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Particle island models [31] provide a means of parallelization of
sequential Monte Carlo methods, and in this paper we present novel
convergence results for algorithms of this sort. In particular we estab-
lish a central limit theorem—as the number of islands and the com-
mon size of the islands tend jointly to infinity—of the double boot-
strap algorithm with possibly adaptive selection on the island level.
For this purpose we introduce a notion of archipelagos of weighted is-
lands and find conditions under which a set of convergence properties
are preserved by different operations on such archipelagos. This the-
ory allows arbitrary compositions of these operations to be straight-
forwardly analyzed, providing a very flexible framework covering the
double bootstrap algorithm as a special case. Finally, we establish
the long-term numerical stability of the double bootstrap algorithm
by bounding its asymptotic variance under weak and easily checked
assumptions satisfied typically for models with non-compact state
space.

1. Introduction. This paper discusses approaches to parallelization of
sequential Monte Carlo (SMC) methods (or particle filters) approximating
normalized Feynman-Kac distribution flows. At present, SMC methods are
used successfully for online sampling from sequences of complex distribu-
tions in a wide range of applications, including nonlinear filtering, signal
processing, data assimilation [see, e.g., 19, 6, 27, 3, 9, and the references
therein], and rare event analysis [11, 5]. These algorithms evolve, recursively
and randomly in time, a sample of random draws, particles, with associated
importance weights. The particle cloud is updated through selection and
mutation operations, where the former duplicates or eliminates, through
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resampling, particles with large or small importance weights, respectively,
while the latter disseminates randomly the particles over the state space and
updates accordingly the importance weights for further selection.

SMC methods are computationally intensive, which may be critical in
online applications. In particular, since the particle interaction enforced by
the selection operation is of “global” nature (as it draws, with replacement,
each particle from the entire particle population rather than from a subset
of the same), running SMC methods in parallel on multicore processors is
not straightforward. A natural ideal, which is the basis also for the present
paper, is to parallelize the algorithm by, instead of considering a single batch
of N particles, simply dividing the particle population into N1 batches of
each N2 particles (i.e., N = N1N2), where each batch is referred to as a
particle island (or simply an island).

Parallel implementation of SMC was first proposed in [2] in the form of an
algorithm referred to as the local exchange particle filter (LEPF), in which
groups of particles are spread across computational units. This algorithm
was later improved in [1] (see also [20] where a detailed convergence analysis
of the LEPF is carried out). As indicated by the almost 300 Google Scholar
citations at the time of writing, the LEPF has triggered a substantial interest
in parallelization of SMC. Most notably, variations of the LEPF are found
in the contexts of multitarget tracking [30], optical tracking [29], and state
estimation [28].

In the present paper we consider an algorithm suggested in [31], which
may be viewed as a variant of the LEPF algorithm. In this framework,
each island evolves according to the standard SMC scheme subjecting al-
ternatingly the subpopulation to selection and mutation. Unfortunately, the
division of the particle population introduces additional bias which may be
of note for moderate island sizes N2. Thus, in [31] it is proposed to reduce
this bias by performing additional selection also on the island level by re-
sampling multinomially, when needed, the islands according to probabilities
proportional to the weight averages over the different subpopulations. Se-
lection on the island level may be performed systematically, as in the double
bootstrap (B2) algorithm (in the present paper we have chosen to denote the
algorithm “B2” rather than “2B”, as we consider it more correctly described
as a “square bootstrap” rather than a “double bootstrap”; nevertheless, the
algorithm must not be confused with the SMC square (SMC2) algorithm
proposed in [8], which is, if still of a related form, of a different nature) or
may be activated adaptively by some criterion measuring the skewness of
the island weights. The latter approach will be referred to by us as the dou-
ble bootstrap algorithm with adaptive selection on the island level (B2ASIL).
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At the end of the day, a sequence of Monte Carlo estimators is obtained by
weighing up, using the island weights, the self-normalized empirical mea-
sures associated with the different particle islands.

Needless to say, the theoretical analysis of B2-type algorithms is challeng-
ing due to the intricate dependence structure imposed by the island selection
operation and the “double asymptotics” introduced by the two sample sizes
N1 and N2. The authors of [31], who base their theoretical analysis on a
reformulation of the particle island model as an extended Feynman-Kac
model on an augmented space of dimension N2, detour the latter difficulty
by letting first the number N1 of islands and then the number N2 of in-
dividuals of each island tend to infinity. By separating the asymptotics in
this manner, the analysis can, not surprisingly, at least in the case of the B2

algorithm, be handled using classical techniques from SMC analysis, and in
this way the authors establish convergence of bias and variance when these
quantities are scaled with the size N of the system. However, working with
this somewhat synthetic mode of convergence (with separated limits), the
authors fail to supplement their consistency results with a central limit the-
orem (CLT). Moreover, they do not provide any convergence results for the
B2ASIL algorithm.

Nevertheless, even though the islands are allowed to interact through
selection, any two individuals of the system should become more and more
statistically independent as the number of islands as well as the size of
the islands grow (cf. the propagation of chaos property of standard SMC
methods [10]). Thus, we may expect a law of large number as well as a CLT
to hold when N1 and N2 tend jointly to infinity. Moreover, in analogy with
similar results for standard, single batch SMC methods [see 12, 7, 22, 15],
we may expect the rate of such a CLT to be

√
N .

The aim of the present paper is to improve the existing theoretical analy-
sis of particle island models by establishing results of the previous type. For
this purpose we will introduce a notion of archipelagos of weighted islands
that generalizes the particle models studied in [31] and consider three kinds
of convergence properties of such archipelagos, namely consistency (conver-
gence in probability), asymptotic normality (convergence in distribution in
terms of a CLT with rate

√
N), and large deviation (an exponential inequal-

ity of Hoeffing-type that holds uniformly over all islands). After this, we
perform single-step analyses of three kinds of operations on archipelagos,
namely selection on the island level, selection on the individual level, and
mutation, and show how these operations preserve the convergence proper-
ties under consideration. As a consequence, we are able to establish that the
convergence properties in question are preserved through an arbitrary com-
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position of the mentioned operations, including the B2 algorithm as a special
case, and to provide explicit expressions of the associated asymptotic vari-
ance. Moreover, the flexibility of our results, which generalize those obtained
in [15] for standard, single batch SMC methods, makes these well-suited for
analyzing particle island algorithms with adaptive resampling strategies such
as the B2ASIL scheme, for which we provide a detailed analysis (including
a CLT). In our proofs, which rely on limit theorems for triangular arrays
obtained in [15], the working process is highly inductive. Since the intricate
dependence structures of the particle model force us to define triangular ar-
rays on the island level, we will often, when establishing the preservation of
a certain convergence property of a certain operation, face a situation where
the only way of obtaining some critical limit or bound is to add the same to
the list of induction hypotheses. After this, one establishes that the opera-
tion in question preserves also this additional property (limit or bound), by
possibly adding, if needed, further assumptions to the list, and so on. At the
end of the day, we have obtained a more or less minimal set (a hexad in the
case of asymptotic normality) of properties that need to be checked at each
induction step. In this machinery, the large deviation property is a critical
component, since it provides, as a consequence of the distribution-free char-
acter of Hoeffding-type inequalities, uniform control of the deviation of the
empirical measures associated with the different islands from their common
mean.

As a last contribution, we establish the numerical stability of the B2

algorithm by bounding uniformly the asymptotic variance of its output.
We carry through this analysis under a strong mixing condition as well a
local Doeblin condition (see Section 5.10 for details), where the latter is
considerably weaker than the former and easily verified for a large variety
of models with possibly non-compact state space. When operating under
the local Doeblin condition, we let the Feynman-Kac model be indexed by
a strictly stationary sequence of random parameters (corresponding, e.g.,
to random observations in the case of optimal filtering in hidden Markov
models) and show, using novel results in [17], that the sequence of asymptotic
variances is stochastically bounded (tight) in this setting. On the other hand,
imposing the strong mixing assumption, which is classical in the literature
of SMC analysis [13, 10], allows an explicit, deterministic uniform variance
bound to be obtained using standard methods.

To sum up, the contribution of the present paper is threefold, since we

• introduce a general theory of archipelagos of weighted particle islands
and analyze thoroughly the convergence properties, as the number
N1 of islands and the common size N2 of the islands tend jointly to
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infinity, of such objects when subjected to certain operations. For this
purpose, we develop a machinery that allows triangular arrays defined
on the island level to be analyzed and which may be used for handling
double asymptotics appearing in other kinds of island-type particle
algorithms.

• apply the previous theoretical results to the B2 and B2ASIL algorithms,
yielding laws of large numbers and CLTs for these schemes.

• establish the long-term stability of the B2 and B2ASIL algorithms un-
der weak and easily checked assumptions.

The paper is organized as follows. In Section 2 we introduce, after some
prefatory notation, the concept of archipelagos of weighted islands, and de-
fine the three different convergence properties of such archipelagos. Our
main results are, along with the three different operations under considera-
tion, presented in Section 3, and Section 4 discusses the application of these
results to the B2ASIL algorithm. In particular, in Corollary 4.3 we establish
the asymptotic normality of this algorithm, which implies the asymptotic
normality of the B2 algorithm as a special case (see Corollary 4.4), and pro-
vide a formula for the asymptotic variance; moreover, in Section 4.3 estab-
lish the long-term stability of the algorithm by showing that the asymptotic
variance of the B2 algorithm may, under suitable assumptions, be bounded
uniformly. The proofs are gathered in Section 5. Finally, Appendix A pro-
vides some technical results that are used frequently in Section 5.

2. Preliminaries.

2.1. Some notation. For (m,n) ∈ Z
2 such thatm ≤ n we denote �m,n� �

{m,m+ 1, . . . , n} ⊂ Z. Moreover, we denote by and R+ and R
∗
+ the sets of

nonnegative and positive real numbers, respectively, and by N
∗ the set of

positive integers. For any quantities {a�}n�=m we will use the vector notation
am:n = (am, . . . , an) with the convention am:n = ∅ if m > n.

In the sequel we assume that all random variables are defined on a com-
mon probability space (Ω,F ,P). For some given measurable space (X,X ) we
denote by M(X ) and M1(X ) ⊂ M(X ) the set of measures and probability
measures on (X,X ), respectively. In addition, we denote by F(X ) the set of
real-valued measurable functions on (X,X ) and by Fb(X ) ⊂ F(X ) the set of
bounded such functions. For h ∈ Fb(X ) we denote the sup norm ‖h‖∞ �
supx∈X |h(x)| and the oscillator norm osc(h) � sup(x,x′)∈X2 |h(x)−h(x′)|. For
any ν ∈ M(X ) and f ∈ F(X ) we denote by νf �

∫
f(x) ν(dx) the Lebesgue

integral of f under ν whenever this is well-defined. Now, given also some
other (Y,Y) measurable space, an unnormalized transition kernel K from
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(X,X ) to (Y,Y) is a mapping from X × Y to R+ such that for all A ∈ Y,
x �→ K(x,A) is a nonnegative measurable function on X and for all x ∈ X,
A �→ K(x,A) is a measure on (Y,Y). If K(x,Y) = 1 for all x ∈ X, then K
is called a transition kernel. The kernel K induces two integral operators,
one acting on functions and the other on measures. More specifically, let
f ∈ F(X ) and ν ∈ M(X ) and define the measurable function

Kf : X 	 x �→
∫

f(y)K(x, dy)

and the measure

νK : Y 	 A �→
∫

K(x,A) ν(dx)

whenever these quantities are well-defined. Finally, let K be as above and
let L be another unnormalized transition kernels from (Y,Y) to some third
measurable space (Z,Z); then we define the product of K and L as the
unnormalized transition kernel

KL : X×Z 	 (x,A) �→
∫

K(x, dy)L(y,A)

from (X,X ) to (Z,Z) whenever this is well-defined.

2.2. Weighted particle islands and archipelagos. Let {N1(N)}N∈N∗ and
{N2(N)}N∈N∗ be sequences of positive integers such that N1(N)N2(N) = N
for all N ∈ N

∗ and N1(N) → ∞ and N2(N) → ∞ as N → ∞. For lucid-
ity we will often omit the index N from the notation and write simply N1

and N2. In the following, let {(ξN (i, j), ωN (i, j)); (i, j) ∈ �1, N1� × �1, N2�}
be an array of X-valued random variables (the ξN ) with associated non-
negative (possibly unnormalized) weights (the ωN ). For each i ∈ �1, N1�,
the subset {(ξN (i, j), ωN (i, j))}N2

j=1 of the array will be referred to as an is-
land. With this terminology, a random variable ξN (i, j) in the array will
be referred to as an individual or a particle. Finally, we associate each is-
land {(ξN (i, j), ωN (i, j))}N2

j=1 with a nonnegative (possibly unnormalized)

weight ΩN (i). In the following, the set {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1

of islands with associated weights will be referred to as an archipelago
on (X,X ). We will always require the island weights to be positive and
the particle weights to be positive and uniformly bounded, i.e., there ex-
ists some constant |ω|∞ such that 0 < |ωN (i, j)| ≤ |ω|∞ for all (i, j) ∈
�1, N1(N)� × �1, N2(N)� and N ∈ N

∗.
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2.3. Convergence properties of archipelagos. In the following, any limit

(−→), limit in probability (
P−→), and limit in distribution (

D−→) is supposed
to hold as N → ∞ if not specified differently.

Definition 2.1 (consistency). An archipelago {(ΩN (i), {(ξN (i, j),
ωN (i, j))}N2

j=1)}
N1
i=1 on (X,X ) is said to be consistent for η ∈ M1(X ) if for all

h ∈ Fb(X ),

(C1)

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))
P−→ ηh,

(C2) max
i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

P−→ 0.

Note that the estimator in (C1) assigns the weight ΩN (i)/
∑N1

i′=1ΩN (i′) to

the self-normalized importance sampling estimator
∑N2

j=1 ωN (i, j)h(ξN (i, j))/∑N2
j′=1 ωN (i, j′) associated with island i ∈ �1, N1�, and the smallness condi-

tion (C2) formalizes the fact that this weight, and thus the contribution
of each island to the estimator associated with the archipelago as a whole,
should vanish asymptotically as N → ∞.

