
P(R

(n)
s,j (∞) ≥ 1/rn)

by (4.12) and (4.17). By Lemma 4.3 and Lemma 4.5, this upper bound
vanishes as n → ∞. Thus, we have succeeded in proving that

lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣∣∑
j∈J

1

r2n
ζ
(n)
j (rnθ)E

[
f
(n)
rnθ

(X(n)(∞))1(L
(n)
j (∞) = 0)

]
− 1

r2n

(∑
i∈E

η
(n)
i (rnθi) +

∑
j∈J

ζ
(n)
j (rnθ)

)
E
[
f
(n)
rnθ

(X(n)(∞))
]∣∣∣∣

= 0.

For the next step, we apply (4.17) and Lemma 4.6 to see that

lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣∣− 1

r2n

(∑
i∈E

η
(n)
i (rnθi) +

∑
j∈J

ζ
(n)
j (rnθ)

)

× E
[
f
(n)
rnθ

(X(n)(∞))
]
− γ(θ)ϕ(n)(θ)

∣∣∣∣
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≤ lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣∣− 1

r2n

(∑
i∈E

η
(n)
i (rnθi) +

∑
j∈J

ζ
(n)
j (rnθ)

)
− γ(θ)

∣∣∣∣
× E

[
f
(n)
rnθ

(X(n)(∞))
]

+ lim
n→∞

sup
θ<0

0<‖θ‖≤M

|γ(θ)|
‖θ‖

∣∣∣E[f (n)
rnθ

(X(n)(∞))
]
− ϕ(n)(θ)

∣∣∣ = 0.

We arrive at the intermediate result

lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣∣γ(θ)ϕ(n)(θ)(4.22)

+
∑
j∈J

1

r2n
ζ
(n)
j (rnθ)E

[
f
(n)
rnθ

(X(n)(∞))1(L
(n)
j (∞) = 0)

]∣∣∣∣ = 0.

Recall the definition of ϕ
(n)
j (θ) from (4.1) and use the telescoping sum

lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣ 1
r2n

ζ
(n)
j (rnθ)E

[
f
(n)
rnθ

(X(n)(∞))1(L
(n)
j (∞) = 0)

]
− bjγj(θ)ϕ

(n)
j (θ)

∣∣∣
≤ lim

n→∞
sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣ 1
r2n

ζ
(n)
j (rnθ)−

bj

P (L
(n)
j (∞) = 0)

γj(θ)
∣∣∣

× E
[
f
(n)
rnθ

(X(n)(∞))1(L
(n)
j (∞) = 0)

]
+ lim

n→∞
sup
θ<0

0<‖θ‖≤M

1

‖θ‖
bj

P (L
(n)
j (∞) = 0)

γj(θ)

×
∣∣∣E[[f (n)

rnθ
(X(n)(∞))− e〈θ,Z

(n)(∞)〉]1(L(n)
j (∞) = 0)

]∣∣∣.
Using (4.22) we see that to complete the proof of Proposition 4.1, all we
need to do is show the upper bound above equals zero. To show that the
first term is zero, we recall from Lemma 4.4 that

P(L
(n)
j (∞) = 0) = 1− λ

(n)
a,j /λ

(n)
s,j = rnbj/λ

(n)
s,j , j ∈ J .

Recalling the form of γj(θ) from (2.27) and the bound cf (M) from (4.17),
we see that

lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣ 1
r2n

ζ
(n)
j (rnθ)−

bj

P(L
(n)
j (∞) = 0)

γj(θ)
∣∣∣
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× E
[
f
(n)
rnθ

(X(n)(∞))1(L
(n)
j (∞) = 0)

]
= lim

n→∞
sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣P(L(n)
j (∞) = 0)

r2n
ζ
(n)
j (rnθ)− bjγj(θ)

∣∣∣
× E

[
f
(n)
rnθ

(X(n)(∞))
∣∣L(n)

j (∞) = 0
]

≤ lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣ bj

rnλ
(n)
s,j

ζ
(n)
j (rnθ)− bj〈R(j), θ〉

∣∣∣cf (M).

Furthermore,

lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣ bj

rnλ
(n)
s,j

ζ
(n)
j (rnθ)− bj〈R(j), θ〉

∣∣∣cf (M)

= lim
n→∞

sup
θ<0

0<‖θ‖≤M

1

‖θ‖

∣∣∣ λ̃(n)
s,j

λ
(n)
s,j

bj〈R(j), θ〉 − bj〈R(j), θ〉
∣∣∣cf (M) = 0,

where the first equality is justified by (2.13) together with the approximation

of ζ
(n)
j (rnθ) from (4.11) and Lemma 4.2, and the second equality follows from

(2.13) and (4.6). Now for the second term, Lemmas 4.4 and 4.6 tell us that
for j ∈ J ,

lim
n→∞

sup
θ<0

‖θ‖≤M

∣∣∣E[1(L(n)
j (∞) = 0)

(
f
(n)
rnθ

(X(n)(∞))− e〈θ,Z
(n)(∞)〉)]∣∣∣

P(L
(n)
j (∞) = 0)

= 0.

This concludes the proof of Proposition 4.1.

5. Tightness of stationary distributions: An essential Proposi-
tion. This section is centered around the statement and proof of Propo-
sition 5.1, which is critical to proving that the sequence {Z(n)(∞), n ≥ 1}
is tight. The tightness argument itself is provided as a part the proof of
Theorem 2.1 in Section 6, and relies on both Propositions 4.1 and 5.1. We
now motivate the proposition and introduce some notation needed to state
it.

Let C be the class of functions f that satisfy

(a) f : {θ ≤ 0 : θ ∈ R
d} → [0, 1]

(b) f is continuous on {θ < 0 : θ ∈ R
d}

(c) θ1 ≤ θ2 ⇒ f(θ1) ≤ f(θ2),
(d) f(0) = 1.
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Clearly, the MGF of any probability measure on R
d
+ belongs to C. Suppose

that f is a pointwise limit of a sequence of MGFs of probability measures.
Then, f ∈ C. Such a pointwise limit is not necessarily the MGF of a prob-
ability measure; for example, this happens when the sequence of measures
is not tight. One can prove that the pointwise limit f is an MGF of a prob-
ability measure if and only if f is left continuous at 0; see Lemma 6.1 in
Section 6. By left continuity, we mean

lim
θ↑0

f(θ) = 1,

where θ ↑ 0 means that θ ∈ R
d approaches 0 from left in arbitrary way.

