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GIANT COMPONENT IN RANDOM MULTIPARTITE
GRAPHS WITH GIVEN DEGREE SEQUENCES∗

By David Gamarnik and Sidhant Misra

Massachusetts Institute of Technology

We study the problem of the existence of a giant component in
a random multipartite graph. We consider a random multipartite
graph with p parts generated according to a given degree sequence
nd
i (n), n ≥ 1 which denotes the number of vertices in part i of the

multipartite graph with degree given by the vector d in an n-node
graph. We assume that the empirical distribution of the degree se-
quence converges to a limiting probability distribution. Under certain
mild regularity assumptions, we characterize the conditions under
which, with high probability, there exists a component of linear size.
The characterization involves checking whether the Perron-Frobenius
norm of the matrix of means of a certain associated edge-biased dis-
tribution is greater than unity. We also specify the size of the giant
component when it exists. We use the exploration process of Molloy
and Reed Molloy and Reed (1995) to analyze the size of components
in the random graph. The main challenges arise due to the multidi-
mensionality of the random processes involved which prevents us from
directly applying the techniques from the standard unipartite case.
In this paper we use techniques from the theory of multidimensional
Galton-Watson processes along with Lyapunov function technique to
overcome the challenges.

1. Introduction. The problem of the existence of a giant component
in random graphs was first studied by Erdös and Rényi. In their classical
paper Erdős and Rényi (1960), they considered a random graph model on n
and m edges where each such possible graph is equally likely. They showed
that if m/n > 1

2 + ε, with high probability (w.h.p.) as n → ∞ there exists
a component of size linear in n in the random graph and that the size of
this component as a fraction of n converges to a given constant. Further if
m/n < 1

2 − ε w.h.p. the largest component is sublinear in n.
The degree distribution of the classical Erdös-Rényi random graph has

approximately Poisson distribution. However in many real life networks the
degree distribution associated with an underlying graph does not satisfy
this. For example, many so-called “scale-free” networks exhibit power law
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distribution of degrees. This motivated the study of random graphs gener-
ated according to a given degree sequence. The giant component problem on
a random graph generated according to a given degree sequence was consid-
ered by Molloy and Reed Molloy and Reed (1995). They provided conditions
on the degree distribution under which a giant component exists w.h.p. In
particular, they showed that for a given degree distribution {pi}i∈N, a giant
component exists iff

∑
i i(i−2)pi > 0. A major tool in their analysis was the

so-called exploration process, which reveals the random neighborhood of a
vertex in the random graph sequentially. The resulting process governing the
size of the component in the exploration process can then be compared with
a one dimensional random walk with positive drift to prove the existence
of a giant component. Further in Molloy and Reed (1998), using Wormald’s
differential equation method for random graph processes Wormald (1995),
the authors also showed that the size of the giant component as a fraction of
the number of vertices converges in probability to a given positive constant.
The results in Molloy and Reed (1995) and Molloy and Reed (1998) were
reproved by Janson and Luczak in Janson and Luczak (2008) using tech-
niques based on the convergence of empirical distributions of independent
random variables and the Glivenko-Cantelli theorem. Under finite (bit more
than) fourth moment assumption, they were also able to use their technique
to prove a sharp phase transition in the size of the largest component in
the “critical window”, when

∑
i i(i − 2)pi(n) = α(n) →

∑
i i(i − 2)pi = 0,

but α(n)n1/3 → ∞. The results for the critical phase were first derived by
Kang and Seierstad in Kang and Seierstad (2008) using singularity analysis
of generating functions when α(n)n1/3 > log n. More recently, Bollobas and
Riordan Bollobás and Riordan (2012) have revisited the giant component
problem using approaches reminiscent of the proofs for the Erdös-Rényi
case, using the analysis of the branching process associated with the de-
gree distribution. They showed that through a generalization of the original
“sprinkling” technique of Erdös and Rényi, the results of Molloy and Reed
can be proved without any finite second moment assumption (i.e, the sum of
the squares of the degrees need not be O(n)) and with exponential bounds
on the probability of large deviations.