Definition 2.2 (exponential deviation). In the following, let η ∈ M1(X )
and � and {c�}2�=1 be positive constants. An archipelago {(ΩN (i), {(ξN (i, j),

ωN (i, j))}N2
j=1)}

N1
i=1 on (X,X ) is said to satisfy exponential deviation for

(η, �, {c�}2�=1) if for all h ∈ Fb(X ), N1 ∈ N
∗, N2 ∈ N

∗, and ε > 0,

(D) P

⎛
⎝ max

i∈�1,N1�

∣∣∣∣∣∣
1

N2

N2∑
j=1

ωN (i, j)h(ξN (i, j))− �× ηh

∣∣∣∣∣∣ ≥ ε

⎞
⎠

≤ c1N1 exp

(
−c2N2

ε2

‖h‖2∞

)
.

The exponential deviation inequality in (D) provides uniform control on
the deviations of the unnormalized importance sampling estimators∑N2

j=1 ωN (i, j)h(ξN (i, j))/N2, i ∈ �1, N1�, associated with the different is-
lands from their common mean level � × ηh. The factor N1 on the right
hand side of the equality is required to compensate for the maximum with
respect to the island index. Assumption (D) implies, by a straightforward
extension of the generalized Hoeffding inequality derived in [14, Lemma 4],
that also the deviations of the properly normalized importance sampling es-
timators associated with the different islands from the expectations targeted
by the archipelago can be uniformly controlled as follows.
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Lemma 2.3. Assume that (D) holds for (η, �, {c�}2�=1). Then for all
h ∈ Fb(X ), N1 ∈ N

∗, N2 ∈ N
∗, and ε > 0,

P

⎛
⎝ max

i∈�1,N1�

∣∣∣∣∣∣
N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

∣∣∣∣∣∣ ≥ ε

⎞
⎠(2.1)

≤ 2c1N1 exp

(
−c2N2

ε2�2

4 ‖h‖2∞

)
.

Finally, we introduce a third convergence property describing weak con-
vergence in the sense of a CLT. Let N denote the Gaussian distribution.

Definition 2.4 (asymptotic normality). In the following, let

• σ2 : Fb(X ) → R
∗
+ and ν2 : Fb(X ) → R

∗
+ be functionals.

• η ∈ M1(X ) and {μ�}3�=1 ⊂ M(X ) be measures.

An archipelago {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 on (X,X ) is said to be

asymptotically normal for (η, σ2, ν2, {μ�}3�=1) if for all h ∈ Fb(X ),

(AN1)
√
N

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j)) − ηh} D−→

N(0, σ2(h))

and, in addition,

(AN2) N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

P−→ ν2(h),

(AN3) N1

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))
P−→ μ1h,

(AN4) N

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

h(ξN (i, j))

P−→ μ2h,

(AN5) N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

h(ξN (i, j))
P−→ μ3h,
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(AN6) lim
λ→∞

sup
N∈N∗

P

(
max

i∈�1,N1�
N1

ΩN (i)∑N1
i′=1ΩN (i′)

≥ λ

)
= 0.

Here (AN1) corresponds to a CLT and implies straightforwardly (C1).
In addition, since (AN6) implies immediately (C2) we may conclude that
asymptotic normality is stronger than consistency. Assumptions (AN2–6)
guarantee the existence of asymptotic variance; see Remark 3.11 for further
comments.

3. Main results.

3.1. Operations on weighted archipelagos. In the following we let
P({a(i)}Mi=1) denote the categorical probability distribution induced by a set
{a(i)}Mi=1 of positive (possibly unnormalized) numbers; thus, writing V ∼
P({a(i)}Mi=1) means that the random variable V takes the value i ∈ �1,M�
with probability a(i)/

∑M
i′=1 a(i

′).

3.1.1. Selection on the island level. The first operation, described in Al-
gorithm 1, is referred to as multinomial selection on the island level (SIL).
This operation consists in converting an archipelago {(ΩN (i), {(ξN (i, j),
ωN (i, j))}N2

j=1)}
N1
i=1 targeting some distribution η into an archipelago {(1,

{(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1 with uniform island weights targeting the same

distribution η. This step allows islands with small/large weights to be elim-
inated/duplicated, respectively. More precisely, a new family of islands is
generated from the existing ones by selecting, conditionally independently
given the input archipelago, new islands according to probabilities propor-
tional to the island weights {ΩN (i)}N1

i=1. After this, the weights and the
particles of the selected islands are copied deterministically (which of course
implies that the particle weights of the new archipelago are bounded by the
same constant |ω|∞ as the ancestor archipelago).

Data: {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1

Result: {(1, {(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1

for i ← 1 to N1 do

draw IN (i) ∼ P({ΩN (i′)}N1
i′=1);

for j ← 1 to N2 do

set ξ̃N (i, j) ← ξN (IN (i), j);
set ω̃N (i, j) ← ωN (IN (i), j);

end

end

Algorithm 1: Multinomial selection on the island level (SIL)
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In the following we will abbreviate Algorithm 1 by writing

“{(1, {(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1

← SIL
(
{(ΩN (i), {(ξN (i, j), ωN (i, j))}N2

j=1)}
N1
i=1

)
”.

The following theorems state conditions under which SIL preserves consis-
tency, exponential deviation, and asymptotic normality. The input and out-
put in Algorithm 1 are respectively denoted by {(ΩN (i), {(ξN (i, j),
ωN (i, j))}N2

j=1)}
N1
i=1 and {(1, {(ξ̃N (i, j), ω̃N (i, j))}N2

j=1)}
N1
i=1 and all proofs are

found in Section 5.

Theorem 3.1. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 is con-

sistent for η. Then also {(1, {(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1 is consistent for η.

Theorem 3.2. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 sat-

isfies exponential deviation for (η, �, {c�}2�=1). Then also {(1, {(ξ̃N (i, j),

ω̃N (i, j))}N2
j=1)}

N1
i=1 satisfies exponential deviation for (η, �, {c�}2�=1).

We impose the following assumption, guaranteeing that N1 grows only
subexponentially fast with respect to N2.

(S) For all β > 0, N1 exp(−βN2) → 0 as N → ∞.

Theorem 3.3. Assume (S) and that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1

satisfies exponential deviation for (η, �, {c�}2�=1) and is asymptotically nor-

mal for (η, σ2, ν2, {μ�}3�=1). Then also {(1, {(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1 is

asymptotically normal for (η, σ̃2, ν2, {η, μ3, μ3}), where for all h ∈ Fb(X ),

σ̃2(h) = σ2(h) + ν2(h)

(i.e. the SIL operation modifies only σ2, μ1, and μ2).

3.1.2. Selection on the individual level. A second operation, described in
Algorithm 2, is referred to as multinomial selection on the individual level
(SiL), and consists in converting a weighted archipelago {(ΩN (i), {(ξN (i, j),
ωN (i, j))}N2

j=1)}
N1
i=1 targeting some distribution η into an archipelago {ΩN (i),

{(ξ̃N (i, j), 1)}N2
j=1}

N1
i=1 with uniform particle weights targeting the same dis-

tribution η. This step allows particles with large/small weights to be du-
plicated/eliminated, respectively. Note that the island weights remain unaf-
fected.
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Data: {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1

Result: {(ΩN (i), {(ξ̃N (i, j), 1)}N2
j=1)}

N1
i=1

for i ← 1 to N1 do
for j ← 1 to N2 do

draw JN (i, j) ∼ P({ωN (i, j′)}N2
j′=1);

set ξ̃N (i, j) ← ξN (i, JN (i, j));

end

end

Algorithm 2: Multinomial selection on the individual level (SiL)

Trivially, the particle weights are bounded by |ω|∞ = 1 in this case. As
for the SIL operation, we will express Algorithm 2 in a compact form by
writing

“{(ΩN (i), {(ξ̃N (i, j), 1)}N2
j=1)}

N1
i=1

← SiL
(
{(ΩN (i), {(ξN (i, j), ωN (i, j))}N2

j=1)}
N1
i=1

)
”.

The following theorems state conditions under which SiL preserves con-
sistency, exponential deviation inequality, and asymptotic normality. Here,
{(ΩN (i), {(ξN (i, j), ωN (i, j))}N2

j=1)}
N1
i=1 and {(ΩN (i), {(ξ̃N (i, j), 1)}N2

j=1)}
N1
i=1

denote the input and output, respectively, of Algorithm 2.

Theorem 3.4. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 is con-

sistent for η. Then also {(ΩN (i), {(ξ̃N (i, j), 1)}N2
j=1)}

N1
i=1 is consistent for η.

Theorem 3.5. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 sat-

isfies exponential deviation for (η, �, {c�}2�=1). Then also {(ΩN (i), {(ξ̃N (i, j),

1)}N2
j=1)}

N1
i=1 satisfies exponential deviation for (η, 1, {c̃�}2�=1), where c̃1 =

4(1 ∨ c1) and c̃2 = (1 ∧ (c2�
2/2))/8.

Theorem 3.6. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 sat-

isfies exponential deviation for (η, �, {c�}2�=1) and is asymptotically normal
for (η, σ2, ν2, {μ�}3�=1).

Then also {(ΩN (i), {(ξ̃N (i, j), 1)}N2
j=1)}

N1
i=1 is asymptotically normal for

(η, σ̃2, ν̃2, {μ1, μ1, η}), where for all h ∈ Fb(X ),{
σ̃2(h) = σ2(h) + μ1{(h− ηh)2},
ν̃2(h) = ν2(h) + η{(h− ηh)2}.

Again, proofs are found in Section 5.
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3.1.3. Mutation. The last operation we consider is Mutation, described
in Algorithm 3. This operation converts, using importance sampling on the
individual level, an archipelago {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2

j=1)}
N1
i=1 tar-

geting η ∈ M1(X ) into another archipelago {Ω̃N (i), {(ξ̃N (i, j),
ω̃N (i, j))}N2

j=1}
N1
i=1 targeting some other probability distribution η̃, defined

on another state space (X̃, X̃ ). The distribution η̃ is related to η through the
identity

(3.1) η̃h =
ηQh

ηQ1X̃

(h ∈ Fb(X̃ )),

where Q : X× X̃ → R+ is a possibly unnormalized transition kernel. In the
algorithm that follows, let R : X × X̃ → R+ be a (normalized) transition
kernel such thatQ(x, ·) � R(x, ·) for all x ∈ X, and denote the corresponding
Radon-Nikodym derivatives by

w(x, x̃) � dQ(x, ·)
dR(x, ·) (x̃) ((x, x̃) ∈ X× X̃).

In the sequel, we will refer to the mapping w as the importance weight
function and assume that w ∈ Fb(X � X̃ ) and Q1X̃ ∈ Fb(X ).

Data: {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1, Q, R

Result: {(Ω̃N (i), {(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1

for i ← 1 to N1 do
for j ← 1 to N2 do

draw ξ̃N (i, j) ∼ R(ξN (i, j), ·);
set ω̃N (i, j) ← w(ξN (i, j), ξ̃N (i, j))ωN (i, j);

end

set Ω̃N (i) ← ΩN (i)

∑N2
j′=1 ω̃N (i, j′)∑N2
j′′=1 ωN (i, j′′)

;

end

Algorithm 3: Mutation

As before, we will abbreviate Algorithm 3 by writing

“{(Ω̃N (i), {(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1

← Mut〈Q〉
(
{(ΩN (i), {(ξN (i, j), ωN (i, j))}N2

j=1)}
N1
i=1, R

)
”,

where the kernel Q is included in the notation for the sake of complete-
ness. Note that the Mutation operation forms indeed a proper weighted
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archipelago with |ω̃|∞ = |ω|∞ ‖w‖∞. In conformity with the SIL and SiL
operations, the Mutation operation preserves consistency, exponential devi-
ation, and asymptotic normality. This is established below, where {(ΩN (i),
{(ξN (i, j), ωN (i, j))}N2

j=1)}
N1
i=1 and {(Ω̃N (i), {(ξ̃N (i, j), ω̃N (i, j))}N2

j=1)}
N1
i=1 de-

note consequently the input and output of Algorithm 3, respectively.

Theorem 3.7. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 is con-

sistent for η. Then {(Ω̃N (i), {(ξ̃N (i, j), ω̃N (i, j))}N2
j=1)}

N1
i=1 is consistent for η̃

defined in (3.1).

Theorem 3.8. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 sat-

isfies exponential deviation for (η, �, {c�}2�=1). Then {(Ω̃N (i), {(ξ̃N (i, j),

ω̃N (i, j))}N2
j=1)}

N1
i=1 satisfies exponential deviation for (η̃, �̃, {c̃�}2�=1), where

�̃ = �× ηQ1X̃, c̃1 = 2(2 ∨ c1), and

c̃2 =
1

2

(
1

δ2
∧ c2
2‖Q1X̃‖2∞

)
,

with δ � |ω̃|∞ + |ω|∞‖Q1X̃‖∞.

Theorem 3.9. Assume that {(ΩN (i), {(ξN (i, j), ωN (i, j))}N2
j=1)}

N1
i=1 sat-

isfies exponential deviation for (η, �, {c�}2�=1) and is asymptotically normal
for (η, σ2, ν2, {μ�}3�=1). Then the mutated archipelago {(Ω̃N (i), {(ξ̃N (i, j),

ω̃N (i, j))}N2
j=1)}

N1
i=1 is asymptotically normal for (η̃, σ̃2, ν̃2, {μ̃�}3�=1), where

η̃ is defined in (3.1) and for all h ∈ Fb(X̃ ),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̃2(h) =
(
σ2{Q(h− η̃h)}+ μ2R{w2(h− η̃h)2}
−μ2{Q2(h− η̃h)}

) /
(ηQ1X̃)

2 ,

ν̃2(h) =
(
ν2{Q(h− η̃h)}+ μ3R{w2(h− η̃h)2}
−μ3{Q2(h− η̃h)}

) /
(ηQ1X̃)

2 ,

μ̃1h = μ1Qh/ηQ1X̃,

μ̃2h = μ2R(w2h)/(ηQ1X̃)
2,

μ̃3h = μ3R(w2h)/(ηQ1X̃)
2,

(where Q2h(x) � {Qh(x)}2 and R(w2h)(x) �
∫
w2(x, x′)h(x′)R(x, dx′) for

all x ∈ X and h ∈ Fb(X )).