In the tightness argument of Section 6, we deal with the sequence of MGFs
corresponding to {Z(n)(∞), n ≥ 1}. Loosely speaking, Proposition 4.1 tells
us that the pointwise limit of every convergent subsequence of the MGFs
satisfies the BAR of the SRBM (2.30). Proposition 5.1 then leverages the
structure of this BAR to prove that the pointwise limit of the MGFs is left
continuous at the origin, thereby proving tightness of the corresponding se-
quence of probability measures. This argument is made precise in Section 6.
Having sufficiently motivated the necessity of Proposition 5.1, we now con-
tinue with its setup.

For our purposes, it will be beneficial to take limits as θ ↑ 0 along rays
stemming from the origin. Each ray corresponds to some direction vector
cA = (c1, . . . , cd)

T, where A ⊂ J and ci = 0 when i /∈ A. We write cA > 0
if ci > 0 when i ∈ A. For a fixed ray cA > 0, we consider the limits

lim
α↑0

f(αcA), α ∈ R,

which always exist by the monotonicity of f . We note the following fact:

Lemma 5.1. Fix A ⊂ J and consider any two direction vectors cA > 0
and c̃A > 0. For any function f ∈ C,

lim
α↑0

f(αcA) = lim
α↑0

f(αc̃A).

Proof. Since cA > 0 and c̃A > 0, there exist constants m,M > 0 such
that

mcA ≤ c̃A ≤ McA.

Using the monotonicity of f(θ),

lim
α↑0

f(αcA)= lim
α↑0

f(αMcA) ≤ lim
α↑0

f(αc̃A) ≤ lim
α↑0

f(αmcA) = lim
α↑0

f(αcA).
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In view of this lemma, we write

f(0A−) ≡ lim
α↑0

f(αcA).

The following proposition is one of the main tools used to prove Theorem
2.1. It will allow us to show that whenever the sequence of the MGFs of
Z(n)(∞) has a limit, it must be left continuous at 0.

Proposition 5.1. Assume ψ ∈ C and {ψj , j ∈ J } ⊂ C satisfy

γ(θ)ψ(θ) +
∑
j∈J

bjγj(θ)ψj(θ) = 0, for θ ≤ 0,(5.1)

and that ψj(θ) is independent of θj. For any A ⊂ J ,

ψ(0A−) ≥ ψj(0A−), j ∈ J .(5.2)

Furthermore, when A = J we have

ψ(0J−) = ψj(0J−), j ∈ J .(5.3)

Proof. Recall the definitions of γ(θ) and γj(θ) from (2.27). For any
A ⊂ J , cA > 0, and α < 0, we set θ = αcA in (5.1) to get(1
2
α2〈cA,ΣcA〉−α

∑
j∈J

bj〈cA, R(j)〉
)
ψ(αcA)+α

∑
j∈J

bj〈cA, R(j)〉ψj(αcA)= 0.

We divide both sides by α and let α ↑ 0, which yields

−
∑
j∈J

〈cA, R(j)〉bjψ(0A−) +
∑
j∈J

〈cA, R(j)〉bjψj(0A−) = 0.

By Lemma 5.1, cA = (c1, ..., cd)
T can be arbitrary as long as cA > 0. For

each fixed i ∈ A, we set ci = 1 and let ck ↓ 0 for k ∈ A \ {i}. We arrive at∑
j∈J

rijbj
(
ψ(0A−)− ψj(0A−)

)
= 0, i ∈ A,

where rij is the (i, j)th entry of the reflection matrix R. Next, we split the
summation in this formula into two parts:∑

j∈A
rijbj

(
ψ(0A−)− ψj(0A−)

)
(5.4)
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+
∑

j∈J\A
rijbj

(
ψ(0A−)− ψj(0A−)

)
= 0, i ∈ A.

We consider these equations as an |A|-dimensional vector equation. Let RA

be the principal sub-matrix of R whose entry indices are taken from A.
Since R is an M-matrix, RA is also an M-matrix, so it has an inverse whose
entries are all nonnegative. Denote the (i, j)th entry of the inverse of RA by
r̃Aij . Multiplying the vector version of (5.4) from the left by (RA)−1, we have

bk
(
ψ(0A−)− ψk(0A−)

)
(5.5)

+
∑
i∈A

∑
j∈J\A

r̃Akirijbj
(
ψ(0A−)− ψj(0A−)

)
= 0, k ∈ A.

Set A = J \ B, where B ⊂ J and B 	= J . Using induction on the size of
the set B, we will show that

ψ(0J\B−)− ψk(0J\B−) ≥ 0, k ∈ J .

We first take B = ∅, meaning A = J . Since the summation in (5.5) vanishes,
we have

ψ(0−) = ψk(0−), k ∈ J ,(5.6)

which proves (5.3). Hence, the base case is true and we now justify the
inductive step. For a general set B ⊂ J , (5.5) becomes

bk
(
ψ(0J\B−)− ψk(0J\B−)

)
(5.7)

+
∑

i∈J\B

∑
j∈B

r̃
J\B
ki rijbj

(
ψ(0J\B−)− ψj(0J\B−)

)
= 0

for each k ∈ J \B. For j ∈ B we have

ψ(0J\B−)− ψj(0J\B−) = ψ(0J\B−)− ψj(0J\(B\{j})−)

≥ ψ(0J\(B\{j})−)− ψj(0J\(B\{j})−),

where

ψ(0J\B−) ≥ ψ(0J\(B\{j})−)

follows because ψ ∈ C. We now assume that

ψ(0J\(B\{j})−)− ψk(0J\(B\{j})−) ≥ 0, k ∈ J
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to immediately obtain

ψ(0J\B−)− ψj(0J\B−) ≥ 0, j ∈ B.(5.8)

Note that rij ≤ 0 for j 	= i and r̃
J\B
ki ≥ 0 because R and RA are M-matrices.

Hence,

r̃
J\B
ki rijbj

(
ψ(0J\B−)− ψj(0J\B−)

)
≤ 0, j ∈ B,

which together with (5.7) immediately gives us

ψ(0J\B−)− ψk(0J\B−) ≥ 0, k ∈ J \B.(5.9)

We combine (5.8) and (5.9) to complete the proof.

6. Proof of Theorem 2.1. For n ≥ 1, recall that ϕ(n)(θ) and ϕ
(n)
j (θ)

are MGFs defined in (4.1). To prove Theorem 2.1, it suffices to prove

lim
n→∞

ϕ(n)(θ) = ϕ(θ)

lim
n→∞

ϕ
(n)
j (θ) = ϕj(θ), j ∈ J , for θ ≤ 0,

(6.1)

where ϕ and ϕj are MGFs defined in (2.26).
We now state a lemma that will be used frequently in this section. Its

proof is given in Section B.