A related model, where instead of the degree sequence being fixed, it is
drawn independently from a given probability distribution was studied by
van der Hofstad, Hooghiemstra and Znamenski van der Hofstad, Hooghiem-
stra and Znamenski (2005a). They derived conditions for the existence and
the size of the giant component, as well as the size of other small com-
ponents, even for the case when the degree distribution has infinite mean.
They also provide bounds for the diameter of such graphs in the above and
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related papers van der Hofstad, Hooghiemstra and Mieghem (2005), van der
Hofstad, Hooghiemstra and Znamenski (2005b).

All of these results consider a random graph on n vertices with a given
degree sequence where the distribution is uniform among all feasible graphs
with the given degree sequence. The degree sequence is then assumed to
converge to a probability distribution and the results provide conditions on
this probability distribution for which a giant component exists w.h.p.

In this paper, we consider random multipartite graphs with p parts with
given degree distributions. Here p is a fixed positive integer. Each vertex is
associated with a degree vector d, where each of its component di, i ∈ [p]
dictates the number of neighbors of the vertex in the corresponding part i of
the graph. As in previous papers, we assume that the empirical distribution
associated with the number of vertices of degree d converges to a probability
distribution. Under mild assumption on the distribution of d we establish the
necessary and sufficient conditions for the existence of a giant (linear size)
component in the underlying random graph. The condition is formulated in
terms of the Perron Frobenius eigenvalue γ of a certain matrix M defined
in terms of the distribution of d. The giant component exists if and only
if γ > 1. Furthermore, we establish the uniqueness and size of the giant
component when γ > 1.

Our multipartite random graph model and the main result regarding the
existence and uniqueness of the giant component, has a two-fold motivation.
First many real life networks exhibit naturally such multipartite structure.
For example the IMDB network (database) of movies and actors can be
viewed as bi-partite graph with movies and actors corresponding to the two
parts of the graphs. Similarly, the Netflix database of movies and viewers
has a similar bi-partite graph structure. The network of scientific collabo-
rations is a bi-partite graph of publications and authors. These and several
other multi-partite networks such as network of company ownership, the fi-
nancial contagion model, heterogenous social networks, have been analyzed
empirically in Newmann, Strogatz and Watts (2001) (see also Boss et al.
(2004), Jackson (2008)). In particular, a tight condition for the existence
of a giant component for the special case of p = 2 was conjectured and
derived heuristicaly in Newmann, Strogatz and Watts (2001) (see condition
(5) in the body of the paper). In this paper we establish the validity of
this condition rigorously as a special case of our result for general p. Ex-
amples of biological networks which exhibit multipartite structure were also
considered in the literature including drug target networks, protein-protein
interaction networks and human disease networks Goh et al. (2007), Yildrim
et al. (2007), Morrision et al. (2006).
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Our second motivation stems from a completely different application and
is related to the combinatorial optimization problem of finding a maximum
cut of a graph. The maximum cut problem is a classical combinatorial opti-
mization problem for which no polynomial time algorithm can exist which
produces an optimal solution to within a certain multiplicative factor γ, un-
less P = NP . In a concurrent paper (Gamarnik and Misra, see also Misra
(2014)) we consider the version of the problem in which the underlying graph
with maximum degree d is being “diluted” according to a Bernoulli process
with parameter p. Namely, every edge is deleted with probability p and one
considers the problem of solving the maximum cut problem in the resulting
graph. In our paper we identify a threshold p∗ = (d−2)/(d−1) such that on
the one hand, when p > p∗, an optimal solution can be found in polynomial
time, and on the other hand, when p < p∗, no polynomial time algorithm
can produce a maximum cut, unless P = NP . A crucial part of our analysis
in Gamarnik and Misra and Misra (2014) related to the algorithmic hard-
ness part of our result is precisely the problem of proving the existence and
uniqueness property of a giant component in a multi-partite random graph
with general degree distribution. In addition to the existence and unique-
ness properties, we need to establish a certain strong connectivity property:
every partition of the nodes of the giant component into two parts, each
of size at least nc for some c > 0, there are at least nδ edges of the giant
component crossing the two parts, where δ > 0 is a constant that depends
on c. The exact statement of the strong connectivity property and its proof
is established in Gamarnik and Misra and Misra (2014).