Remark 3.10. Note that Theorem 3.6 and Theorem 3.9 hold true re-
gardless of the intermutual rates by which N1 and N2 tend to infinity with
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N . In particular, these results do not, on the contrary to Theorem 3.3, re-
quire the condition (S). This is in line with what we expect, as the SiL and
Mutation operations do not involve any island interaction.

Remark 3.11. As clear from the previous, the SiL, SIL, and Mutation
operations modify a given archipelago by means of either resampling of is-
lands, local, island-wise resampling of individuals or random mutation of
all the individuals of the archipelago. Assumptions (AN2–4) regulate the
increase of asymptotic variance brought forth by subjecting the archipelago
to each of these operations, respectively. Thus, when the archipelago is sub-
jected to a given operation, only one of these conditions plays the active role
for the propagation of the CLT in (AN1) ; however, since we want to be
able to analyze arbitrary, possibly random (as in the B2ASIL algorithm in
Section 4.2) compositions of the operations, we are required to keep a record
of the incremental variances disengaged by each one. Still, the conditions
(AN2–6) are nested intricately in the sense that for a given operation, one
or several conditions play active roles for the propagation of another. In this
way, the condition (AN5) , which does not regulate directly the increase of
asymptotic variance for any of the operations, bridges the mutation and is-
land resampling operations in the sense that it regulates the limit (AN2) in
the case of mutation.

4. Applications.

4.1. Feynman-Kac models. For a sequence of unnormalized transition
kernels {Qn}n∈N defined on some common measurable space (X,X ) and
some probability distribution η0 ∈ M1(X ), a sequence {ηn}n∈N of Feynman-
Kac measures is defined by

(4.1) ηnh � γnh

γn1X
, n ∈ N, h ∈ Fb(X ),

where

γnh �
∫

· · ·
∫

h(xn) η0(dx0)

n−1∏
p=0

Qp(xp, dxp+1) (h ∈ Fb(X ))

(with the usual convention
∏n

p=m ap = 1 when m > n). We may express
recursively the sequences of unnormalized and normalized Feynman-Kac
measures as, for h ∈ Fb(X ) and (m,n) ∈ N with m ≤ n,
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γnh = γmQm · · ·Qn−1h and

ηnh =
γmQm · · ·Qn−1h

γmQm · · ·Qn−11X
=

ηmQm · · ·Qn−1h

ηmQm · · ·Qn−11X
,

respectively, with the convention Qm · · ·Q�(x, h) = h(x) if m > . In partic-
ular,

(4.2) ηn+1h =
ηnQnh

ηnQn1X
(h ∈ Fb(X ), n ∈ N),

which means that we may cast the model into the framework considered in
Section 3.1.3.

Example 1. A special instance of the previous framework is formed
naturally by specifying, first, a sequence {Mn}n∈N of normalized (Markov)
transition kernels on (X,X ) with an associated initial distribution χ and,
second, potential functions {gn}n∈N∗ , where gn : X → R

∗
+ for all n ∈ N

∗,
and letting Qnh(x) � Mn(gn+1h)(x) for all n ∈ N

∗, x ∈ X, and h ∈ Fb(X ).
In addition, η0 � χ. This setup covers a large variety of important models in
probability and statistics, such as optimal filtering in hidden Markov models
(or state-space models; see, e.g., [4]) and models for the analysis of rare
events [11, 5]. We will return to this setting in Section 4.3.

Using a Feynman-Kac model in practice is typically non-trivial as nei-
ther the distribution flow {γn}n∈N nor {ηn}n∈N can be computed in a closed
form in general (with the exception of the very specific cases of optimal
filtering in linear state-space models, in which case the solution is pro-
vided by the Kalman filter, or hidden Markov models with finite state
space).

4.2. The double bootstrap algorithm with adaptive selection. In this sec-
tion, our aim is to form online a sequence of archipelagos targeting the
Feynman-Kac flow {ηn}n∈N by using sequentially the operations described
in Section 3. A special feature of the approach that we consider is that the
SIL operation is not performed systematically at every iteration of the al-
gorithm, but only when the island weights fail to satisfy some appropriately
defined skewness criterion. In this way we avoid adding unnecessary variance
to the estimator. More specifically, we will analyze an algorithm proposed
in [31, Algorithm 3], where SIL is executed on the basis of the so-called
coefficient of variation (CV; see [21] and [24]) given by CV2

N ({ΩN (i)}N1
i=1),

where
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(4.3) CV2
N : (R∗

+)
N1 	 {a(i)}N1

i=1 �→ N1

N1∑
i=1

(
a(i)∑N1

i′=1 a(i
′)

)2

− 1.

The CV is closely related to the efficient sample size (ESS, proposed in
[23]), which is the criterion used in [31]; nevertheless, since the ESS can
be expressed as N1/[1 + CV2

N ({a(i)}N1
i=1)], the two criteria are equivalent.

Note that the CV is minimal (zero) when all island weights are perfectly
equal and maximal (N1 − 1) in the situation of maximal skewness, i.e.,
when the total mass of the system is carried by a single island (a situa-
tion which is however not possible in our framework, as we always assume
the island weights to be strictly positive). More specifically, as long as the
CV stays below a specified threshold τ > 0, we let the N1 islands evolve
without interaction according to mutation and selection on the individ-
ual level. However, when the island weights get too dispersed as measured
by the CV criterion, the islands are rejuvenated by SIL. The scheme, re-
ferred to by us as the double bootstrap with adaptive selection on the is-
land level (B2ASIL), is described in Algorithm 4, where we have added
the iteration index p to the weighted archipelagos returned by the algo-
rithm.

Using the theoretical results obtained in Section 3 we may prove the fol-
lowing result, establishing that exponential deviation and asymptotic nor-
mality are preserved through one iteration of the B2ASIL algorithm. As a
by product we obtain the incremental asymptotic variance caused by an
iteration. Since focus is set on asymptotic normality, we provide recursive
formulas describing precisely the evolution of the functionals and measures
involved in (AN1–5), while leaving the derivation of the analogous formu-
las for the constants of the exponential deviation bound (D) to the reader.
The proof of this result provides a nice illustration of the efficiency by which
the theoretical results obtained in Section 3, despite appearing somewhat in-
volved at a first sight, can be applied for analyzing sequences of archipelagos
produced by executing alternatingly the SIL, SiL, and Mutation operations
in an arbitrary order.

Theorem 4.2. Assume (S) and suppose that {(Ω(n)
N (i), {(ξ(n)N (i, j),

ω
(n)
N (i, j))}N2

j=1)}
N1
i=1 satisfies exponential deviation and is asymptotically nor-

mal for (ηn, σ
2
n, ν

2
n, {μ

(n)
� }3�=1), n ∈ N

∗. Then the archipelago {(Ω(n+1)
N (i),

{(ξ(n+1)
N (i, j), ω

(n+1)
N (i, j))}N2

j=1)}
N1
i=1 generated through one iteration of Algo-

rithm 4 is asymptotically normal for (ηn+1, σ
2
n+1, ν

2
n+1, {μ

(n+1)
� }3�=1), where

ηn+1 is given by (4.2) and for all h ∈ Fb(X ),
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
n+1(h) =

σ2
n{Qn(h− ηn+1h)}+ εnν

2
n{Qn(h− ηn+1h)}

(ηnQn1X)2

+
εnηnRn{w2

n(h− ηn+1h)
2}+ (1− εn)μ

(n)
1 Rn{w2

n(h− ηn+1h)
2}

(ηnQn1X)2
,

ν2n+1(h) =
ν2n{Qn(h− ηn+1h)}+ ηnRn{w2

n(h− ηn+1h)
2}

(ηnQn1X)2
,

μ
(n+1)
1 h = (1− εn)

μ
(n)
1 Qnh

ηnQn1X
+ εnηn+1h,

μ
(n+1)
2 h = (1− εn)

μ
(n)
1 Rn(w

2
nh)

(ηnQn1X)2
+ εnμ

(n+1)
3 h,

μ
(n+1)
3 h =

ηnRn(w
2
nh)

(ηnQn1X)2
,

where εn � 1{μ(n)
1 1X>τ+1}.

Proof. First, note that since the input archipelago satisfies (AN3) , it
holds that

CV2
N ({Ω(n)

N (i)}N1
i=1)

P−→ μ
(n)
1 1X − 1,

which implies

1{CV2
N ({Ω(n)

N (i)}N1
i=1)>τ}

P−→ εn,

where εn is defined in the statement of the theorem. Consequently, after

the if -else statement in Algorithm 4, the resulting archipelago {(Ω̃(p)
N (i),

{(ξ̃(p)N (i, j), ω̃
(p)
N (i, j))}N2

j=1)}
N1
i=1 satisfies, by Theorem 3.2 and Theorem 3.3,

exponential deviation and asymptotic normality, the latter for{
(ηn, σ

2
n, ν

2
n, {μ

(n)
� }3�=1) if εn = 0,

(ηn, σ
2
n + ν2n, ν

2
n, ηn, μ

(n)
3 , μ

(n)
3 ) if εn = 1.

Thus, the archipelago {(Ω̃(p)
N (i), {(ξ̌(p)N (i, j), 1)}N2

j=1)}
N1
i=1 obtained after addi-

tional SiL satisfies, by Theorem 3.5 and Theorem 3.6, exponential deviation
as well as asymptotic normality, the latter for⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ηn, σ
2
n(·) + μ

(n)
1 {(· − ηn·)2}, ν2n(·) + ηn{(· − ηn·)2}, μ(n)

1 , μ
(n)
1 , ηn)

if εn = 0,

(ηn, σ
2
n(·) + ν2n(·) + ηn{(· − ηn·)2}, ν2n(·) + ηn{(· − ηn·)2}, ηn, ηn, ηn)

if εn = 1.
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Data: {Rp}n−1
p=0 , τ

Result: {(Ω(p)
N (i), {(ξ(p)N (i, j), ω

(p)
N (i, j))}N2

j=1)}
N1
i=1, p ∈ �0, n�

/* initialization */

for i ← 1 to N1 do
for j ← 1 to N2 do

ξ
(0)
N (i, j) ∼ η0;

ω
(0)
N (i, j) ← 1;

end

Ω
(0)
N (i) ← 1;

end

{(Ω(1)
N (i), {(ξ(1)N (i, j), ω

(1)
N (i, j))}N2

j=1)}
N1
i=1 ←

Mut〈Q0〉
(
{(1, {(ξ(0)N (i, j), 1)}N2

j=1)}
N1
i=1, R0

)
;

/* main loop */

for p ← 1 to n− 1 do
/* checking island weight skewness */

if CV2
N ({Ω(p)

N (i)}N1
i=1) > τ then

/* selection on the island level */

{(Ω̃(p)
N (i), {(ξ̃(p)N (i, j), ω̃

(p)
N (i, j))}N2

j=1)}
N1
i=1 ←

SIL
(
{(Ω(p)

N (i), {(ξ(p)N (i, j), ω
(p)
N (i, j))}N2

j=1)}
N1
i=1

)
;

else
/* no action */

{(Ω̃(p)
N (i), {(ξ̃(p)N (i, j), ω̃

(p)
N (i, j))}N2

j=1)}
N1
i=1 ←

{(Ω(p)
N (i), {(ξ(p)N (i, j), ω

(p)
N (i, j))}N2

j=1)}
N1
i=1;

end
/* selection on the individual level */

{(Ω̃(p)
N (i), {(ξ̌(p)N (i, j), 1)}N2

j=1)}
N1
i=1 ←

SiL
(
{(Ω̃(p)

N (i), {(ξ̃(p)N (i, j), ω̃
(p)
N (i, j))}N2

j=1)}
N1
i=1

)
;

/* mutation */

{(Ω(p+1)
N (i), {(ξ(p+1)

N (i, j), ω
(p+1)
N (i, j))}N2

j=1}
N1
i=1 ←

Mut〈Qp〉
(
{(Ω̃(p)

N (i), {(ξ̌(p)N (i, j), 1)}N2
j=1)}

N1
i=1, Rp

)
;

end

Algorithm 4: The B2ASIL algorithm

Finally, considering also the final Mutation operation in Algorithm 4, and
propagating, for the two different values of εn, the quantities of the previous
display through the updating formulas of Theorem 3.9, establishes, together
with Theorem 3.8, the statement of the theorem.

Corollary 4.3. Assume (S). Then all archipelagos {(Ω(n)
N (i), {(ξ(n)N (i, j),

ω
(n)
N (i, j))}N2

j=1)}
N1
i=1, n ∈ N, produced by the B2ASIL algorithm satisfy ex-
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ponential deviation and asymptotic normality, where for h ∈ Fb(X ) and
n ∈ N

∗,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
n(h) =

n−1∑
�=0

⎛
⎝1 +

n−1∑
p=�+1

εp

⎞
⎠ η�R�{w2

�Q�+1 · · ·Qn−1(h− ηnh)
2}

(η�Q� · · ·Qn−11X)2
,

ν2n(h) =

n−1∑
�=0

η�R�{w2
�Q�+1 · · ·Qn−1(h− ηnh)

2}
(η�Q� · · ·Qn−11X)2

,

μ
(n)
1 h = ηnh

(under the standard conventions that
∏n

�=m a� = 1,
∑n

�=m a� = 0, and
Qm · · ·Qn = id if m > n), and {εn}n∈N∗ is given in Theorem 4.2. In addi-

tion, μ
(0)
1 = η0 and

σ2
0(h) = ν20(h) = η0{(h− η0h)

2} (h ∈ Fb(X )).

Proof. The non-recursive expressions above are verified using induction.

More specifically, one assumes that the given expressions of (σ2
n, ν

2
n, μ

(n)
1 )

hold true for some n ∈ N (and for all h ∈ Fb(X )) and plug the same into
the recursive expressions established in Theorem 4.2 under repeated use of
the identities

Q� · · ·Qn−1{Qn(h− ηn+1h)− ηnQn(h− ηn+1h)} = Q� · · ·Qn(h− ηn+1h)

(h ∈ Fb(X ),  ∈ N),

and
η�Q� · · ·Qn−11X × ηnQn1X = η�Q� · · ·Qn1X ( ∈ N).