Lemma 6.1. Let {ν(n), n ≥ 1} be a sequence of probability measures on
R
d
+ with corresponding MGFs

f (n)(θ) =

∫
R
d
+

e〈θ,x〉ν(n)(dx), for θ ∈ R
d with θ ≤ 0.

Suppose that there exists a function f(θ) such that

f (n)(θ) → f(θ) pointwise for all θ ∈ R
d with θ ≤ 0.

(a) f(0J−) = 1 if and only if {ν(n), n ≥ 1} is tight.
(b) If f(0J−) = 1, then f(θ) is the MGF of some probability measure ν on

R
d
+, which immediately implies that

ν(n) ⇒ ν, as n → ∞.
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Proof of Theorem 2.1. It follows from the weak compactness of a set
of probability distributions (e.g. see [34, Lemma 1]) that for every subse-
quence {n′} ⊂ {n}∞n=1, there exists a further subsequence {n′′} and some
non-decreasing functions ψ(θ) and ψj(θ), such that for every θ ≤ 0,

ϕ(n′′)(θ) → ψ(θ) and ϕ
(n′′)
j (θ) → ψj(θ), j ∈ J .(6.2)

Both ψ(θ) and ψj(θ) are functions in C, which was introduced in Section 5.
In particular we note that ψ(0) = ψj(0) = 1. Furthermore, Proposition 4.1
implies that ψ(θ) and ψj(θ) satisfy BAR (5.1). Suppose we know that the
limiting functions ψ and ψj satisfy

ψ(0J−) = 1,(6.3)

ψj(0J−) = 1, j ∈ J .(6.4)

Then Lemma 6.1, BAR (5.1) and the MGF version of Lemma 2.1 imply that
ψ(θ) = ϕ(θ) and ψj(θ) = ϕj(θ). Since {n′} was an arbitrary subsequence,
we have proved (6.1), and consequently Theorem 2.1.

In the remainder of the proof, we prove (6.3), which implies (6.4) by (5.3).
Let A = {j}, then (5.2) implies

ψ(0{j}−)− ψj(0{j}−) ≥ 0, j ∈ J .(6.5)

Since ψj(0{j}−) = ψj(0) = 1, we have

ψ(0{j}−) = 1, j ∈ J .(6.6)

Recall that

Z(n′′)(∞) = (Z
(n′′)
1 (∞), . . . , Z

(n′′)
d (∞))

is the scaled steady state queue length vector of the n′′th GJN. Applying

Lemma 6.1 to (6.6), we see that {Z(n′′)
j (∞)} is tight for each j ∈ J . Since all

the marginals are tight, {Z(n′′)(∞)} is tight as well. We invoke Lemma 6.1
again to conclude that (6.3) holds.

7. Concluding remarks. To summarize, this paper uses a novel ap-
proach to justify the steady-state diffusion approximation of GJNs. Our
method does not rely on first using the process limit Z(n)(·) ⇒ Z(·), fol-
lowed by the tightness of {Z(n)(∞), n ≥ 1} as in [17] or [7]. Rather, we
work directly with the basic adjoint relationships of the GJN and the SRBM,
which characterize their respective stationary distributions. By applying the
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BAR (3.15) of the GJN to a carefully designed exponential test function, we
show in Proposition 4.1 that the sequence of moment generating functions
of the GJN (together with a corresponding sequence of boundary measures)
asymptotically satisfies the BAR (2.30) of the SRBM.

In addition to Proposition 4.1, we also require tightness of the sequence
{Z(n)(∞), n ≥ 1} like in [17] and [7]. However, unlike the previous two
papers, we do not rely on constructing Lyapunov functions to prove this
tightness. Our tightness argument from Section 6, relies on algebraic manip-
ulations of the BAR (2.30) of the SRBM, the bulk of which are presented as
Proposition 5.1. A critical condition for this proposition is that the reflection
matrix of the SRBM is an M-matrix, and in particular, that its diagonal
entries are non-negative and off diagonal entries are non-positive.

An important direction for future research is generalizing the method-
ology presented in this paper to the multiclass queueing network setting,
where new sources of difficulty emerge. One source of difficulty is the need
to handle state space collapse. In a multiclass network with d stations, the
vector of queue lengths is of a higher dimension than d, while the approxi-
mating diffusion process remains d-dimensional. This will manifest itself as
an extra error term on the right hand side of (4.2) in Proposition 4.1, and
we would need to have some way to deal with it. Another source of difficulty
is to relax the M-matrix currently needed to prove tightness, as the M-
matrix structure is a feature unique to GJNs. Preliminary experiments with
several multiclass networks suggest that a variant of Proposition 5.1 can be
established even when the reflection matrix is not an M-matrix. However,
it remains an open problem to find the minimal conditions on the reflection
matrix under which our approach can be carried out.

APPENDIX A: PROOFS OF LEMMAS IN SECTION 4

In this section, we prove the lemmas that were stated but not proved in
Section 4.

A.1. Proof of Lemma 4.1. The fact that f(x) is well defined and
finite is argued in the same way as in Lemma 3.2. We want to perform
Taylor expansion on f(x) and to do so we first show that it is infinitely
differentiable. Observe that the function

G(y) = E(eyH), y ∈ R,

is well defined and belongs to C∞(R). Hence, F (x, y) ≡ G(y)− e−x belongs
to C∞(R2). Since

∂

∂y
F (x, y) = E(HeyH) 	= 0, (x, y) ∈ R

2,
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the implicit function theorem [27, Theorem 3.3.1] implies that there is a
single valued and infinitely differentiable function y(x) of x which is the
solution of F (x, y(x)) = 0 for each x ∈

(
−∞,− log(P(H = 0))

)
. Therefore

f(x) = y(x) for x ∈
(
− ∞,− log(P(H = 0))

)
, proving (a). The first and

second derivatives of f(x) are

f ′(x) = − E(ef(x)H)

E(Hef(x)H)
,(A.1)

f ′′(x) = −f ′(x)

(
1− E(ef(x)H)E(H2ef(x)H)(

E(Hef(x)H)
)2

)
.

Observe that f ′(x) < 0, which implies that f(x) is decreasing. To prove
concavity, we wish to show that f ′′(x) ≤ 0. This follows from(

E(Hef(x)H)
)2 ≤ E(ef(x)H)E(H2ef(x)H),

which is just the Cauchy-Schwarz inequality. A second order Taylor expan-
sion of f(x) combined with the facts that f(0) = 0, f ′(0) = −λH and
f ′′(0) = −λ3

Hσ2
H immediately implies (4.3). Lastly, since f(x) is concave,

f(x) ≤ f ′(0)x ≤ λH |x|, x ≤ 0.