The main approach underlying the present paper is based on the analy-
sis of the exploration process considered earlier in Molloy and Reed (1995).
The major bottleneck is that the exploration process is a multidimensional
process and the techniques in Molloy and Reed (1995) of directly underes-
timating the exploration process by a one dimensional random walk does
not apply to our case. In order to overcome this difficultly, we construct
a linear Lyapunov function based on the Perron-Frobenius theorem – the
technique often used in the study of multidimensional branching processes.
Then we couple the exploration process with some underestimating process
whose Lyapunov function is an under-estimator of the Lyapunov function
applied to the original process. The coupling construction is also more in-
volved due to the multidimensionality of the process. This is because in
contrast to the unipartite case, there are multiple types of clones (or half-
edges) involved in the exploration process, corresponding to which pair of
parts of the multipartite graph they belong to. At every step of the explo-
ration process, revealing the neighbor of such a clone leads to the addition
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of clones of several types to the component being currently explored. The
particular numbers and types of these newly added clones is also dependent
on the kind of clone whose neighbor was revealed. So, the underestimating
process needs to be constructed in a way such that it simultaneously under-
estimates the exploration process for each possible type of clone involved.
We do this by choosing the parameters of the underestimating process such
that for each type of clone, the vector of additional clones which are added
by revealing its neighbor is always component-wise smaller than the same
vector for the exploration process.

Once the underestimating process is established, our proof follows that
of Molloy and Reed (1995) to prove the existence of a giant component. In
fact similar to the standard case, the condition required for the existence of a
giant component is that the drift of the Lyapunov function is positive, which
in turn is equivalent to the matrix of expected edge biased degrees having
a Perron-Frobenius norm greater than 1. Our model and the condition for
the existence of a giant component has resemblance to the inhomogenous
random graph model studied by Bollobas, Janson and Riordan Bollobás,
Janson and Riordan (2007). The similarity arises from the super criticality
condition for the underlying multi-type branching processes used to analyze
both models.

To establish the size of the giant component, we use the branching process
approach of Bollobas and Riordan Bollobás and Riordan (2012). We con-
struct the corresponding edge-biased branching process associated with the
vertices of the random graph and show that the probability of a vertex be-
longing to the giant component is (asymptotically) equal to the probability
of survival of the branching process. We then use the “switching” argument
of Bollobas and Riordan to show that the number of vertices in the giant
component is concentrated around its expected value. We note here that,
we impose a finite second moment assumption and obtain sub-exponential
bounds on probability of large deviations of the size of the giant component.
It may be possible to tighten these bounds using a purely branching pro-
cess based approach, via a generalization of Bollobás and Riordan (2012),
however we have not pursued this.

All results regarding giant components typically use a configuration model
corresponding to the given degree distribution by splitting vertices into
clones and performing a uniform matching of the clones. In the standard
unipartite case, all clones can be treated the same. However in the multi-
partite case, this is not the case. For example, the neighbor of a vertex in
part i of the graph with degree d can lie in part j only if dj > 0. Further, this

neighbor must also have a degree d̂ such that d̂i > 0. This poses the issue
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of the graph breaking down into parts with some of the p parts of the graph
getting disconnected from the others. To avoid this we make a certain irre-
ducibility assumption which we carefully state later. This assumption not
only addresses the above problem, but also enables us to construct linear
Lyapunov functions by using the Perron-Frobenius theorem for irreducible
non-negative matrices.

The rest of the paper is structured as follows. In Section 2, we start by
introducing the basic definitions and the notion of a degree distribution
for multipartite graphs. In Section 3, we formally state our main results.
Section 4 is devoted to the description of the configuration model. In Sec-
tion 5, we describe the exploration process of Molloy and Reed and the
associated distributions that govern the evolution of this process. In Sec-
tion 6 and Section 7, we prove our main results for the supercritical case,
namely when a giant component exists w.h.p. In Section 8 we prove a sub-
linear upper bound on the size of the largest component in the subcritical
case.

2. Definitions and preliminary concepts. We consider a finite sim-
ple undirected graph G = (V, E) where V is the set of vertices and E is
the set of edges. We use the words “vertices” and “nodes” interchange-
ably. A path between two vertices v1 and v2 in V is a collection of vertices
v1 = u1, u2, . . . , ul = v2 in V such that for each i = 1, 2, . . . , l − 1 we have
(ui, ui+1) ∈ E . A component, or more specifically a connected component
of a graph G is a subgraph C ⊆ G such that there is a path between any
two vertices in C. A family of random graphs {Gn} on n vertices is said to
have a giant component if there exists a positive constant ε > 0 such that
P(There exists a component C ⊆ Gn for which |C|

n ≥ ε) → 1. Subsequently,
when a property holds with probability converging to one as n → ∞, we say
that the property holds with high probability (w.h.p.).