We leave this to the reader. To verify the base case n = 1, note that

the initial archipelago {(1, {(ξ(0)N (i, j), 1)}N2
j=1)}

N1
i=1} is, by the standard CLT

and law of large numbers of for independent random variables, asymp-
totically normal for (η0, σ

2
0, σ

2
0, η0, η0, η0), where σ2

0(h) = η0{(h − η0h)
2},

h ∈ Fb(X ), and satisfies, by Hoeffding’s inequality, exponential deviation
for (η0, 1, 2, 1/2). Now, by Theorem 3.8 and Theorem 3.9 also the weighted

archipelago {(Ω(1)
N (i), {(ξ(1)N (i, j), ω

(1)
N (i, j))}N2

j=1)}
N1
i=1, obtained by mutating

the initial archipelago, satisfies exponential deviation and asymptotic nor-

mality for μ
(1)
1 = η1 and

σ2
1(h) = ν21(h) =

η0R0{w2
0(h− η1h)

2}
(η0Q01X)2

(h ∈ Fb(X )).

Under the standard conventions, this is however in agreement with the for-
mula in the statement of the theorem. This completes the proof.
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Of special interest is of course the special case where SIL is applied system-
atically at every iteration, corresponding to τ = 0. This yields the standard
B2 algorithm, in which case the asymptotic variance is given by the following
corollary.

Corollary 4.4. Assume (S). Then all archipelagos {(Ω(n)
N (i), {(ξ(n)N (i, j),

ω
(n)
N (i, j))}N2

j=1)}
N1
i=1, n ∈ N, produced by the B2 algorithm satisfy exponential

deviation and asymptotic normality, where for h ∈ Fb(X ) and n ∈ N
∗,

(4.4) σ2
n(h) =

n−1∑
�=0

(n− )
η�R�{w2

�Q�+1 · · ·Qn−1(h− ηnh)
2}

(η�Q� · · ·Qn−11X)2
,

and
σ2
0(h) = η0{(h− η0h)

2}.

Proof. The result is an immediate consequence of Corollary 4.3, as τ = 0
implies that εn = 1 for all n ∈ N

∗.

On the other hand, letting εn = 0 for all n ∈ N
∗ in Corollary 4.3, corre-

sponding to the case where SIL is never applied, yields the variance

(4.5) σ2
n(h) =

n−1∑
�=0

η�R�{w2
�Q�+1 · · ·Qn−1(h− ηnh)

2}
(η�Q� · · ·Qn−11X)2

,

which we recognize as the well-known formula for the asymptotic variance
of the standard SMC algorithm (more specifically, the sequential importance
sampling with resampling, SISR, algorithm). This is completely in line with
our expectations, as such an algorithm would simply propagate N1 inde-
pendent (non-interacting) islands, each island evolving as a standard SMC
algorithm based on N2 particles.

4.3. Long-term stability of the double bootstrap algorithm. As a last part
of our study we establish the long-term numerical stability of the B2 algo-
rithm by providing a time uniform bound on the asymptotic variance of its
output. Throughout this section we will, in the spirit of Example 1, assume
that each unnormalized transition kernel Qp, p ∈ N, can be decomposed
into a normalized transition kernel Mp : X × X → [0, 1] and a nonnegative
potential potential function gp+1 : X → R+, i.e., for all h ∈ Fb(X ) and x ∈ X,

(4.6) Qph(x) = Mp(gp+1h)(x).
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In this setting, given a sequence {Rp}p∈N of proposal kernels such that
Mp(x, ·) � Rp(x, ·) for all x ∈ X and p ∈ N, the importance weight function
is given by

wp(x, x
′) = gp+1(x

′)
dMp(x, ·)
dRp(x, ·)

(x, x′) ∈ X2.

Remark 4.5. Instead of letting the Feynman-Kac distribution flow be
generated by the unnormalized kernel (4.6), one could, as in [31], consider
an alternative model with a flow {η̃p}p∈N generated by

(4.7) Q̃ph(x) = gp(x)Mph(x) (h ∈ Fb(X ), x ∈ X, p ∈ N
∗),

with Q̃0 = M0 and η̃0 = χ. In [10] the two models (4.6) and (4.7) are
referred to as updated and prediction Feynman-Kac models, respectively.
For the prediction model, it is, in the case of the B2 algorithm, possible to
achieve full adaptation (borrowing the terminology of [26]) of the algorithm,

i.e., to generate archipelagos {(1, {(1, ξ(p)N (i, j))}N2
j=1)}

N1
i=1, p ∈ N, with uni-

formly weighted islands and individuals targeting the distribution sequence
of interest, by letting Rp = Mp for all p ∈ N and decomposing the dynamics
(4.7) into the product

(4.8) Q̃p = GpMp,

where Gph(x) = gp(x)h(x), (x, h) ∈ X × Fb(X ), is the Boltzmann multi-
plicative operator associated with the potential gp. Now (4.8) allows also the
Feynman-Kac transition according to Q̃p to be decomposed into two subse-
quent Feynman-Kac sub-transitions, the first according to Gp and the other
according to Mp. The former corresponds to the Mutation operation

{(Ω̌(p)
N (i), {(ω̌(p)

N (i, j), ξ
(p)
N (i, j))}N2

i=1)}
N1
i=1(4.9)

← Mut〈Gp〉
(
{(1, {(1, ξ(p)N (i, j))}N2

j=1)}
N1
i=1, id

)
,

which simply assigns each particle and island the weights ω̌N (i, j) =

gp(ξ
(p)
N (i, j)) and Ω̌

(p)
N (i) =

∑N2
j=1 gp(ξ

(p)
N (i, j))/N2, respectively (where we as-

sumed that we start with uniformly weighted islands and individuals). After
this weighing operation, the output (4.9) is, in accordance with Algorithm 4
(with τ = 0), subjected to the SIL and SiL operations followed by the Muta-
tion operation

{(1, {(1, ξ(p+1)
N (i, j))}N2

i=1)}
N1
i=1 ← Mut〈Mp〉(

{(1, {(1, ξ̃(p)N (i, j))}N2
j=1)}

N1
i=1,Mp

)
,
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yielding an archipelago with perfectly uniform island and individual weights
approximating the Feynman-Kac distribution η̃p+1 at the next time point.
Also this algorithm may be analyzed straightforwardly using our results, and
carrying through this analysis retrieves exactly the variance expression ob-
tained in [31, Equation 43]. We leave this as an exercise to the interested
reader.

The previous way of obtaining an archipelago with uniformly weighted
islands and individuals approximating the prediction Feynman-Kac distribu-
tion flow can be viewed as a special instance of a general auxiliary double
bootstrap algorithm (extending the so-called auxiliary particle filter pro-
posed in [26]) based on the decomposition

Qp = TpQ̌p,

where Tph(x) = tp(x)h(x), (x, h) ∈ X×Fb(X ), is a Boltzmann multiplicative
operator associated with some positive auxiliary importance weight function
tp ∈ Fb(X ), and

Q̌p(x, h) � t−1
p (x)Qph(x) (x ∈ X, h ∈ Fb(X )).

In analogy with the previous, we may thus construct an alternative algorithm
approximating {ηp}p∈N by furnishing the main loop of the B2 algorithm with
a prefatory weighing operation

(4.10) {(Ω̌(p)
N (i), {(ω̌(p)

N (i, j), ξ
(p)
N (i, j))}N2

i=1)}
N1
i=1

← Mut〈Tp〉
(
{(Ω̃(p)

N (i), {(ω̃(p)
N (i, j), ξ

(p)
N (i, j))}N2

i=1)}
N1
i=1, id

)
,

and, after intermediate SIL and SiL operations, a terminating Mutation
operation

{(Ω(p+1)
N (i), {(ω(p+1)

N (i, j), ξ
(p+1)
N (i, j))}N2

i=1)}
N1
i=1

← Mut〈Q̌p〉
(
{(1, {(1, ξ̃(p)N (i, j))}N2

j=1)}
N1
i=1, Rp

)
,

where, consequently, the all weights are given by the importance weight func-
tion

w̌p(x, x
′) = t−1

p (x)
dQp(x, ·)
dRp(x, ·)

(x′) ((x, x′) ∈ X2).

Thus, choosing tp(x) as some prediction of the value of the derivative
dQp(x, ·)/dRp(x, ·) in the support of Rp(x, ·) yields close to uniformly weight-
ed islands and individuals (i.e., a close to fully adapted algorithm);
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for instance, following [26], a possible design is tp(x) = dQp(x, ·)/
dRp(x, ·)(Rp id(x)). Of course, also this algorithm can be analyzed easily us-
ing our results (we refer to [16] for such an analysis of the standard auxiliary
particle filter).

4.4. Time uniform convergence under the strong mixing assumption.
When studying the numerical stability of the B2 algorithm we will first

work under the following strong mixing condition.

(M) (i) There exist constants 0 < σ− < σ+ < ∞ and ϕ ∈ M1(X ) such
that for all p ∈ N, x ∈ X, and A ∈ X ,

σ−ϕ(A) ≤ Mp(x,A) ≤ σ+ϕ(A).

(ii) It holds that w+ � supp∈N ‖wp‖∞ < ∞.

(iii) It holds that c− � inf(p,x)∈N×XQp1X(x) > 0.

The assumption (M) (i), implying that each Mp allows the whole state
space X as a 1-small set, is rather restrictive and requires typically the state
space X to be a compact set. Still, it plays a vital role in the literature of
SMC analysis [see, e.g., 13, 10, 4, 16, 25, 18]. On the other hand, the weaker
assumption (M)(ii) is satisfied for most applications and (M)(iii) does not
require the potential functions to be uniformly bounded from below; the
latter is a condition that appears frequently in the literature. Under (M) ,
denote

(4.11) ρ � 1− σ−
σ+

;

then the previous assumptions allow the following explicit time uniform
bound to be derived.

Corollary 4.6. Suppose (M) . Then the sequence of asymptotic vari-
ances of the B2 algorithm (see Corollary 4.4) satisfies, for all n ∈ N and
h ∈ Fb(X ),

(4.12) σ2
n(h) ≤ w+

osc2(h)

(1− ρ)2(1− ρ2)2c−
,

where ρ is defined in (4.11).

The proof is found in Section 5.10. In addition, by comparing the formulas
of the asymptotic variances of the B2ASIL and B2 algorithms provided by
Corollary 4.3 and Corollary 4.4, respectively, we conclude that at each time
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step, the asymptotic variance of the latter algorithm is always bounded by
the that of the former (as the indicator variables {εp}p∈N∗ , determining the
asymptotic island selection schedule of the B2ASIL algorithm, are either zero
or one for all p). The following corollary is hence immediate.

Corollary 4.7. Suppose (M) . Then also the asymptotic variances of
the B2ASIL algorithm (see Corollary 4.3) satisfy the bound (4.12).

4.5. Time uniform convergence under a local Doeblin condition. The ex-
plicitness and simplicity of the variance bound in Corollary 4.6 are obtained
at the cost of restrictive model assumptions that are rarely satisfied in
real-world applications. Thus, in this section we will discuss how the as-
sumptions of (M) can be lightened considerably and turned into easily
verifiable conditions, satisfied for many models of interest, by considering
assumptions under which the asymptotic variance is stochastically bounded
(tight) rather than bounded by a deterministic constant. Since the asymp-
totic variance (4.4) of the B2 algorithm differs only from that of the SISR
algorithm (see (4.5)) by the factors n − , the results obtained in this sec-
tion will rely heavily on similar results obtained in [17] for the standard
bootstrap particle filter. For this purpose, assume that each potential func-
tion depends on time through some random parameter only, i.e., for all
p ∈ N

∗, gp = g〈Zp〉, where {Zp}p∈N is some stochastic process taking values
in some state space (Z,Z) and g〈z〉 ∈ Fb(X ) for all z ∈ Z. Moreover, we
assume that the normalized transition kernels of the model are time homo-
geneous, i.e., Mp = M for all p ∈ N, and that Mutation is based on the
underlying dynamics of the model, i.e., Rp = R = M , and, consequently,
wp(x, x

′) = wp〈Zp+1〉(x, x′) = g〈Zp+1〉(x′) for all p ∈ N and (x, x′) ∈ X2.
Thus, in this case the model generates a parameter dependent Feynman-Kac
flow {ηp〈Z0:p〉}p∈N. (For instance, in the case of a hidden Markov model, the
sequence {Zp}p∈N plays the role of noisy observations of some Markov chain
(the state process) {Xp}p∈N with transition kernel M on (X,X ). Condition-
ally on the state process, the observations are assumed to be independent
and such that the conditional density Z 	 z �→ g〈z〉(x) of each Zp depends
on the corresponding state Xp = x ∈ X only. In this important framework,
ηp〈Z0:p〉 is the so-called filter distribution at time p, i.e., the conditional dis-
tribution of the latent state Xp given the observations Z0:p.) In this case, the
asymptotic variance σ2

n(h) of the B2 algorithm is a function of the random
vector Z0:n, and we write σ2

n〈Z0:n〉(h) to emphasize this fact. We will replace
the condition (M) (i) by a considerably weaker condition of the following
type.
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Definition 4.8. A set C ∈ X is local Doeblin with respect to M if there
is ϕC ∈ M1(X ) with ϕC(C) = 1 and constants 0 < σ−

C < σ+
C such that for all

x ∈ C and A ∈ X ,

σ−
CϕC(A) ≤ M(x,A ∩ C) ≤ σ+

CϕC(A).

Now, impose the following assumption.

(L) The process {Zp}p∈N is strictly stationary and ergodic. Moreover, there
exists a set K ∈ Z such that the following holds.

(i) P (Z0 ∈ K) > 2/3.

(ii) For all ε > 0 there exists a local Doeblin set C such that for all
z ∈ Z,

sup
x∈Cc

g〈z〉(x) ≤ ε ‖g〈z〉‖∞ < ∞.