Furthermore, the function |f(x)| = −f(x) is convex when restricted to x ≥ 0.
Therefore,

|f(x)| ≤ |f(K)| − |f(0)|
K − 0

x =
|f(K)|
K

x, 0 ≤ x ≤ K.

A.2. Proof of Lemma 4.2. We begin by proving (4.15), or

lim
n→∞

sup
0<|θi|<K

c
(n)
e,i (rnθi)

r2nθ
2
i

(A.2)

= lim
n→∞

sup
|y|≤K

1

2

∣∣(η(n)i

)′′
(rny)−

(
η
(n)
i

)′′
(0)

∣∣ = 0, i ∈ E .

Using (A.1), we see that
(
η
(n)
i

)′′
(θi) can be written symbolically as

(
η
(n)
i

)′′
(θi) =

a1(θi)

a2(θi)

(
1− a1(θi)a3(θi)

(a2(θi))2

)
,

where

a1(θi) = E
(
eη

(n)
i (θi)g

(n)(T
(n)
e,i )) = e−θi ,
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a
(n)
2 (θi) = E

(
g(n)(T

(n)
e,i )e

η
(n)
i (θi)g

(n)(T
(n)
e,i )),

a
(n)
3 (θi) = E

(
(g(n)(T

(n)
e,i ))

2eη
(n)
i (θi)g

(n)(T
(n)
e,i )).

To prove (A.2), we want to replace each ai(rny) by ai(0) one at a time. For
this, we need to show that

sup
n≥1
|y|≤K

a1(rny) < ∞, sup
n≥1
|y|≤K

a
(n)
2 (rny) < ∞,

sup
n≥1
|y|≤K

1

a
(n)
2 (rny)

< ∞, sup
n≥1
|y|≤K

a
(n)
3 (rny) < ∞,

and

lim
n→∞

sup
|y|≤K

∣∣a1(rny)− a1(0)
∣∣ = 0,

lim
n→∞

sup
|y|≤K

∣∣∣a(n)2 (rny)− a
(n)
2 (0)

∣∣∣ = 0,(A.3)

lim
n→∞

sup
|y|≤K

∣∣a(n)3 (rny)− a
(n)
3 (0)

∣∣ = 0.(A.4)

We begin with a1(θi) = e−θi :

sup
n≥1
|y|≤K

erny < ∞ and lim
n→∞

sup
|y|≤K

∣∣e−rny − 1
∣∣ = 0.

Moving on to a
(n)
2 (θi) = E

(
g(n)(T

(n)
e,i )e

η
(n)
i (θi)g

(n)(T
(n)
e,i )); we first prove (A.3).

By (4.8), we have

|η(n)i (rny)g
(n)(T

(n)
e,i )| ≤ ĉ

(n)
e,i (rnK)|y|, |y| ≤ K.(A.5)

Now observe that

lim
n→∞

sup
|y|≤K

∣∣∣∣∣Eg(n)(T (n)
e,i )− Eg(n)(T

(n)
e,i )e

η
(n)
i (rny)g(n)(T

(n)
e,i )

∣∣∣∣∣
≤ lim

n→∞
sup
|y|≤K

∣∣∣∣∣E(g(n)(T (n)
e,i )

)2
η
(n)
i (rny)e

ĉ
(n)
e,i (rnK)|y|

∣∣∣∣∣
≤ lim

n→∞
rnKĉ

(n)
e,i (rnK)eĉ

(n)
e,i (rnK)K

E
(
T
(n)
e,i

)2
= 0.



182 A. BRAVERMAN, J. G. DAI, AND M. MIYAZAWA

In the first inequality, we use (A.5) together with the bound

|ex − 1| ≤ |x|e|x|, x ∈ R.(A.6)

The second inequality is by (4.8) and the fact that the limit equals zero
follows from (2.11) and Lemma 4.3, proving (A.3). By (2.9), we know that

lim
n→∞

a
(n)
2 (0) =

1

λe,i
> 0.

Combined with (A.3), this implies

sup
n≥1
|y|≤K

a
(n)
2 (rny) < ∞ and sup

n≥1
|y|≤K

1

a
(n)
2 (rny)

< ∞.

Lastly, we tackle a
(n)
3 (θi) = E

(
(g(n)(T

(n)
e,i ))

2eη
(n)
i (θi)g

(n)(T
(n)
e,i )), first proving

(A.4). We have

sup
|y|≤K

∣∣∣E(g(n)(T (n)
e,i )

)2
eη

(n)
i (rny)g(n)(T

(n)
e,i ) − E

(
g(n)(T

(n)
e,i )

)2∣∣∣
≤ sup

|y|≤K
E

∣∣∣(g(n)(T (n)
e,i )

)3
η
(n)
i (rny)e

ĉ
(n)
e,i (rnK)K

∣∣∣
≤ rnKĉ

(n)
e,i (rnK)eĉ

(n)
e,i (rnK)K

E
(
T
(n)
e,i ∧ 1/rn

)3
≤ Kĉ

(n)
e,i (rnK)eĉ

(n)
e,i (rnK)K

× E
[(
T
(n)
e,i

)2(
rnT

(n)
e,i ∧ 1

)(
1(T

(n)
e,i > r−1/2

n ) + 1(T
(n)
e,i ≤ r−1/2

n )
)]

≤ Kĉ
(n)
e,i (rnK)eĉ

(n)
e,i (rnK)K

E
[(
T
(n)
e,i

)2
1(T

(n)
e,i > r−1/2

n ) +
(
T
(n)
e,i

)2
r1/2n

]
→ 0

as n → ∞. The first inequality is obtained by (A.5) and (A.6) and the second
one by (4.8). Convergence to zero is justified by (2.11) and Lemma 4.3 (whose
proof in Section A.3 does not use Lemma 4.2), which proves (A.4). Finally,
(2.9) implies

lim
n→∞

a
(n)
3 (0) < ∞.

Combined with (A.4), this gives us

sup
n≥1
|y|≤K

a
(n)
3 (rny) < ∞,

which concludes the proof of (A.2).
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The second claim of this lemma, (4.16), is now simple to verify. Indeed,

recalling the form of c
(n)
s,j (θ) from (4.13) and the definition of cLip,j(K) from

(4.14), we have

lim
n→∞

sup
0<‖θ‖<K

c
(n)
s,j (rnθ)

r2n‖θ‖2

= lim
n→∞

sup
|y|≤cLip,j(rnK)rnK

log2 tj(rnθ)

r2n‖θ‖2
∣∣∣(χ(n)

j

)′′
(y)−

(
χ
(n)
j

)′′
(0)

∣∣∣
+ lim

n→∞
sup

0<‖θ‖<K
λ̃
(n)
s,j

c1,j(rnθ)

r2n‖θ‖2
+ lim

n→∞
sup

0<‖θ‖<K

1

2

(
λ̃
(n)
s,j

)3(
σ̃
(n)
s,j

)2 c2,j(rnθ)
r2n‖θ‖2

.