For any integer p, we use [p] to denote the set {1, 2, . . . , p}. For any matrix
M ∈ R

m×n, we denote by ‖M‖ � maxi,j |Mij |, the largest element of the
matrix M in absolute value. It is easy to check that ‖ · ‖ is a valid matrix
norm. We use δij to denote the Kronecker delta function defined by

δij =

{
1, if i = j,

0, otherwise.

We denote by 1 the all ones vector whose dimension will be clear from
context.

The notion of an asymptotic degree distribution was introduced by Molloy
and Reed Molloy and Reed (1995). In the standard unipartite case, a degree



378 D. GAMARNIK AND S. MISRA

distribution dictates the fraction of vertices of a given degree. In this section
we introduce an analogous notion of an asymptotic degree distribution for
random multipartite graphs. We consider a random multipartite graph G
on n vertices with p parts denoted by G1, . . . , Gp. For any i ∈ [p] a vertex
v ∈ Gi is associated with a “type” d ∈ Z

p
+ which we call the “type” of v. This

means for each i = 1, 2, . . . , p, the node with type d has d(i) � di neighbors
in Gi. A degree distribution describes the fraction of vertices of type d in
Gi, i ∈ [p]. We now define an asymptotic degree distribution as a sequence
of degree distributions which prescribe the number of vertices of type d in
a multipartite graph on n vertices. For a fixed n, let D(n) � (nd

i (n), i ∈ [p],
d ∈ {0, 1, . . . , n}p), where nd

i (n) denotes the number of vertices in Gi of
type d. Associated with each D(n) is a probability distribution p(n) =

(
nd
i (n)
n , i ∈ [p],d ∈ {0, 1, . . . , n}p) which denotes the fraction of vertices of

each type in each part. Accordingly, we write pdi (n) =
nd
i (n)
n . For any vector

degree d the quantity 1′d is simply the total degree of the vertex. We define
the quantity

ω(n) � max{1′d : nd
i (n) > 0 for some i ∈ [p]},(1)

which is the maximum degree associated with the degree distribution D(n).
To prove our main results, we need additional assumptions on the degree
sequence.

Assumption 1. The degree sequence {D(n)}n∈N satisfies the following
conditions:

(a) For each n ∈ N there exists a simple graph with the degree distribu-
tion prescribed by D(n), i.e., the degree sequence is a feasible degree
sequence.

(b) There exists a probability distribution p =
(
pdi , i ∈ [p],d ∈ Z

p
+

)
such

that the sequence of probability distributions p(n) associated with
D(n) converges to the distribution p.

(c) For each i ∈ [p],
∑

d 1
′dpdi (n) →

∑
d 1

′dpdi .

(d) For each i, j ∈ [p] such that λj
i �

∑
d djp

d
i = 0, the corresponding

quantity λj
i (n) �

∑
d djp

d
i (n) = 0 for all n.

(e) The second moment of the degree distribution given by
∑

d(1
′d)2pdi

exists (is finite) and
∑

d(1
′d)2pdi (n) →

∑
d(1

′d)2pdi .

The assumption (a) is just the feasibility assumption that the space of ran-
dom graphs with degree distribution D(n) is non-vacuous. A simple example
of a degree distribution which is non-vacuous is the case of a deterministic
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distribution. Fix a positive integer d and let pdi = 1/p when di = 0 and
dj = d, j �= i, 1 ≤ j ≤ p, and pdi = 0 otherwise. Namely, every node in part
i has exactly d neighbors in every other part j �= i and no neighbors in its
own i-th part. Such a graph is easy to obtain as a superposition of p(p−1)/2
bi-partite d-regular graphs on n/p nodes. These graphs are known to exist
whenever (n/p)d is an even integer.