(iii) There exists a set D ∈ X such that infx∈DM(x,D) > 0 and

E

[
ln− inf

x∈D
g〈Z0〉(x)

]
< ∞.

In (L) (iii), ln− denotes the negative part of the natural logarithm. The
condition (L) can be checked easily for a large variety of models; see [17,
Section 4] for examples.

Remark 4.9. The condition (L) can be weakened further by requiring the
local Doeblin condition to hold only for some iterate Q〈z1〉 · · ·Q〈zr〉, z1:r ∈
Zr, with a minorizing measure ϕC and constants σ−

C , σ
+
C possibly depending

on the block z1:r; we refer to [17] for details. In this paper we have however
chosen to state the most basic version of the condition (corresponding to
r = 1) for simplicity.

Under (L) , define M1(X ,D) ⊂ M1(X ) as the set of all χ ∈ M1(X ) for
which there exists D′ ∈ X such that (i) infx∈D′ M(x,D) > 0, (ii)
E[ln− infx∈D′ g〈Z0〉(x)] < ∞, and (iii) χ(D′) > 0. Then the following holds
true.

Corollary 4.10. Assume (L) and suppose in addition that η0 ∈ M1(X ,D).
Then for all h ∈ Fb(X ), the sequence {σ2

n〈Z0:n〉(h)}n∈N of asymptotic vari-
ances of the output of the B2 algorithm is tight, i.e., it satisfies

lim
λ→∞

sup
n∈N

P
(
σ2
n〈Z0:n〉(h) ≥ λ

)
= 0.

The previous result is obtained by inspecting the proof of [17, Theo-
rem 11]; see Section 5.11 for some details.
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5. Proofs. As mentioned in the introduction, our consistency and as-
ymptotic normality proofs rely on limit theorems for triangular arrays devel-
oped in [15]. More specifically, [15] developed Theorem A.1 and Theorem A.2,
which are re-stated in Appendix A for completeness, for the purpose of prov-
ing consistency and asymptotic normality for weighted samples of particles,
whereas we use the same results for establishing these properties for weighted
samples of particle islands. However, whereas the elements of the arrays con-
sidered in [15] correspond mainly to single particles, the arrays defined by us
will be considerably more complex with each element being generally itself
a weighted average of particles associated with an island. In this section we
will use repeatedly the same notation {UN (i)}N1

i=1 to denote triangular arrays
(in the sense of Theorem A.1 and Theorem A.2), even though the roles of
these arrays change throughout the proofs.

5.1. Proof of Theorem 3.1. We apply Theorem A.1. For this purpose,
define the triangular array and filtration

UN (i) �
N2∑
j=1

ωN (IN (i), j)

N1
∑N2

j′=1 ωN (IN (i), j′)
h(ξN (IN (i), j))

(i ∈ �1, N1(N)�, N ∈ N
∗),

FN � σ
(
{(ΩN (i), {(ξN (i, j), ωN (i, j))}N2

j=1)}
N1
i=1

)
(N ∈ N

∗),

(5.1)

respectively. Now, since the island indices {IN (i)}N1
i=1 are, conditionally on

FN , i.i.d. with common distribution P({ΩN (i′)}N1
i′=1) it holds, as the ancestor

sample is assumed to be consistent,

N1∑
i=1

E [UN (i) | FN ](5.2)

= N1E [UN (1) | FN ]

=

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))
P−→ ηh.

Thus, since |UN (i)| ≤ ‖h‖∞ /N1 < ∞ for all i ∈ �1, N1�, it is enough to check
the conditions (A1) and (A2) in Theorem A.1. The tightness condition
(A1) is straightforwardly satisfied as sequences that converge in probability
are tight. Moreover, to check (A2) we may apply Lemma A.3 with VN =
‖h‖∞ /N1 and YN = XN = 0. Thus, the limits, in probability as N → ∞,

of the series
∑N1

i=1 UN (i) and
∑N1

i=1 E [UN (i) | FN ] coincide, which completes
the proof.
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5.2. Proof of Theorem 3.2. Trivially, since {IN (i)}N1
i=1 ⊂ �1, N1� it holds

for all ε > 0,

P

⎛
⎝ max

i∈�1,N1�

∣∣∣∣∣∣
1

N2

N2∑
j=1

ωN (IN (i), j)h(ξN (IN (i), j))− �× ηh

∣∣∣∣∣∣ ≥ ε

⎞
⎠

≤ P

⎛
⎝ max

i∈�1,N1�

∣∣∣∣∣∣
1

N2

N2∑
j=1

ωN (i, j)h(ξN (i, j))− �× ηh

∣∣∣∣∣∣ ≥ ε

⎞
⎠ ,

where the right hand side has an exponential bound by assumption. This
completes the proof.

5.3. Proof of Theorem 3.3. In order to check (AN1) using Theorem A.2,
define the array

UN (i) �
√

N2

N1

N2∑
j=1

ωN (IN (i), j)∑N2
j′=1 ωN (IN (i), j′)

{h(ξN (IN (i), j))− ηh}(5.3)

(i ∈ �1, N1�, N ∈ N
∗),

and let {FN}N∈N∗ be the filtration (5.1). We first note that E[U2
N (i) | FN ] ≤

4N2 ‖h‖2∞ /N1 < ∞ for all i ∈ �1, N1�. Along the lines of (5.2) (note however
that the definition (5.1) of the triangular array in (5.2) differs slightly from
that of the array (5.3) considered here),

(5.4)

N1∑
i=1

UN (i) =

N1∑
i=1

{UN (i)− E [UN (i) | FN ]}

+
√
N

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}.

By assumption, the second term on the right hand side of (5.4) converges
in distribution to a Gaussian random variable with zero mean and variance
σ2(h). To treat the first term using Theorem A.2 we first consider

N1∑
i=1

E
[
U2
N (i) | FN

]
(5.5)

= N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

P−→ ν2(h),
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where the limit holds as the ancestor archipelago is assumed to satisfy
(AN2). In addition,

N1∑
i=1

E
2 [UN (i) | FN ]

=
1

N1

⎛
⎝√

N

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

P−→ 0,

as the right hand side tends, as the ancestor archipelago satisfies (AN1) ,
in distribution to a scaled χ2-distributed random variable as N → ∞.
Combining the two previous displays shows that the condition (B1) in
Theorem A.2 holds with limit ς2(h) = ν2(h). To check the condition (B2)
in the same lemma, we note that maxi∈�1,N1� |UN (i)| ≤ VN + XNY 2

N , with
XN = YN = 0 and
(5.6)

VN = max
i∈�1,N1�

√
N2

N1

∣∣∣∣∣∣
N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

∣∣∣∣∣∣ (N ∈ N
∗).

Note that the sequence {VN}N∈N∗ is FN -adapted and vanishes in probability
as N → ∞ since the ancestor archipelago is assumed to satisfy (D) and
thus (2.1). We may then apply Lemma A.3 to check the condition (B2) in
Theorem A.2, implying that for all u ∈ R,

E

[
exp

(
iu

N1∑
i=1

{UN (i)− E [UN (i) | FN ]}
)

| FN

]
P−→ exp(−u2ν2(h)/2).

Now, using this limit, the decomposition (5.4), and the hypothesis that the
ancestor archipelago satisfies (AN1), we conclude, via Lemma A.5, that for
all u ∈ R,

E

[
exp

(
iu

N1∑
i=1

UN (i)

)]
P−→ exp(−u2{σ2(h) + ν2(h)}/2),

which concludes the proof of (AN1).
We establish Assumption (AN2) by applying Theorem A.1, this time

to the array U
′
N (i) � U2

N (i), i ∈ �1, N1�, N ∈ N
∗, where {UN (i)}N1

i=1 is de-
fined by (5.3), and the filtration {FN}N∈N∗ is defined by (5.1). To prove that
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∑N1
i=1 U

′
N (i) converges in probability, we first note that the sum

∑N1
i=1 E[U

′
N (i) |

FN ] converges in probability to ν2(h) by (5.5). Moreover, the two con-
ditions (A1) and (A2) in Theorem A.1 are straightforwardly satisfied
for the array under consideration, the latter condition by Lemma A.3 as
maxi∈�1,N1� |U

′
N (i)| ≤ V 2

N , where VN is defined in (5.6) and V 2
N vanishes in

probability by Lemma 2.3. Consequently, (AN2) is satisfied with ν̃2 = ν2.
In the case of multinomial island selection, (AN3) coincides with the

consistency property, which is implied by (AN1); thus, μ̃1 = η.
We preface the proof of (AN4) by the following lemma.

Lemma 5.1. Assume (D) and (S). Then

lim
λ→∞

sup
N∈N∗

P

(
max

(i,j)∈�1,N1�×�1,N2�
N2

ωN (i, j)∑N2
j′=1 ωN (i, j′)

≥ λ

)
= 0.

Proof. Using the boundedness of the particle weights,

max
(i,j)∈�1,N1�×�1,N2�

N2
ωN (i, j)∑N2

j′=1 ωN (i, j′)
≤ |ω|∞ max

i∈�1,N1�

⎛
⎝ 1

N2

N2∑
j=1

ωN (i, j)

⎞
⎠

−1

,

where the quantity on right hand side is tight as it converges in probability
to |ω|∞/� by (D), (S) and Lemma A.4.

Now, to check (AN4) we apply Theorem A.1 to the array

UN (i) � N2

N1

N2∑
j=1

(
ωN (IN (i), j)∑N2

j′=1 ωN (IN (i), j′)

)2

h(ξN (IN (i), j))

(i ∈ �1, N1�, N ∈ N
∗).

associated with the same filtration as previously. Since the ancestor archipel-
ago satisfies (AN5),

N1∑
i=1

E [UN (i) | FN ]

(5.7)

= N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

h(ξN (i, j))
P−→ μ3h,
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and we show that
∑N1

i=1 UN (i) tends to the same limit by using Theorem A.1.
First, UN (i) ≤ N2

2 ‖h‖∞ /N1 < ∞ for all i ∈ �1, N1� and N ∈ N
∗; moreover,

be reusing (5.7) for |h| we check (A1) . To check the Lindeberg condition
(A2), we bound, using {IN (i)}N1

i=1 ⊂ �1, N1�,

max
i∈�1,N1�

|UN (i)| ≤ max
(i,j)∈�1,N1�×�1,N2�

N2
ωN (i, j)∑N2

j′=1 ωN (i, j′)

× max
i∈�1,N1�

1

N1

∣∣∣∣∣∣
N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))

∣∣∣∣∣∣ ,
where the first factor on the right hand side is tight by Lemma 5.1 and
the second term is bounded by ‖h‖∞ /N1, which tends to zero when N
tends to infinity. Thus, Lemma A.4 can be applied for checking (A2), which
establishes that μ̃2 = μ3.

Finally, in the case of selection on the island level, (AN5) coincides with
(AN4) and (AN6) is trivially satisfied.

5.4. Proof of Theorem 3.4. We first note that (C2) is trivially satisfied.
In order to check (C1) we apply Theorem A.1 to the array

UN (i) � ΩN (i)

N2
∑N1

i′=1ΩN (i′)

N2∑
j=1

h(ξN (i, JN (i, j))) (i ∈ �1, N1�, N ∈ N
∗)

associated with {FN}N∈N given by (5.1). Note that all indices {JN (i, j) ∈
�1, N1� × �1, N2�} are conditionally independent given FN . Moreover, for all
i ∈ �1, N1� it holds that {JN (i, j)}N2

j=1 ∼ P({ωN (i, j′)}N2
j′=1)

�N2 . Hence,

N1∑
i=1

E [UN (i) | FN ] =

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))

P−→ ηh,

where convergence holds by assumption. First, note that UN (i) ≤ ‖h‖∞ <
∞ for all i ∈ �1, N1� and N ∈ N

∗. Moreover, (A1) is trivially satisfied.
Thus, consistency is established by showing that (A2) is satisfied, which
is an immediate implication of Lemma A.3 with XN = YN = 0 and VN =
‖h‖∞maxi∈�1,N1� ΩN (i)/

∑N1
i′=1ΩN (i′), which is FN -adapted and tends to

zero in probability thanks to (C2) . Hence, by Theorem A.1, the series∑N1
i=1 UN (i) and

∑N1
i=1 E [UN (i) | FN ] have the same limit ηh in probability.

This completes the proof.
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5.5. Proof of Theorem 3.5. We may bound the quantity of interest ac-
cording to

max
i∈�1,N1�

∣∣∣∣∣∣
1

N2

N2∑
j=1

h(ξN (i, JN (i, j)))− ηh

∣∣∣∣∣∣
≤ max

i∈�1,N1�

1

N2

∣∣∣∣∣∣
N2∑
j=1

δN (i, j)

∣∣∣∣∣∣+ max
i∈�1,N1�

∣∣∣∣∣∣
N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))− ηh

∣∣∣∣∣∣ ,
where we have set

δN (i, j) � h(ξN (i, JN (i, j)))−
N2∑
j′=1

ωN (i, j′)∑N2
j′′=1 ωN (i, j′′)

h(ξN (i, j′))(5.8)

((i, j) ∈ �1, N1� × �1, N2�).

By Lemma 2.3, the second term on the right hand side satisfies

P

⎛
⎝ max

i∈�1,N1�

∣∣∣∣∣∣
N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))− ηh

∣∣∣∣∣∣ ≥ ε/2

⎞
⎠

≤ 2c1N1 exp

(
−c2N2

ε2�2

16 ‖h‖2∞

)
.

For each i ∈ �1, N1�, the variables {δN (i, j)}N2
j=1 are, conditionally on FN ,

independent and identically distributed with zero mean; moreover, as
|δN (i, j)| ≤ 2 ‖h‖∞ for all (i, j) ∈ �1, N1� × �1, N2�, Hoeffding’s inequality
implies that for all ε > 0,
(5.9)

P

⎛
⎝ max

i∈�1,N1�

1

N2

∣∣∣∣∣∣
N2∑
j=1

δN (i, j)

∣∣∣∣∣∣ ≥ ε/2 | FN

⎞
⎠ ≤ 2N1 exp

(
−N2

ε2

8 ‖h‖2∞

)
.