From (4.6), (4.10) and the fact that log tj(θ) ∈ C∞(Rd) its easy to see that

lim
n→∞

sup
0<‖θ‖≤K

c2,j(rnθ)

r2n‖θ‖2
= 0 and lim

n→∞
sup

0<‖θ‖≤K

c2,j(rnθ)

r2n‖θ‖2
= 0.

Furthermore,

lim
n→∞

sup
|y|≤cLip,j(rnK)rnK

log2 tj(rnθ)

r2n‖θ‖2
∣∣∣(χ(n)

j

)′′
(y)−

(
χ
(n)
j

)′′
(0)

∣∣∣
≤ lim

n→∞
sup

|y|≤cLip,j(rnK)rnK
c2Lip,j(rnK)

∣∣∣(χ(n)
j

)′′
(y)−

(
χ
(n)
j

)′′
(0)

∣∣∣ = 0,

because by the definition of χ
(n)
j in (3.24), it is not hard to repeat the

arguments used in this proof to see that a version (A.2) holds for χ
(n)
j as

well.

A.3. Proof of Lemma 4.3. We want to show that for all i ∈ E and
all K ∈ (0, rnM ],

sup
n≥1

ĉ
(n)
e,i (rnK) = sup

n≥1

{
max

{
λ̃
(n)
e,i , |η

(n)
i (rnK)|/rnK

}}
< ∞.(A.7)

By (4.6), λ̃
(n)
e,i → λe,i < ∞. Now since η

(n)
i (θi) is finite for each fixed n, it is

enough to show that

lim sup
n→∞

|η(n)i (rnK)|
rnK

< ∞.
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Recalling the definition of η
(n)
i (θi) in (3.22) and the truncation function

g(n)(y) = min(y, 1/rn) defined for y ∈ R, we observe that

|η(n)i (rnK)|
rnK

≤ sup
0≤y≤rnK

∣∣(η(n)i

)′
(y)

∣∣(A.8)

= sup
0≤y≤rnK

e−y

E
(
g(n)(T

(n)
e,i )e

g(n)(T
(n)
e,i )η

(n)
i (y))

≤ 1

E
(
g(n)(T

(n)
e,i )e

g(n)(T
(n)
e,i )η

(n)
i (rnK)) ,

where in the last inequality, we used part (b) of Lemma 4.1, which states

that η
(n)
i (θi) is a decreasing function of θi. To bound this term, we first argue

that there exists an ε ∈ (0, 1) and y1 > 0 such that

lim inf
n→∞

P(T
(n)
e,i ≥ y1) ≥ ε.(A.9)

Suppose (A.9) is not true. Then lim infn→∞ P(T
(n)
e,i ≥ y) < ε for any ε ∈ (0, 1)

and y > 0. On the other hand, it follows from the uniform integrability
assumption (2.11) that for any ε′, there exists a0 such that for any a ≥ a0,

E
(
T
(n)
e,i 1(T

(n)
e,i > a)

)
< ε′, n ≥ 1.

Hence,

E(T
(n)
e,i ) = E

(
T
(n)
e,i 1(T

(n)
e,i ≤ y)

)
+ E

(
T
(n)
e,i 1(T

(n)
e,i ∈ (y, a])

)
+ E

(
T
(n)
e,i 1(T

(n)
e,i > a)

)
≤ y + aP(T

(n)
e,i > y) + ε′,

and

lim
n→∞

E(T
(n)
e,i ) = lim inf

n→∞
E(T

(n)
e,i ) ≤ y + lim inf

n→∞
aP(T

(n)
e,i > y) + ε′ ≤ y + aε+ ε′.

Taking ε, y → 0 and then ε′ → 0, we conclude that limn→∞ E(T
(n)
e,i ) = 0,

which contradicts λe,i < ∞ in (2.9) and therefore proves (A.9). In addition to
(A.9), the uniform integrability assumption (2.11) implies that there exists
a y2 > y1 such that

sup
n≥1

P(T
(n)
e,i ≥ y2) < ε/2.(A.10)
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Fixing such y1 and y2, and recalling that η
(n)
i (rnK) < 0 for all n ≥ 1, we

see that

1

E
(
g(n)(T

(n)
e,i )e

g(n)(T
(n)
e,i )η

(n)
i (rnK))

≤ 1

E
(
g(n)(T

(n)
e,i )e

g(n)(T
(n)
e,i )η

(n)
i (rnK)1(y1 ≤ T

(n)
e,i < y2)

)
≤ 1

E
(
g(n)(y1)eg

(n)(y2)η
(n)
i (rnK)1(y1 ≤ T

(n)
e,i < y2)

)
=

eg
(n)(y2)|η(n)

i (rnK)|

g(n)(y1)P(y1 ≤ T
(n)
e,i < y2)

.

We recall our choices of y1 and y2 from (A.9) and (A.10) to arrive at

lim sup
n→∞

|η(n)i (rnK)|
rnK

≤ lim sup
n→∞

eg
(n)(y2)|η(n)

i (rnK)|

g(n)(y1)P(y1 ≤ T
(n)
e,i < y2)

≤ lim sup
n→∞

2

y1ε
ey2|η

(n)
i (rnK)|.

Since η
(n)
i (rnK) < 0, it remains to show that

lim inf
n→∞

η
(n)
i (rnK) > −∞.

Now for any y > 0,

e−rnK = E
(
eg

(n)(T
(n)
e,i )η

(n)
i (rnK)) ≤ eg

(n)(y)η
(n)
i (rnK)

P(T
(n)
e,i > y) + P(T

(n)
e,i < y)

≤ eg
(n)(y)η

(n)
i (rnK) + P(T

(n)
e,i < y).

We choose y = y1 from (A.9), and use the fact that e−rnK → 1, to see that

lim inf
n→∞

(
e−rnK − P(T

(n)
e,i < y1)

)
=1− lim sup

n→∞
P(T

(n)
e,i < y1)≥ 1− (1− ε) = ε.