Note that the quantity
∑

d 1
′dpdi (n) in assumption (c) is simply∑

v∈Gi
deg(v)

n . So this condition implies that the total number of edges is
O(n), i.e., the graph is sparse. In condition (e) the quantity

∑
d(1

′d)2pdi (n)

is the same as

∑
v∈Gi

(deg(v))2

n . So this condition says that sum of the squares

of the degrees is O(n). It follows from condition (c) that λj
i < ∞ and that

λj
i (n) → λj

i . The quantity λj
i is asymptotically the fraction of outgoing edges

from Gi to Gj . For p to be a valid degree distribution of a multipartite graph,

we must have for each 1 ≤ i < j ≤ p, λj
i = λi

j and for every n, we must have

λj
i (n) = λi

j(n). We have not included this in the above conditions because it
follows from condition (a). Condition (d) excludes the case where there are
sublinear number of edges between Gi and Gj .

There is an alternative way to represent some parts of Assumption 1. For
any probability distribution p on ([p],Zp

+), let (I,Dp) denote the random
variable distributed as p, i.e., (Ip,Dp) = (i,d) with probability pdi . Then
(b), (c) and (e) are equivalent to the following.

(b’) (Ip(n),Dp(n)) → (I,Dp) in distribution.
(c’) E[(1′Dp(n)) 1{Ip(n)=i}] → E[(1′Dp) 1{I=i}], for all i ∈ [p].

(e’) E[(1′Dp(n))
2 1{Ip(n)=i}] → E[(1′Dp)

2 1{I=i}], for all i ∈ [p].

The following preliminary lemmas follow immediately.

Lemma 1. The conditions (b’), (c’) and (e’) together imply that the
random variables {(1′Dp(n)) 1{Ip(n)=i}}n∈N and {(1′Dp(n))

2 1{Ip(n)=i}}n∈N
are uniformly integrable.

Then using Lemma 1, we prove the following statement.

Lemma 2. The maximum degree satisfies ω(n) = o(
√
n).

Proof. For any ε > 0, by Lemma 1, there exists q ∈ Z such that
E[(1′Dp(n))

21{1′Dp(n)>q, I=i}] < ε. Observe that for large enough n, we have

max{ω2(n)
n , q

2

n } ≤ E[(1′Dp(n))
21{1′Dp(n)>q, I=i}] < ε. Since ε is arbitrary, the

proof is complete.
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Let S � {(i, j) | λj
i > 0} and let N � |S|. For each i ∈ [p], let Si � {j ∈

[p] | (i, j) ∈ S}.
Note that by condition (a), the set of feasible graphs with the degree dis-

tribution is non-empty. The random multipartite graph G we consider in this
paper is drawn uniformly at random among all simple graphs with degree
distribution given by D(n). The asymptotic behavior of D(n) is captured
by the quantities pdi . The existence of a giant component in G as n → ∞ is
determined by the distribution p.

3. Statements of the main results. The neighborhood of a vertex
in a random graph with given degree distribution resembles closely a spe-
cial branching process associated with that degree distribution called the
edge-biased branching process. A detailed discussion of this phenomenon
and results with strong guarantees for the giant component problem in ran-
dom unipartite graphs can be found in Bollobás and Riordan (2012) and
Riordan (2012). The edge biased branching process is defined via the edge
biased degree distribution that is associated with the given degree distri-
bution. Intuitively the edge-biased degree distribution can be thought of as
the degree distribution of vertices reached at the end point of an edge. Its
importance will become clear when we will describe the exploration process
in the sections that follow. We say that an edge is of type (i, j) if it connects
a vertex in Gi with a vertex in Gj . Then, as we will see, the type of the
vertex in Gj reached by following a random edge of type (i, j) is d with

probability
dip

d
j

λj
i

.

We now introduce the edge-biased branching process which we denote
by T . Here T is a multidimensional branching process. The vertices of T
except the root are associated with types (i, j) ∈ S. So other than the root,
T has N ≤ p2 types of vertices. The root is assumed to be of a special type
which will become clear from the description below. The process starts off
with a root vertex v. With probability pdi , the root v gives rise to dj children
of type (i, j) for each j ∈ [p], i.e., the root is of type (i,d) with probability pdi .
To describe the subsequent levels of T let us consider any vertex with type

(i, j). With probability
dip

d
j

λj
i

this vertex gives rise to (dm − δmi) children

of type (j,m) for each m ∈ [p]. The number of children generated by the
vertices of T is independent for all vertices. For each n, we define an edge-
biased branching process Tn which we define in the same way as T by using
the distribution D(n) instead of D. We will also use the notations T (v) and
Tn(v) whenever the type of the root node v is specified.