Combining the previous two displays shows that (D) is satisfied with the
choice of c̃1 and c̃2 given in the theorem.

5.6. Proof of Theorem 3.6. We start with (AN1) . In order to apply
Theorem A.2, define the array

UN (i) �
√

N1

N2

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

{h(ξN (i, JN (i, j)))− ηh}(5.10)

((i, j) ∈ �1, N1� × �1, N2�),
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equipped with the usual filtration {FN}N∈N given by (5.1). We first note
that UN (i) ≤ 2

√
N ‖h‖∞ < ∞ for all i ∈ �1, N1� and N ∈ N

∗. In order to
check (B1), write, following the arguments of the proof of Theorem 3.4,

N1∑
i=1

E
[
U2
N (i) | FN

]

= N1

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}2

+N1(N2 − 1)

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2

×

⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

.

Moreover, since

N1∑
i=1

E
2 [UN (i) | FN ]

= N

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2
⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

,

we obtain

N1∑
i=1

{
E
[
U2
N (i) | FN

]
− E

2 [UN (i) | FN ]
}

(5.11)

= N1

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}2

−N1

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2
⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

.

Since the ancestor archipelago satisfies (2.1) and is consistent for η, we
deduce that

N1

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2
⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

P−→ 0.
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Then, since the ancestor archipelago also satisfies (AN3) we conclude that
the variance (5.11) tends in probability to μ1{(h− ηh)2}. Consequently, the
triangular array satisfies Assumption (B1) with limit μ1{(h − ηh)2}. In
order to check Assumption (B2) we may apply Lemma A.3 by bounding

max
i∈�1,N1�

|UN (i)| ≤ VN +XNY 2
N (N ∈ N

∗),

with, for N ∈ N
∗,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VN =
√
N max

i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

×maxi∈�1,N1�

∣∣∣∣∣∑N2
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}
∣∣∣∣∣ ,

XN = N1 max
i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

,

Y 2
N =

√
N2

N1
max

i∈�1,N1�

∣∣∣∣ 1

N2

N2∑
j=1

δN (i, j)

∣∣∣∣,
where the δN s are defined in (5.8). Here {VN}N∈N∗ is FN -adapted and tends
to zero in probability by (AN6) and Lemma 2.3. In addition, {XN}N∈N∗

is FN -adapted and, by (AN6), tight. Moreover, for all N ∈ N
∗, YN has, by

(5.9), a tail of the type

P(YN ≥ ε | FN ) ≤ 2N1 exp

(
−N1

ε4

2 ‖h‖2∞

)
.

Thus, Lemma A.3 applies, which establishes (B2). Finally, we may conclude,
by using Lemma A.5, the proof of (AN1) to obtain that σ̃2(h) = σ2(h) +
μ1{(h− ηh)2}.

To check (AN2) and prove that the series
∑N1

i=1 UN (i), where

UN (i) � ΩN (i)

N2
∑N1

i′=1ΩN (i′)

⎛
⎝ N2∑

j=1

{h(ξN (i, JN (i, j)))− ηh}

⎞
⎠

2

(i ∈ �1, N1�, N ∈ N
∗),

converges in probability as N → ∞, let {FN}N∈N be defined as in (5.1) and
consider the sum

N1∑
i=1

E [UN (i) | FN ]

(5.12)
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=

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}2

+ (N2 − 1)

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

{h(ξN (i, j))− ηh}

⎞
⎠

2

,

where we used, as previously, that for each i ∈ �1, N1�, the variables
{h(ξN (i, JN (i, j)))}N2

j=1 are, conditionally on FN , independent and identically

distributed with common mean
∑N2

j=1 ωN (i, j)h(ξN (i, j))/
∑N2

j′=1 ωN (i, j′).
The first term of the right hand side of (5.12) tends in probability to
η{(h − ηh)2} by consistency, while the second term tends in probability to
ν2(h) by (AN2). Since this establishes the condition (A1) in Theorem A.1,
the series

∑N1
i=1 UN (i) and

∑N1
i=1 E [UN (i) | FN ] have the same limit η{(h−

ηh)2} + ν2(h) in probability as soon as the condition (A2) in the same
theorem can be checked for the array in question. However, write

max
i∈�1,N1�

|UN (i)| ≤ VN +XNY 2
N (N ∈ N

∗),

where, for N ∈ N
∗,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VN = 2N2 max
i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

×
(
maxi∈�1,N1�

∣∣∣∣∑N2
j=1

ωN (i,j)∑N2
j′=1

ωN (i,j′)
h(ξN (i, j))

∣∣∣∣
)2

,

XN = 2 max
i∈�1,N1�

N1
ΩN (i)∑N1

i′=1ΩN (i′)
,

YN = max
i∈�1,N1�

1√
N

∣∣∣∣
N2∑
j=1

δN (i, j)

∣∣∣∣,
and the δN s are defined in (5.8); then, since VN tends to zero in probability
(by (AN6) and Lemma 2.3), XN is tight, and YN has an exponential tail
(by Equation 5.9), Lemma A.3 applies, establishing that the array satisfies
Assumption (A2) . Consequently, we obtain that ν̃2(h) = η{(h − ηh)2} +
ν2(h).

To verify (AN3) we retain to the previous machinery and study the array

UN (i) � N1

N2

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

h(ξN (i, JN (i, j))) (i ∈ �1, N1�, N ∈ N
∗)
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associated with the filtration {FN}N∈N∗ defined in (5.1). To establish the
convergence of

∑N1
i=1 UN (i) we reapply Theorem A.1 and consider

N1∑
i=1

E [UN (i) | FN ]

(5.13)

= N1

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

h(ξN (i, j))
P−→ μ1h,

where convergence follows since the ancestor archipelago satisfies (AN3) .
By reusing (5.13) for |h| we check that the condition (A1) in Theorem A.1
is satisfied. Moreover, since

max
i∈�1,N1�

|UN (i)| ≤ ‖h‖∞

(√
N1

ΩN (i)∑N1
i′=1ΩN (i′)

)2

,

where the right hand side vanishes in probability by (AN6) , Lemma A.3
implies that the array satisfies (A2) as well. Thus, (AN3) holds true with
μ̃1 = μ1.

In addition, since Assumption (AN4) coincides with (AN3) in the case
of uniform particle weights, we obtain immediately that μ̃2 = μ1. Moreover,
(AN5) coincides precisely with (C1), which is satisfied as the output satisfies
the stronger condition (AN1), and we obtain μ̃3 = η. Finally, (AN6) holds
trivially true.

5.7. Proof of Theorem 3.7. First, note that

(5.14)

N1∑
i=1

Ω̃N (i)∑N1
i′=1 Ω̃N (i′)

N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ω̃N (i, j′)

h(ξ̃N (i, j))

=

∑N1
i′=1ΩN (i′)∑N1
i′′=1 Ω̃N (i′′)

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j)),

using the definition of {Ω̃N (i)}N1
i=1 in Algorithm 3. In order to determine the

limit in probability of this quantity we apply Theorem A.1 to the array

UN (i) � ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j)) (i ∈ �1, N1�, N ∈ N
∗)
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associated with the filtration {FN}N∈N∗ given in (5.1). For each (i, j) ∈
�1, N1� × �1, N2�, the conditional distribution of ξ̃N (i, j) given FN is
R(ξN (i, j), ·); thus,

E

[
ω̃N (i, j)h(ξ̃N (i, j)) | FN

]
= ωN (i, j)

∫
w(ξN (i, j), x̃)h(x̃)R(ξN (i, j), dx̃)

= ωN (i, j)Qh(ξN (i, j)),

(5.15)

implying that

N1∑
i=1

E [UN (i) | FN ](5.16)

=

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

Qh(ξN (i, j))
P−→ ηQh,

where convergence holds since the ancestor archipelago satisfies Assump-
tion (C1). This implies (A1). To check also the condition (A2) we apply
Lemma A.3 with XN = YN = 0 and VN = ‖w‖∞ ‖h‖∞maxi∈�1,N1� ΩN (i)/∑N1

i′=1ΩN (i′), where VN is FN -adapted and tends to zero in probability
by the assumption (C2) . Hence, Theorem A.1 ensures that the two series∑N1

i=1 UN (i) and
∑N1

i=1 E [UN (i) | FN ] have the same limit ηQh in probabil-
ity. Moreover, by setting h is equal to the constant function 1X̃ we deduce
that

(5.17)

∑N1
i=1ΩN (i)∑N1
i′=1 Ω̃N (i′)

P−→ 1

ηQ1X̃

,

which allows us to complete the proof of (C1) using Slutsky’s lemma.
Finally, Assumption (C2) is checked straightforwardly by just noting that

max
i∈�1,N1�

Ω̃N (i)∑N1
i′=1 Ω̃N (i′)

≤ ‖w‖∞ max
i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

∑N1
i′=1ΩN (i′)∑N1
i′′=1 Ω̃N (i′′)

,

where the right hand side tends to zero in probability by (5.17) and the fact
that the ancestor archipelago satisfies (C1).

5.8. Proof of Theorem 3.8. Note that �̃× η̃h = �× ηQh and bound the
quantity of interest according to

max
i∈�1,N1�

∣∣∣∣∣∣
1

N2

N2∑
j=1

ω̃N (i, j)h(ξ̃N (i, j))− �× ηQh

∣∣∣∣∣∣(5.18)
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≤ max
i∈�1,N1�

1

N2

∣∣∣∣∣∣
N2∑
j=1

δ̃N (i, j)

∣∣∣∣∣∣
+ max

i∈�1,N1�

1

N2

∣∣∣∣∣∣
N2∑
j=1

ωN (i, j)Qh(ξN (i, j))− �× ηQh

∣∣∣∣∣∣ ,
where

δ̃N (i, j) � ω̃N (i, j)h(ξ̃N (i, j))− ωN (i, j)Qh(ξN (i, j))(5.19)

((i, j) ∈ �1, N1� × �1, N2�).

Since the input archipelago satisfies (D) it holds that

P

⎛
⎝ max

i∈�1,N1�

1

N2

∣∣∣∣∣∣
N2∑
j=1

{ωN (i, j)Qh(ξN (i, j))− �× ηQh}

∣∣∣∣∣∣ ≥ ε/2

⎞
⎠

≤ N1c1 exp

(
−c2N2

ε2

4 ‖Q1X‖2∞ ‖h‖2∞

)
.

For each i ∈ �1, N1�, the random variables {δ̃N (i, j)}N2
j=1 are, conditionally on

FN , independent and, by (5.15), zero mean. Moreover, since for all (i, j) ∈
�1, N1� × �1, N2�, |δ̃N (i, j)| ≤ δ ‖h‖∞, where δ is defined in the statement of
theorem, Hoeffding’s inequality implies that for all ε > 0,
(5.20)

P

⎛
⎝ max

i∈�1,N1�

1

N2

∣∣∣∣∣∣
N2∑
j=1

δ̃N (i, j)

∣∣∣∣∣∣ ≥ ε/2 | FN

⎞
⎠ ≤ 2N1 exp

(
−N2

ε2

2δ2 ‖h‖2∞

)
.

By combining the two previous displays we may conclude that (D) is satisfied
with c̃1 and c̃2 defined as in the theorem statement.

5.9. Proof of Theorem 3.9. We preface the proof by the following auxil-
iary result, which is obtained as a straightforward extension of the general-
ized hoeffding inequality in [14, Lemma 4].

Lemma 5.2. Let the assumptions of Theorem 3.8 hold. Then for all N1 ∈
N
∗, N2 ∈ N

∗, and ε > 0,

(5.21) P

(
max

i∈�1,N1�

∣∣∣∣∣ Ω̃N (i)

ΩN (i)
− ηQ1X̃

∣∣∣∣∣ ≥ ε

)
≤ N1č1 exp

(
−č2N2ε

2
)
,

where č1 � 2(c1 ∨ c̃1) and č2 � {(c2/ ‖w‖2∞) ∧ c̃2}�2/4.
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To check (AN1), take h ∈ Fb(X ) and assume without loss of generality
that η̃h = 0 and, consequently, ηQh = 0. We again rewrite the estimator
according to (5.14) and apply Theorem A.2 to the second factor. For this
purpose, define the array

UN (i) �
√
N

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))(5.22)

(i ∈ �1, N1�, N ∈ N
∗),

and furnish the same with the filtration {FN}N∈N∗ defined in (5.1). We may
now write

(5.23)

N1∑
i=1

UN (i) =

N1∑
i=1

{UN (i)− E [UN (i) | FN ]}

+
√
N

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

Qh(ξN (i, j)),

where, by assumption, since ‖Qh‖∞ ≤ ‖h‖∞ ‖Q1X̃‖∞, the second term on
the right hand side satisfies the CLT

√
N

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

Qh(ξN (i, j))
D−→ N(0, σ2(Qh)).

Our main challenge will be to handle the first term on the right hand side
of (5.23). Since all individuals of the mutated archipelago are conditionally
independent given FN , we notice that for all i ∈ �1, N1�,

E

⎡
⎣
⎛
⎝ N2∑

j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

⎞
⎠

2

| FN

⎤
⎦

=

N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

R(w2h2)(ξN (i, j))

+

⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

Qh(ξN (i, j))

⎞
⎠

2

−
N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

(Qh)2(ξN (i, j)).



CONVERGENCE PROPERTIES OF WEIGHTED PARTICLE ISLANDS 405

Using this, we turn to the variance and deduce the expression

N1∑
i=1

{
E
[
U2
N (i) | FN

]
− E

2 [UN (i) | FN ]
}

= N

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

R(w2h2)(ξN (i, j))

−N

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

(Qh)2(ξN (i, j)),

which tends in probability to μ2R(w2h2)−μ2(Qh)2 as the input archipelago
satisfies Assumption (AN4) . This implies that Assumption (B1) in
Theorem A.2 holds with the same limit. To verify the Lindeberg condition
(B2) in Theorem A.2, note that proceeding as in (5.18) yields

(5.24) max
i∈�1,N1�

|UN (i)| ≤ VN +XNY 2
N (N ∈ N

∗),

where, for N ∈ N
∗,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VN =
√
N max

i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

max
i∈�1,N1�

∣∣∣∣∣∣
N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

Qh(ξN (i, j))

∣∣∣∣∣∣ ,
XN = N1 max

i∈�1,N1�

ΩN (i)∑N1
i=1ΩN (i′)

,

Y 2
N =

√
N2

N1
max

i∈�1,N1�

∣∣∣∣∣
∑N2

j=1 δ̃N (i, j)∑N2
j′=1 ωN (i, j′)

∣∣∣∣∣ .
Here {VN}N∈N∗ is FN -adapted and tends to zero in probability by (AN6)
and Lemma 2.3, {XN}N∈N∗ is FN -adapted and tight by (AN6), and YN has,
by (5.20), (D), and the extension of Hoeffding’s inequality in [14, Lemma 4],
a tail of the form (A.1) (with α = 2). Thus, by Lemma A.3, (B2) holds
true, and we may conclude the proof of (AN1) using first Lemma A.5 and
then Slutsky’s lemma.