Therefore,

lim inf
n→∞

η
(n)
i (rnK) ≥ lim inf

n→∞
1

g(n)(y1)
log

(
e−rnK − P(T

(n)
e,i < y1)

)
=

1

y1
lim inf
n→∞

log
(
e−rnK − P(T

(n)
e,i < y1)

)
,
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≥ 1

y1
log(ε),

where the last inequality is obtained by taking the limit infimum inside the
logarithm. This proves (A.7). The argument to show that

sup
n≥1

ĉ
(n)
s,j (rnK) = sup

n≥1
cLip,j(rnK)max

{
λ̃
(n)
s,j , |χ

(n)
j (r̂nK)|/r̂nK

}
< ∞

is nearly identical to the one for ĉ
(n)
e,i (rnK), and requires two slight modifi-

cations. First, observe that

sup
n≥1

cLip,j(rnK) < ∞,

which is a trivial consequence of its definition in (4.14). Second, the equality
in (A.8) would be modified to

sup
‖y‖≤rnK

y∈Rd

∣∣(χ(n)
j

)′
(log tj(y))

∣∣ = sup
‖y‖≤rnK

y∈Rd

e− log tj(y)

E
(
g(n)(T

(n)
s,j )e

g(n)(T
(n)
s,j )χ

(n)
j (log tj(y))

)
≤ sup

‖y‖≤rnK

y∈Rd

eC

E
(
g(n)(T

(n)
s,j )e

g(n)(T
(n)
s,j )χ

(n)
j (log tj(y))

) ,
where C > 0 is an upper bound for sup‖y‖≤rnK |log tj(y)| that is independent
of n, and tj(θ) is defined in (3.23).

A.4. Proofs of Lemmas 4.4 and 4.5 . Let ν(n) be the probability
measure corresponding to X(n)(∞). For i ∈ E and j ∈ J , recall the external

arrival process {E(n)
i (t), t ≥ 0} and the departure process {D(n)

j (t), t ≥ 0}
defined in (3.7) and (3.8), respectively. Set

E
(n)
i (0, t] = E

(n)
i (t)− E

(n)
i (0) and D

(n)
j (0, t] = D

(n)
j (t)−D

(n)
j (0).

In this section we prove the following five statements, which imply Lem-
mas 4.4 and 4.5. We show that for all i ∈ E and j ∈ J , any real number
K > 0 and any integer n ≥ 1,

P(L
(n)
j (∞) > 0) =

Eν(n)

[
D

(n)
j (0, 1]

]
λ
(n)
s,j

,(A.11)

Eν(n)

[
E

(n)
i (0, t]

]
= λ

(n)
e,i t,(A.12)
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Eν(n)

[
D

(n)
j (0, t]

]
= λ

(n)
a,j t,(A.13)

E
[
R

(n)
s,j (∞)1(R

(n)
s,j (∞) > K)1(L

(n)
j (∞) > 0)

]
(A.14)

=
Eν(n)

[
D

(n)
j (0, 1]

]
2

E
[
(T

(n)
s,j )

21(T
(n)
s,j > K)−K21(T

(n)
s,j > K)

]
,

E
[
R

(n)
e,i (∞)1(R

(n)
e,i (∞) > K)

]
(A.15)

=
Eν(n)

[
E

(n)
i (0, 1]

]
2

E
[
(T

(n)
e,i )

21(T
(n)
e,i > K)−K21(T

(n)
e,i > K)

]
.

Assuming these five equations are correct, we see that Lemma 4.4 is imme-
diately implied by (A.11) and (A.13). To see why Lemma 4.5 is true, we
write

E
[
R

(n)
s,j (∞)1(R

(n)
s,j (∞) > K)

]
= E

[
R

(n)
s,j (∞)1(R

(n)
s,j (∞) > K)1(L

(n)
j (∞) > 0)

]
+ E

[
R

(n)
s,j (∞)1(R

(n)
s,j (∞) > K)1(L

(n)
j (∞) = 0)

]
= E

[
R

(n)
s,j (∞)1(R

(n)
s,j (∞) > K)1(L

(n)
j (∞) > 0)

]
+ E

[
T
(n)
s,j 1(T

(n)
s,j > K)

]
P(L

(n)
j (∞) = 0),

where in the last equality we use
[
R

(n)
s,j (∞)|L(n)

j (∞) = 0
] d
= T

(n)
s,j , which

is true by construction. Uniform integrability of {R(n)
e,i (∞), n ≥ 1} and

{R(n)
s,j (∞), n ≥ 1} then follows from (2.9), (2.11)–(2.13), and (A.12)–(A.15),

thereby proving Lemma 4.5.
In the rest of this section, we prove (A.11)–(A.15) using the BAR (3.15),

which is repeated here as

Eν

[
Af(X(0))

]
(A.16)

+
1

t

∞∑
m=1

Eν

[(
f(Xδm)− f(Xδm−)

)
1(0 < T (δm) ≤ t)

]
= 0, f ∈ D,

where δ
(n)
m , T (δ

(n)
m ), X

(n)

δ
(n)
m

and X
(n)

δ
(n)
m −

are introduced below (3.13) in Sec-

tion 3.1, the operator A is defined in (3.11), and the class of functions D is
defined above (3.11).

Fix an integer κ ≥ 1 and j ∈ J . We now prove (A.11) by applying the
BAR (A.16) to fκ,1(x) = vj ∧ κ (which belongs to D) to obtain
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E
[
1(L

(n)
j (∞) > 0)1(R

(n)
s,j (∞) < κ)

]
=

1

t

∞∑
m=1

Eν(n)

[(
fκ,1(X

(n)

δ
(n)
m

)− fκ,1(X
(n)

δ
(n)
m −

)
)
1(0 < T (δ(n)m ) ≤ t)

]
.

For station j, we recall the sequence of service times {T (n)
s,j (q), q ≥ 1} and

the sequence of departure times {S(n)
j (q), q ≥ 1}, defined in (2.2) and (3.6),

respectively. From the form of the test function, we see that fκ,1(X
(n)

δ
(n)
m

) −

fκ,1(X
(n)

δ
(n)
m −

) = 0 for all events δ
(n)
m that do not correspond to departures

from station j. Therefore,
∞∑

m=1

Eν(n)

[(
fκ,1(X

(n)

δ
(n)
m

)− fκ,1(X
(n)

δ
(n)
m −

)
)
1(0 < T (δ(n)m ) ≤ t)

]
(A.17)

=

∞∑
q=1

Eν(n)

[
fκ,1

(
T
(n)
s,j (q)

)
1(S

(n)
j (q) ≤ t)

]
=

∞∑
q=1

E
[
fκ,1(T

(n)
s,j )

]
Eν(n)

[
1(S

(n)
j (q) ≤ t)

]
= Eν(n)

[
D

(n)
j (0, t]

]
E
[
fκ,1(T

(n)
s,j )

]
.