We denote the expected number of children of type (j,m) generated by a
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vertex of type (i, j) by

μijjm �
∑
d

(dm − δim)
dip

d
j

λj
i

.(2)

It is easy to see that μijjm ≥ 0. Assumption 1(e) guarantees that μijjm

is finite. Note that a vertex of type (i, j) cannot have children of type (l,m)
if j �= l. But for convenience we also introduce μijlm = 0 when j �= l. By
means of a remark we should note that it is also possible to conduct the
analysis when we allow the second moments to be infinite (see for example
Molloy and Reed (1995), Bollobás and Riordan (2012)), but for simplicity,
we do not pursue this route in this paper.

Introduce a matrix M ∈ R
N×N defined as follows. Index the rows and

columns of the matrix with double indices (i, j) ∈ S. There are N such pairs
denoting the N rows and columns of M . The entry of M corresponding to
row index (i, j) and column index (l,m) is set to be μijlm.

Definition 1. Let A ∈ R
N×N be a matrix. Define a graph H on N

nodes where for each pair of nodes i and j, the directed edge (i, j) exists if
and only if Aij > 0. Then the matrix A is said to be irreducible if the graph
H is strongly connected, i.e., there exists a directed path in H between any
two nodes in H.

We now state the well known Perron-Frobenius Theorem for non-negative
irreducible matrices. This theorem has extensive applications in the study of
multidimensional branching processes (see for example Kesten and Stigum
(1966)).

Theorem 1 (Perron-Frobenius Theorem). Let A be a non-negative ir-
reducible matrix. Then

(a) A has a positive eigenvalue γ > 0 such that any other eigenvalue of A
is strictly smaller than γ in absolute value.

(b) There exists a left eigenvector x of A that is unique up to scalar mul-
tiplication associated with the eigenvalue γ such that all entries of x
are positive.

We introduce the following additional assumption before we state our
main results.

Assumption 2. The degree sequence {D(n)}n∈N satisfies the following
conditions.
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(a) The matrix M associated with the degree distribution p is irreducible.
(b) For each i ∈ [p], Si �= ∅.

Assumption 2 eliminates several degenerate cases. For example consider
a degree distribution with p = 4, i.e., a 4-partite random graph. Suppose
for i = 1, 2, we have pdi is non-zero only when d3 = d4 = 0, and for i =
3, 4, pdi is non-zero only when d1 = d2 = 0. In essence this distribution is
associated with a random graph which is simply the union of two disjoint
bipartite graphs. In particular such a graph may contain more than one giant
component. However this is ruled out under our assumption. Further, our
assumption allows us to show that the giant component has linearly many
vertices in each of the p parts of the multipartite graph.

Let

η � 1−
∞∑
i=1

P(|T | = i) = P(|T | = ∞).(3)

Namely, η is the survival probability of the branching process T . We now
state our main results.

Theorem 2. Suppose that the Perron Frobenius eigenvalue of M satis-
fies γ > 1. Then the following statements hold.

(a) The random graph G has a giant component C ⊆ G w.h.p. Further, the
size of this component C satisfies

lim
n→∞

P

(
η − ε <

|C|
n

< η + ε

)
= 1,(4)

for any ε > 0.
(b) All components of G other than C are of size O(log n) w.h.p.

Theorem 3. Suppose that the Perron Frobenius eigenvalue of M satis-
fies γ < 1. Then all components of the random graph G are of size
O(ω(n)2 log n) w.h.p.