We turn to (AN2) and decompose the quantity under consideration
according to

N2

N1∑
i=1

Ω̃N (i)∑N1
i′=1 Ω̃N (i′)

⎛
⎝ N2∑

j=1

ω̃N (i, j)∑N2
j′=1 ω̃N (i, j′)

h(ξ̃N (i, j))

⎞
⎠

2

(5.25)
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= N2

∑N1
i′′=1ΩN (i′′)∑N1
i′=1 Ω̃N (i′)

N1∑
i=1

ΩN (i)∑N1
i′′=1ΩN (i′′)

(
ΩN (i)

Ω̃N (i)
− 1

ηQ1X̃

)

×

⎛
⎝ N2∑

j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

⎞
⎠

2

+N2
1

ηQ1X̃

∑N1
i′′=1ΩN (i′′)∑N1
i′=1 Ω̃N (i′)

N1∑
i=1

ΩN (i)∑N1
i′′=1ΩN (i′′)

×

⎛
⎝ N2∑

j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

⎞
⎠

2

.

The convergence in probability of the second term on the right hand side
will now to be established using Theorem A.1. For this purpose, define the
triangular array

UN (i) � N2
ΩN (i)∑N1

i′=1ΩN (i′)

⎛
⎝ N2∑

j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

⎞
⎠

2

(5.26)

(i ∈ �1, N1�, N ∈ N
∗),

and associate the same with the σ-field FN defined in (5.1). We now apply
the previous machinery and study the convergence of the series

N1∑
i=1

E [UN (i) | FN ]

= N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

R(w2h2)(ξN (i, j))

+N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

⎛
⎝ N2∑

j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

Qh(ξN (i, j))

⎞
⎠

2

−N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

(Qh)2(ξN (i, j)),

which tends in probability to ν2(Qh)+μ3R(w2h2)−μ3(Q
2h) as the ancestor

archipelago satisfies (AN2) and (AN5) . Thus, the condition (A1) in
Theorem A.1 is checked. In addition, (A2) is checked using Lemma A.3, as

max
i∈�1,N1�

|UN (i)| ≤ VN +XNY 2
N (N ∈ N

∗),
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where for N ∈ N
∗, VN = 0 and⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
XN = N1 max

i∈�1,N1�

ΩN (i)∑N1
i=1ΩN (i′)

,

YN =

√
N2

N1
max

i∈�1,N1�

∣∣∣∣∣∣
N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

∣∣∣∣∣∣ ,
where {XN}N∈N∗ is FN -adapted and tight by (AN6) and each YN has, by
[14, Lemma 4], since the input and output archipelagos satisfy (D), a tail of
the form (A.1) (with α = 1). Thus, (A1) holds true, and we may conclude
that the series

∑N1
i=1 UN (i) and

∑N1
i=1 E [UN (i) | FN ] tend to the same limit

in probability.
We turn to the first term of (5.25) and show that this tends to zero

in probability. Indeed, note that the absolute value of the same is, up to
the factor

∑N1
i′=1ΩN (i′)/

∑N1
i′′=1 Ω̃N (i′′), which converges in probability by

(5.17), bounded by

max
i′∈�1,N1�

∣∣∣∣ΩN (i′)

Ω̃N (i′)
− 1

ηQ1X̃

∣∣∣∣N2

N1∑
i=1

ΩN (i)∑N1
i′′=1ΩN (i′′)

×

⎛
⎝ N2∑

j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

⎞
⎠

2

,

where the first factor vanishes in probability by Lemma 5.2 and Lemma A.4,
and the convergence of the second factor was established above. This estab-
lishes Assumption (AN2).

To check Assumption (AN6), consider the bound

(5.27) N1 max
i∈�1,N1�

Ω̃N (i)∑N1
i′=1 Ω̃N (i′)

≤ ‖w‖∞N1 max
i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

(∣∣∣∣∣
∑N1

i′=1ΩN (i′)∑N1
i′′=1 Ω̃N (i′′)

− 1

ηQ1X̃

∣∣∣∣∣+ 1

ηQ1X̃

)
,

where the second factor on the right hand side is tight as the ancestor
archipelago is assumed to satisfy (AN6) . Moreover, as the third factor
tends to 1/ηQ1X̃ in probability by (5.17) we conclude that (AN6) holds
true also for the output.

In order to check (AN3), pick h ∈ Fb(X ) and decompose the quantity of
interest according to
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N1

N1∑
i=1

(
Ω̃N (i)∑N1

i′=1 Ω̃N (i′)

)2 N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ω̃N (i, j′)

h(ξ̃N (i, j))

(5.28)

= N1

( ∑N1
i=1ΩN (i)∑N1
i′=1 Ω̃N (i′)

)2 N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2(
Ω̃N (i)

ΩN (i)
− ηQ1X̃

)

×
N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

+N1ηQ1X̃

( ∑N1
i=1ΩN (i)∑N1
i′=1 Ω̃N (i′)

)2 N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2

×
N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j)).

In order to handle the second term of this decomposition, we apply
Theorem A.1 to the array

UN (i) � N1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

h(ξ̃N (i, j))

(i ∈ �1, N1�, N ∈ N
∗)

furnished with the filtration {FN}N∈N∗ given by (5.1). First, we observe that

N1∑
i=1

E [UN (i) | FN ]

= N1

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

ωN (i, j)∑N2
j′=1 ωN (i, j′)

Qh(ξN (i, j))
P−→ μ1Qh,

as the ancestor archipelago satisfies Assumption (AN3). Thus, the condition
(A1) in Theorem A.1 holds true. In addition, as

max
i∈�1,N1�

|UN (i)| ≤ ‖w‖∞ ‖h‖∞

(√
N1 max

i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

)2

,

also (A2) is verified by Lemma A.3 (applied with XN = YN = 0) and the
fact that the input archipelago satisfies (AN6). Consequently, the also series∑N1

i=1 UN (i) tends in probability to the limit μ1Qh, which, by (5.17), implies
that the second term of (5.28) tends to μ1Qh/ηQ1X̃. To treat the first term
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of (5.28), note that this is, up to the factor
∑N1

i′=1ΩN (i′)/
∑N1

i′′=1 Ω̃N (i′′),
which converges in probability by (5.17), bounded by

N1 max
i∈�1,N1�

∣∣∣∣∣ Ω̃N (i)

ΩN (i)
− ηQ1X̃

∣∣∣∣∣
N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2

×
N2∑
j=1

ω̃N (i, j)∑N2
j′=1 ωN (i, j′)

|h|(ξ̃N (i, j)),

which tends to zero in probability by the previous computation and Lemma 5.2.
This completes the proof of (AN3).

In order to prove (AN4), introduce the array

UN (i) � N

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

(
ω̃N (i, j)∑N2

j′=1 ωN (i, j′)

)2

h(ξ̃N (i, j))

(i ∈ �1, N1�, N ∈ N
∗)

and equip the same with usual filtration {FN}N∈N∗ . With this notation, the
quantity of interest in (AN4) can be written as( ∑N1

i=1ΩN (i)∑N1
i′=1 Ω̃N (i′)

)2 N1∑
i=1

UN (i),

where the first factor tends to 1/(ηQ1X̃)
2 by Lemma 5.2. Thus, it is enough

to show that the second factor tends to μ2R(w2h) in probability, and for this
purpose we use Theorem A.1. As the ancestor archipelago satisfies (AN4),
the quantity

N1∑
i=1

E [UN (i) | FN ]

= N

N1∑
i=1

(
ΩN (i)∑N1

i′=1ΩN (i′)

)2 N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

R(w2h)(ξN (i, j))

tends in probability to the desired limit μ2R(w2h). This implies the condition
(A1) in Theorem A.1. In addition, (A2) is checked using Lemma A.3;
indeed,

max
i∈�1,N1�

|UN (i)|

≤ |ω|∞ ‖w‖2∞ ‖h‖∞

(√
N1 max

i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

)2

max
i∈�1,N1�

N2∑N2
j=1 ωN (i, j)

,
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where the the right hand side is adapted to {FN}N∈N∗ and vanishes in
probability by Lemma A.4, as the ancestor archipelago satisfies (AN6) and
(D). This shows (AN4).

Finally, in order to prove (AN5) we decompose the quantity of interest
according to

N2

N1∑
i=1

Ω̃N (i)∑N1
i′=1 Ω̃N (i′)

N2∑
j=1

(
ω̃N (i, j)∑N2

j′=1 ω̃N (i, j′)

)2

h(ξ̃N (i, j))(5.29)

= N2

( ∑N1
i′=1ΩN (i′)∑N1
i′′=1 Ω̃N (i′′)

)
N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

(
ΩN (i)

Ω̃N (i)
− 1

ηQ1X̃

)

×
N2∑
j=1

(
ω̃N (i, j)∑N2

j′=1 ωN (i, j′)

)2

h(ξ̃N (i, j))

+N2
1

ηQ1X̃

( ∑N1
i′=1ΩN (i′)∑N1
i′′=1 Ω̃N (i′′)

)
N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

×
N2∑
j=1

(
ω̃N (i, j)∑N2

j′=1 ωN (i, j′)

)2

h(ξ̃N (i, j)).

To deal with the second term we reapply Theorem A.1, this time to the
array

UN (i) = N2
ΩN (i)∑N1

i′=1ΩN (i′)

N2∑
j=1

(
ω̃N (i, j)∑N2

j′=1 ωN (i, j′)

)2

h(ξ̃N (i, j))

(i ∈ �1, N1�, N ∈ N
∗).

As usual, we study first the series

N1∑
i=1

E [UN (i) | FN ]

= N2

N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

N2∑
j=1

(
ωN (i, j)∑N2

j′=1 ωN (i, j′)

)2

R(w2h)(ξN (i, j))

P−→ μ3R(w2h),

where the limit is a consequence of the fact that the ancestor archipelago
satisfies (AN5) . This establishes (A1) in Theorem A.1. To check also
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Condition (A2), consider the upper bound

max
i∈�1,N1�

|UN (i)|

≤ |ω|∞ ‖w‖2∞ ‖h‖∞ max
i∈�1,N1�

ΩN (i)∑N1
i′=1ΩN (i′)

max
i∈�1,N1�

N2∑N2
j=1 ωN (i, j)

,

which is {FN}N∈N∗-adapted and tends to zero in probability by Lemma A.4,
as the ancestor archipelago satisfies (C2) and (D) . Now, Theorem A.1
guarantees that

∑N1
i=1 UN (i) and

∑N1
i=1 E [UN (i) | FN ] have the same limit

μ3R(w2h) in probability. Moreover, note that the second term of (5.29) is,
up to the factor

∑N1
i′=1ΩN (i′)/

∑N1
i′′=1 Ω̃N (i′′), bounded by

N2 max
i∈�1,N1�

∣∣∣∣ΩN (i)

Ω̃N (i)
− 1

ηQ1X̃

∣∣∣∣
N1∑
i=1

ΩN (i)∑N1
i′=1ΩN (i′)

×
N2∑
j=1

(
ω̃N (i, j)∑N2

j′=1 ωN (i, j′)

)2

|h|(ξ̃N (i, j)),

which tends to zero in probability by (5.21) and Lemma A.4. Thus, also
(AN5) holds true.

5.10. Proof of Corollary 4.6. First, a prefatory lemma.

Lemma 5.3. Assume (M). Then for all (, n) ∈ N
2 such that  ≤ n and

h ∈ Fb(X ),

(5.30)

∥∥∥∥Q� · · ·Qn−1(h− ηnh)

η�Q� · · ·Qn−11X

∥∥∥∥
∞

≤ ρn−�

1− ρ
osc(h),

where ρ is defined in (4.11).

Proof. For x ∈ X, write

Q� · · ·Qn−1(h− ηnh)(x)

η�Q� · · ·Qn−11X

=
Q� · · ·Qn−1h(x)

η�Q� · · ·Qn−11X
− Q� · · ·Qn−11X(x)

η�Q� · · ·Qn−11X
ηnh

=
Q� · · ·Qn−11X(x)

η�Q� · · ·Qn−11X

[
Q� · · ·Qn−1h(x)

Q� · · ·Qn−11X(x)
− η�Q� · · ·Qn−1h

η�Q� · · ·Qn−11X

]
.(5.31)
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Note that since Q� . . . Qn−1h(x) = δxQ� . . . Qn−1h (where δx denotes the
Dirac mass located at x) we may, under (M), apply [18, Proposition 10.20],
yielding the uniform bound

(5.32)

∣∣∣∣ δxQ� · · ·Qnh

δxQ� · · ·Qn1X
− η�Q� · · ·Qnh

η�Q� · · ·Qn1X

∣∣∣∣ ≤ ρn−� osc(h) (x ∈ X).

Combining (5.31) and (5.32) with the uniform bound

Q� · · ·Qn−11X(x)

η�Q� · · ·Qn−11X
≤ σ+

σ−
=

1

1− ρ
(x ∈ X)

yields (5.30).

For arbitrary (, n) ∈ N
2 with  ≤ n, combining the identity

η�Q� · · ·Qn−11X = η�Q�1X × η�+1Q�+1 · · ·Qn−11X

with the bound η�Q�−11X ≥ c−(the latter implied by (M)(iii)) yields

η�R�{w2
�Q�+1 · · ·Qn−1(h− ηnh)

2}
(η�Q� · · ·Qn−11X)2

≤ c−1
− ‖w�‖∞

∥∥∥∥Q�+1 · · ·Qn−1(h− ηnh)

η�+1Q�+1 · · ·Qn−11X

∥∥∥∥
2

∞
.