In the second equality, we used the independence of T
(n)
s,j (q) and S

(n)
j (q), and

in the last equality we use the Fubini-Tonelli theorem, justified by the fact
that the summands are non-negative. We therefore have

E
[
1(L

(n)
j (∞) > 0)1(R

(n)
s,j (∞) < κ)

]
=

1

t
Eν(n)

[
D

(n)
j (0, t]

]
E
[
fκ,1(T

(n)
s,j )

]
, j ∈ J .

We set t = 1, take the limit as κ → ∞ on each side, and apply the monotone
convergence theorem to conclude the proof of (A.11).

To prove (A.12), we use the test function fκ,2(x) = ui ∧ κ (with κ ≥ 1,

and i ∈ E) and repeat the argument for (A.11), but instead of S
(n)
j (q), we

use U
(n)
i (q), as defined in (3.2) to be the qth external arrival time to station

i ∈ E . An alternative way to prove (A.12) would be to verify that the process

E
(n)
i is stationary when E

(n)
i (0) is initialized accoridng to ν(n). Then (A.12)

would follow from [33, Theorem 76].
We now move on to prove (A.13). We recall from (3.9) that on every

sample path,

L
(n)
j (t)− L

(n)
j (0) = E

(n)
j (0, t]−D

(n)
j (0, t] +

∑
k∈J

Φ
(k)
j (D

(n)
k (0, t]),(A.18)



STEADY-STATE HEAVY TRAFFIC APPROXIMATION: BAR APPROACH 189

where Ej(t) ≡ 0 if j ∈ J \ E and {Φ(k)(m),m ≥ 1} is the customer routing
process from (3.4). We first show that

Eν(n)

[
L
(n)
j (t)− L

(n)
j (0)

]
= 0,

which would have been immediate provided we knew that E
[
L
(n)
j (∞)

]
< ∞.

Instead, we use the stationarity of ν(n) to see that for every κ ≥ 1,

Eν(n)

[
(L

(n)
j (t) ∧ κ)− (L

(n)
j (0) ∧ κ)

]
= 0.

We wish to take the limit as κ → ∞ and apply the dominated convergence
theorem. To justify doing so, observe that∣∣(L(n)

j (t) ∧ κ)− (L
(n)
j (0) ∧ κ)

∣∣ ≤ E
(n)
j (0, t] +

∑
k∈J

D
(n)
k (0, t],

and by (3.12), the expectation of the right hand side (with respect to ν(n))
is finite. We apply the dominated convergence theorem to get

0 = lim
κ→∞

Eν(n)

[
(L

(n)
j (t) ∧ κ)− (L

(n)
j (0) ∧ κ)

]
= Eν(n)

[
L
(n)
j (t)− L

(n)
j (0)

]
,

implying

Eν(n)

[
E

(n)
j (0, t]

]
− Eν(n)

[
D

(n)
j (0, t]

]
+

∑
k∈J

Eν(n)

[
Φ
(k)
j (D

(n)
k (0, t])

]
= 0.

Suppose we knew that

Eν(n)

[
Φ
(k)
j (D

(n)
k (0, t])

]
= pkjEν(n)

[
D

(n)
k (0, t]

]
.(A.19)

Then

Eν(n)

[
E

(n)
j (0, t]

]
−

∑
k∈J

Eν(n)

[
D

(n)
k (0, t]

]
(δkj − pkj) = 0, j ∈ J .

Letting D(n)(0, t] ∈ R
d be the vector whose elements are D

(n)
k (0, t], we would

use (2.4) and (A.12) to conclude that

E
[
D(n)(0, t]

]
= (I − PT)−1λ(n)

e t = λ(n)
a t,

thereby completing the proof of (A.13). It remains to verify (A.19). Observe
that

Eν(n)

[
Φ
(k)
j (D

(n)
k (0, t])

]
= Eν(n)

[ ∞∑
q=1

φ
(k)
j (q)1(S

(n)
j (q) ≤ t)

]
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=
∞∑
q=1

Eν(n)

[
φ
(k)
j (q)1(S

(n)
j (q) ≤ t)

]
,

where φ
(k)
j is the indicator that the qth customer departing station k routes

to station j, as defined in (3.1), and in the second equality we apply the
Fubini-Tonnelli theorem, justified by the non-negativity of the summands.

By definition, φ
(k)
j (q) is independent of S

(n)
j (q) for all q ≥ 1, and

Eν(n)

[
φ
(k)
j (q)

]
= pkj , q ≥ 1.

Repeating the arguments used to obtain (A.17), we see that

Eν(n)

[
Φ
(k)
j (D

(n)
k (0, t])

]
= pkjEν(n)

[
D

(n)
k (0, t]

]
.

This proves (A.19) and concludes the proof of (A.13).
We move on to prove (A.14). For j ∈ J and K > 0, we introduce the test

function

fκ,3(x) = [v2j 1(vj > K) +K21(vj ≤ K)] ∧ κ2, κ ≥ �K� .

Observe that

f ′
κ,3(vj) = 2vj1(K < vj < κ).

Plugging fκ,3(x) into (A.16) and repeating the arguments used to get (A.17),
we get

E
[
1(L

(n)
j (∞) > 0)R

(n)
s,j (∞)1(K < R

(n)
s,j (∞) < κ)

]
=

1

2
Eν(n)

[
D

(n)
j (0, 1]

]
E
[
fκ,3(T

(n)
s,j )−K2

]
.

Taking κ → ∞ and applying the monotone convergence theorem proves
(A.14). Finally, for i ∈ E , the argument for (A.15) is identical once we use
the test function

fκ,4(x) = [u2i 1(ui > K) +K21(ui ≤ K)] ∧ κ2, κ ≥ �K� .

This concludes the proofs of Lemmas 4.4 and 4.5.

A.5. Proof of Lemma 4.6. We begin with (4.18). Recall the definition
of γ(θ) from (2.27) and for i ∈ E and j ∈ J , the quadratic approximations
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of η
(n)
i (θi) and ζ

(n)
j (θ) from (4.7) and (4.11). Lemma 4.2 tells us that the

error from these quadratic approximations vanishes. To conclude (4.18), it
remains to show that for all i ∈ E and j ∈ J ,

lim
n→∞

1

rn
|λ̃(n)

e,i − λ
(n)
e,i | = 0, lim

n→∞
1

rn
|λ̃(n)

s,j − λ
(n)
s,j | = 0,

lim
n→∞

|σ̃(n)
e,i − σ

(n)
e,i | = 0, lim

n→∞
|σ̃(n)

s,j − σ
(n)
s,j | = 0.

The latter two statements are a consequence of (2.9), (2.10), and (4.6). We
observe that

1

rn
|λ̃(n)

e,i − λ
(n)
e,i | = λ̃

(n)
e,i λ

(n)
e,i

1

rn

∣∣ET (n)
e,i − E(T

(n)
e,i ∧ 1/rn)

∣∣
= λ̃

(n)
e,i λ

(n)
e,i

1

rn
E(T

(n)
e,i 1(T

(n)
e,i > 1/rn))

≤ λ̃
(n)
e,i λ

(n)
e,i

∣∣E((T (n)
e,i )

21(T
(n)
e,i > 1/rn))

∣∣ → 0 as n → ∞,

where the convergence to zero is by (2.9), (4.6) and the uniform integrability

of {(T (n)
e,i )

2, n ≥ 1}. The same argument holds for λ̃
(n)
s,j , proving (4.18).

We move on to verify (4.19), or

lim
n→∞

sup
θ<0

‖θ‖≤K

∣∣∣E[f (n)
rnθ

(X(n)(∞))
]
− ϕ(n)(θ)

∣∣∣ = 0.(A.20)

Recalling the definitions of f
(n)
rnθ

and ϕ(n)(θ) from (3.21) and (4.1), we have

sup
θ<0

‖θ‖≤K

∣∣∣E[f (n)
rnθ

(X(n)(∞))− e〈θ,Z
(n)(∞)〉]∣∣∣(A.21)

≤ sup
θ<0

‖θ‖≤K

E

∣∣∣e∑i∈E η
(n)
i (rnθi)g

(n)(R
(n)
e,i (∞))+

∑
j∈J ζ

(n)
j (rnθ)g(n)(R

(n)
s,j (∞)) − 1

∣∣∣
≤ cf (K) sup

θ<0
‖θ‖≤K

E

∣∣∣∑
i∈E

(R
(n)
e,i (∞) ∧ 1/rn)η

(n)
i (rnθi)

+
∑
j∈J

(R
(n)
s,j (∞) ∧ 1/rn)ζ

(n)
j (rnθi)

∣∣∣.
To obtain the last inequality, we used (A.6) and

sup
‖θ‖≤K

e|
∑

i∈E η
(n)
i (rnθi)g

(n)(R
(n)
e,i (∞))+

∑
j∈J ζ

(n)
j (rnθ)g(n)(R

(n)
s,j (∞))| ≤ cf (K),
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where cf (K) is defined in (4.17). For i ∈ E we have

lim
n→∞

sup
θ<0

‖θ‖≤K

E

∣∣∣(R(n)
e,i (∞) ∧ 1/rn)η

(n)
i (rnθi)

∣∣∣
≤ lim

n→∞
ĉ
(n)
e,i (rnK)rnKE

[
R

(n)
e,i (∞)

]
= 0,

where the inequality is by (4.8) and the fact that the limit equals zero is by

Lemma 4.3 and Lemma 4.5. A similar argument holds for R
(n)
s,j (∞), implying

(A.20).
We move on to verify (4.20), or

lim
n→∞

sup
θ<0

‖θ‖≤K

1

rn

∣∣∣E[1(L(n)
k (∞) = 0)

(
f
(n)
rnθ

(X(n)(∞))− e〈θ,Z
(n)(∞)〉)]∣∣∣(A.22)

= 0, k ∈ J .

Repeating the steps used to obtain (A.21), we have

sup
θ<0

‖θ‖≤K

1

rn

∣∣∣E[1(L(n)
k (∞) = 0)

(
f
(n)
rnθ

(X(n)(∞))− e〈θ,Z
(n)(∞)〉)]∣∣∣(A.23)

≤ cf (K)
∑
i∈E

E

∣∣∣Kĉ
(n)
e,i (K)1(L

(n)
k (∞) = 0)(R

(n)
e,i (∞) ∧ 1/rn)

∣∣∣
+ cf (K)

∑
j∈J

E

∣∣∣Kĉ
(n)
s,j (rnK)1(L

(n)
k (∞) = 0)(R

(n)
s,j (∞) ∧ 1/rn)

∣∣∣.
To show that (A.23) vanishes as n → ∞, observe that by (2.11) and Lem-
ma 4.4,

E
[
1(L

(n)
k (∞) = 0)(R

(n)
e,i (∞) ∧ 1/rn)

]
= E

[
1(L

(n)
k (∞) = 0)(R

(n)
e,i (∞) ∧ 1/rn)

(
1(R

(n)
e,i (∞) > r−1/2

n )

+ 1(R
(n)
e,i (∞) ≤ r−1/2

n )
)]

≤ E
[
R

(n)
e,i (∞)1(R

(n)
e,i (∞) > r−1/2

n )
]
+ E

[
1(L

(n)
k (∞) = 0)r−1/2

n

]
→ 0 as n → ∞.

Repeating similar arguments for R
(n)
s,j (∞) proves (A.22).
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APPENDIX B: PROOF OF LEMMA 6.1

We begin by proving (a). Fix M > 0 and δ > 0. Setting

θ = −δ(1, 1, ..., 1)T = −δ1,

we see that

φ(n)(θ) = φ(n)(δ)(B.1)

=

∫
R
d
+

e−δ〈1,x〉ν(n)(dx)

=

∫
{||x||∞≤M}

e−δ〈1,x〉ν(n)(dx) +

∫
{||x||∞≤M}c

e−δ〈1,x〉ν(n)(dx).

Hence, we have

φ(n)(θ) ≥ e−δMdν(n)
{
||x||∞ ≤ M

}
.

Assuming that {ν(n)} is tight, we can fix ε > 0 and take M large enough
and then δ small enough such that

φ(δ) = lim
n→∞

φ(n)(δ) ≥ 1− ε.

Since each φ(n) is monotone, φ is monotone too, which immediately implies

lim
θ↑0

φ(θ) = 1.

Furthermore, (B.1) also implies that

φ(n)(δ) ≤ ν(n)
{
||x||∞ ≤ M

}
+ e−δM ,

or

φ(δ)− e−δM ≤ lim inf
n→∞

ν(n)
{
||x||∞ ≤ M

}
.

If limθ↑0 φ(θ) = 1, we can fix ε > 0 and choose a δ small enough so that
φ(δ) > 1− ε/2. Then take M large enough so that e−δM < ε/2 to conclude
that

lim inf
n→∞

ν(n)
{
||x||∞ ≤ M

}
≥ 1− ε,

which proves (a). Statement (b) is an immediate consequence of the conti-
nuity theorem for moment generating functions [34, Lemma 4].
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