Now, using Lemma 5.3 we obtain

η�R�{w2
�Q�+1 · · ·Qn−1(h− ηnh)

2}
(η�Q� · · ·Qn−11X)2

≤ w+
ρ2(n−�−1)

(1− ρ)2c−
osc2(h).

Finally, the proof of Corollary 4.6 is concluded by summing up the terms.

5.11. Proof of Corollary 4.10. Since the th terms of the asymptotic vari-
ances (4.4) and (4.5) differ only by the multiplicative constant n − , the
proof follows straightforwardly by direct inspection of the proof of the anal-
ogous result for the standard bootstrap particle filter given in [17, Theo-
rem 11] (which in turn is an adaptation of the proof of Theorem 10 in the
same paper, providing the analogous result for the particle predictor). More
specifically, the result is obtained by

• embedding, using a trivial extension of Kolmogorov’s extension theo-
rem, the stationary sequence {Zp}p∈N into a stationary process {Zp}p∈Z
with doubly infinite time.
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• bounding, for a given n ∈ N, using [17, Equations 34–35], σ2
n〈Z0:n〉(h)

by a quantity of form c
∑n

�=0(n− )Δn−�〈h〉(Z−∞:�−1, Z�:n), where c is
a P-a.s. finite random variable and each function Δm〈h〉 : Z∞ → R+,
m ∈ N, is of the same type as the terms of the sum in [17, Equation 35].

• using the stationarity to conclude that
∑n

�=0(n− )Δn−�〈h〉(Z−∞:�−1,
Z�:n) has the same distribution as

∑n
�=0 Δ�〈h〉(Z−∞:−�−1, Z−�:0).

• bounding, using [17, Equation 39], each term of the sum as
Δ�〈h〉(Z−∞:−�−1, Z−�:0) ≤ dβ�, P-a.s., where d is a P-a.s. finite ran-
dom variable and β < 1 is a constant. This shows that σ2

n〈Z0:n〉(h) ≤
cd
∑∞

�=0 β
� < ∞, P-a.s., which concludes the proof.

APPENDIX A: TECHNICAL RESULTS

We first recall two results, obtained in [15], which are essential for the
developments of the present paper.

Theorem A.1 ([15]). Let (Ω,A, {FN}N∈N,P) be a filtered probability
space. In addition, let, for a given sequence {MN}N∈N of integers such that
MN → ∞ as N → ∞, {UN (i)}MN

i=1 , N ∈ N, be a triangular array of random

variables on (Ω,A,P) such that for all N ∈ N, the variables {UN (i)}MN
i=1 are

conditionally independent given FN with E[|UN (i)| | FN ] < ∞, P-a.s., for
all i ∈ �1,MN �. Moreover, assume that

(A1) lim
λ→∞

sup
N∈N

P

(
MN∑
i=1

E[|UN (i)| | FN ] ≥ λ

)
= 0.

(A2) For all ε > 0, as N → ∞,

MN∑
i=1

E
[
|UN (i)|1{|UN (i)|≥ε} | FN

] P−→ 0.

Then, as N → ∞,

max
m∈�1,MN �

∣∣∣∣∣
m∑
i=1

UN (i)−
m∑
i=1

E [UN (i) | FN ]

∣∣∣∣∣ P−→ 0.

Theorem A.2 ([15]). Let the assumptions of Theorem A.1 hold with
E[U2

N (i) | FN ] < ∞, P-a.s., for all i ∈ �1,MN �, and (A1) and (A2)
replaced by:
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(B1) For some constant ς2 > 0, as N → ∞,

MN∑
i=1

(
E[U2

N (i) | FN ]− E
2 [UN (i) | FN ]

) P−→ ς2.

(B2) For all ε > 0, as N → ∞,

MN∑
i=1

E
[
U2
N (i)1{|UN (i)|≥ε} | FN

] P−→ 0.

Then, for all u ∈ R, as N → ∞,

E

[
exp

(
iu

MN∑
i=1

{UN (i)− E[UN (i) | FN ]}
)

| FN

]
P−→ exp

(
−u2ς2/2

)
.

The following lemma is useful when verifying the tightness conditions (A2)
and (B2).

Lemma A.3. Let the ({MN}N∈N, {UN (i)}MN
i=1 , {FN}N∈N) be the triangu-

lar array given in Theorem A.1. Assume that there exist sequences {VN}N∈N,
{XN}N∈N, and {YN}N∈N of nonnegative random variables such that

(i) for all N ∈ N, P-a.s.,

max
i∈�1,MN �

|UN (i)| ≤ VN +XNY 2
N ,

(ii) {VN}N∈N and {XN}N∈N are {FN}N∈N-adapted and such that VN
P−→

0 as N → ∞ and
lim
λ→∞

sup
N∈N

P (XN ≥ λ) = 0,

(iii) for some α ∈ {1, 2}, ν > 0, c > 0, and C > 0, P-a.s.,

(A.1) P (YN ≥ y | FN ) ≤ CMN exp
(
−cMν

Ny2α
)
.

Then for p ∈ {1, 2},

lim
λ→∞

sup
N∈N

P

(
MN∑
i=1

E
[
|Up

N (i)| | FN

]
≥ λ

)
= 0

⇒
MN∑
i=1

E
[
|Up

N (i)|1{|UN (i)|≥ε} | FN

] P−→ 0, ∀ε > 0, as N → ∞.
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Proof. We start with the case p = 1. First, note that for all υ > 0,

E

[
Y 2
N1{Y 2

N≥υ} | FN

]
=

∫ ∞

υ
P (YN ≥ √

y | FN ) dy + υP
(
YN ≥

√
υ | FN

)
≤ CMN

∫ ∞

υ
exp (−cMν

Nyα) dy + CMNυ exp (−cMν
Nυα) ,

where we used the condition (iii) in the second step. Thus,
(A.2)

E

[
Y 2
N1{Y 2

N≥υ} | FN

]
≤
{(

υ+M−ν
N /c

)
CMN exp (−cMν

Nυ) for α=1,(
υ+M−ν

N /(2cυ)
)
CMN exp

(
−cMν

Nυ2
)

for α=2,

using the standard upper tail bound for Gaussian distributions. In any case,

(A.3) MNE

[
Y 2
N1{Y 2

N≥υ} | FN

]
P−→ 0.

In addition, note that (ii) implies, for all ε′ > 0 and all δ > 0, the existence
of a constant λδ < ∞ such that for all λ ≥ λδ,

(A.4) sup
N∈N

P

(
1{XN≥λ}

MN∑
i=1

E [|UN (i)| | FN ] ≥ ε′
)

≤ sup
N∈N

P (XN ≥ λ) ≤ δ.

Now, for any ε > 0 and λ > 0 the quantity of interest may be bounded as

MN∑
i=1

E
[
|UN (i)|1{|UN (i)|≥ε} | FN

]
≤ MNVNP

(
YN ≥

√
ε

2λ
| FN

)

+
(
1{XN≥λ} + 1{VN≥ε/2}

)MN∑
i=1

E [|UN (i)| | FN ]

+ λMNE

[
Y 2
N1{Y 2

N≥ε/(2λ)} | FN

]
,

where the upper bound may, by (iii), (A.3), and (A.4), be made arbitrarily
small in probability by increasing first λ and then N . This completes the
proof in the case p = 1.

We turn to the case p = 2. However, by letting ŨN (i) � U2
N (i), i ∈

�1,MN �, N ∈ N
∗, and noting that maxi∈�1,MN � ŨN (i) ≤ ṼN + X̃N Ỹ 2

N , where

ṼN � 2V 2
N , X̃N � 2X2

N , and ỸN � Y 2
N , we thus realise that the proof of the

case p = 1 goes through if we can verify that (A.3) and (A.4) hold true when
XN , YN , and {UN (i)}MN

i=1 are replaced by X̃N , ỸN , and {ŨN (i)}MN
i=1 , respec-
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tively. Nevertheless, (A.4) holds straightforwardly as tightness of {XN}N∈N
implies tightness of {X̃N}N∈N. Moreover, using condition (iii) one shows,
along previous lines, that

E

[
Ỹ 2
N1{Ỹ 2

N≥υ} | FN

]
=

∫ ∞

υ
P (YN ≥ 4

√
y | FN ) dy + υP

(
YN ≥ 4

√
υ | FN

)
≤ CMN

∫ ∞

υ
exp

(
−cMν

Nyα/2
)
dy + υCMN exp

(
−cMν

Nυα/2
)
.

For α = 1,

E

[
Ỹ 2
N1{Ỹ 2

N≥υ} | FN

]
≤
(
2
√
υM−ν

N /c+ 2M−2ν
N /c2 + υ

)
CMN exp

(
−cMν

N

√
υ
)
.

while the case α = 2 corresponds to the first case of (A.2). Consequently, as
N → ∞,

MNE

[
Ỹ 2
N1{Ỹ 2

N≥υ} | FN

]
P−→ 0,

which completes the proof.

Lemma A.4. Let a ∈ R be nonzero, a �= 0, and let {XN (i)}N1
i=1, N1 ∈ N

∗,
be random variables such that XN (i) �= 0 for all i ∈ �1, N1�. Assume that

maxi∈�1,N1� |XN (i)− a| P−→ 0 as N → ∞. Then

max
i∈�1,N1�

∣∣X−1
N (i)− a−1

∣∣ P−→ 0.

Proof. Pick ε > 0; then we may write for all η > 0,

P

(
max

i∈�1,N1�

∣∣X−1
N (i)− a−1

∣∣ ≥ ε

)
≤ P

(
max

i∈�1,N1�
|XN (i)− a| ≥ η

)

+ P

(
max

i∈�1,N1�

∣∣X−1
N (i)− a−1

∣∣ ≥ ε, max
i∈�1,N1�

|XN (i)− a| < η

)
,

where the first term tends to zero as N tends to infinity for any η by as-
sumption. For all i ∈ �1, N1�, there exists, by Taylor’s formula, ζN (i) ∈
(XN (i)∧ a,XN (i)∨ a) such that |X−1

N (i)− a−1| = ζ−2
N (i)|XN (i)− a|. Thus,

if a > 0 and 0 < η < a,

P

(
max

i∈�1,N1�

∣∣X−1
N (i)− a−1

∣∣ ≥ ε, max
i∈�1,N1�

|XN (i)− a| < η

)
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≤ P

(
max

i∈�1,N1�
|XN (i)− a| > ε{a− η}2

)
,

where the right hand side tends, by assumption, to zero as N tends to
infinity. On the other hand, if a < 0 and 0 < η < −a,

P

(
max

i∈�1,N1�

∣∣X−1
N (i)− a−1

∣∣ ≥ ε, max
i∈�1,N1�

|XN (i)− a| < η

)

≤ P

(
max

i∈�1,N1�
|XN (i)− a| > ε{a+ η}2

)
,

where again the right hand side tends to zero. This concludes the proof.

Lemma A.5. Let {ZN}N∈N be a sequence of random variables such that
for some constant z∞ ∈ R, as N → ∞,

E [ZN ] → z∞

and is uniformly bounded by some constant z+ ∈ R. Let {XN} be a sequence
of random variables that (i) converges in probability to some constant x∞ ∈
R and (ii) is dominated by some integrable random variable. Then, as N →
∞,

E [XNZN ] → x∞z∞.

Proof. The result is obtained straightforwardly by writing

|E [XNZN ]− x∞z∞| ≤ z+E [|XN − x∞|] + |x∞| |E [ZN ]− z∞| ,

where the right hand side tends to zero as N tends to infinity by assumption
and dominated convergence.
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[16] R. Douc, É. Moulines, and J. Olsson. Optimality of the auxiliary particle filter.
Probab. Math. Statist., 29(1):1–28, 2009.

[17] R. Douc, E. Moulines, and J. Olsson. Long-term stability of sequential Monte Carlo
methods under verifiable conditions. Ann. Appl. Probab., 24(5):1767–1802, 2014.
MR3226163

[18] R. Douc, E. Moulines, and D. Stoffer. Nonlinear Time Series: Theory, Methods and
Applications with R Examples. Chapman & Hall/CRC Texts in Statistical Science,
2014.

[19] A. Doucet, N. De Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods
in Practice. Springer, New York, 2001.

[20] K. Heine and N. Whiteley. Fluctuations, stability and instability of a distributed
particle filter with local exchange. ArXiv e-prints, May 2015.

[21] A. Kong, J. S. Liu, and W. Wong. Sequential imputation and Bayesian missing data
problems. J. Am. Statist. Assoc., 89(278-288):590–599, 1994.
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Centre de Mathématiques Appliquée

INRIA XPOP

Route de Saclay

91128 Palaiseau, Cedex

France

E-mail: eric.moulines@polytechnique.edu

Jimmy Olsson

Department of Mathematics

KTH

SE-100 44 Stockholm

Sweden

E-mail: jimmyol@kth.se

Christelle Vergé

ONERA – The French Aerospace Lab

91761 Palaiseau

France

E-mail: christelle.verge@onera.fr

http://www.ams.org/mathscinet-getitem?mr=2516598
mailto:p.del-moral@unsw.edu.au
mailto:eric.moulines@polytechnique.edu
mailto:jimmyol@kth.se
mailto:christelle.verge@onera.fr

	Introduction
	Preliminaries
	Some notation
	Weighted particle islands and archipelagos
	Convergence properties of archipelagos

	Main results
	Operations on weighted archipelagos
	Selection on the island level
	Selection on the individual level
	Mutation


	Applications
	Feynman-Kac models
	The double bootstrap algorithm with adaptive selection
	Long-term stability of the double bootstrap algorithm
	Time uniform convergence under the strong mixing assumption
	Time uniform convergence under a local Doeblin condition

	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.8
	Proof of Theorem 3.9
	Proof of Corollary 4.6
	Proof of Corollary 4.10

	Technical results
	Acknowledgment
	References
	Author's addresses