The conditions of Theorem 2 where a giant component exists is gen-
erally referred to in the literature as the supercritical case and that of
Theorem 3 marked by the absence of a giant component (assuming that
ω(n)2 log n = o(n)) is referred to as the subcritical case. The conditions un-
der which giant component exists in random bipartite graphs was derived in
Newmann, Strogatz and Watts (2001) using generating function heuristics.
We now consider the special case of a bipartite graph and show that the
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conditions implied by Theorem 2 and Theorem 3 reduce to that in New-
mann, Strogatz and Watts (2001). In this case p = 2 and N = 2. The type
of all vertices d in G1 are of the form d = (0, j) and those in G2 are of the
form d = (k, 0). To match the notation in Newmann, Strogatz and Watts
(2001), we let pd1 = pj when d = (0, j) and pd2 = qk when d = (k, 0). So
λ2
1 = λ1

2 =
∑

d d2p
d
1 =

∑
j jpj =

∑
k kqk. Using the definition of μ1221 from

equation (2), we get

μ1221 =
∑
d

(d1 − δ11)
d1p

d
2

λ2
1

=

∑
k k(k − 1)qk

λ2
1

.

Similarly we can compute μ2112 =
∑

j j(j−1)pj

λ2
1

. From the definition of M ,

M =

[
0 μ1221

μ2112 0

]
.(5)

The Perron-Frobenius norm of M is its spectral radius and is given by
(μ1221)(μ2112). So the condition for the existence of a giant component ac-
cording to Theorem 2 is given by (μ1221)(μ2112) − 1 > 0 which after some
algebra reduces to ∑

j,k

jk(jk − j − k)pjqk > 0.

This is identical to the condition mentioned in Newmann, Strogatz and
Watts (2001). The rest of the paper is devoted to the proof of Theorem 2
and Theorem 3.

4. Configuration model. The configuration model Wormald (1978),
Bollobás (1985), Bender and Canfield (1978) is a convenient tool to study
random graphs with given degree distributions. It provides a method to
generate a multigraph from the given degree distribution. When conditioned
on the event that the graph is simple, the resulting distribution is uniform
among all simple graphs with the given degree distribution. We describe
below the way to generate a configuration model from a given multipartite
degree distribution.

1. For each of the nd
i (n) vertices in Gi of type d introduce dj clones of

type (i, j). An ordered pair (i, j) associated with a clone designates
that the clone belongs to Gi and has a neighbor in Gj . From the
discussion following Assumption 1, the number of clones of type (i, j)
is same as the number of clones of type (j, i).
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2. For each pair (i, j), perform a uniform random matching of the clones
of type (i, j) with the clones of type (j, i).

3. Collapse all the clones associated with a certain vertex back into a
single vertex. This means all the edges attached with the clones of a
vertex are now considered to be attached with the vertex itself.

The following useful lemma allows us to transfer results related to the
configuration model to uniformly drawn simple random graphs.

Lemma 3. If the degree sequence {D(n)}n∈N satisfies Assumption 1,
then the probability that the configuration model results in a simple graph
is bounded away from zero as n → ∞.

As a consequence of the above lemma, any statement that holds w.h.p. for
the random configuration model is also true w.h.p. for the simple random
graph model. So we only need to prove Theorem 2 and Theorem 3 for the
configuration model.

The proof of Lemma 3 can be obtained easily by using a similar result on
directed random graphs proved in Chen and Olvera-Cravioto (2013). The
specifics of the proof follow.

Proof of Lemma 3. In the configuration model for multipartite graphs
that we described, we can classify all clones into two categories. First, the
clones of the kind, (i, i) ∈ S and the clones of the kind (i, j) ∈ S, i �= j.
Since the outcome of the matching associated with each of the cases is inde-
pendent, we can treat them separately for this proof. For the first category,
the problem is equivalent to the case of configuration model for standard
unipartite graphs. More precisely, for a fixed i, we can construct a standard
degree distribution D̃(n) from D(n) by taking the ith component of the cor-
responding vector degrees of the latter. By using Assumptions 1, our proof
then follows from previous results for unipartite case.

For the second category, first let us fix (i, j) with i �= j. Construct a de-
gree distribution D1(n) = (nk(n), k ∈ [n]) where nk(n) denotes the number
of vertices of degree k by letting nk(n) =

∑
d 1{d(j) = k}nd

i . Construct
D2(n) similar to D1(n) by interchanging i and j. We consider a bipartite
graph where degree distribution of the vertices in part i is given by Di(n) for
i = 1, 2. We form the corresponding configuration model and perform the
usual uniform matching between the clones generated from D1(n) with the
clones generated from D2(n). This exactly mimics the outcome of matching
that occurs in our original multipartite configuration model between clones
of type (i, j) and (j, i). With this formulation, the problem of controlling
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number of double edges is very closely related to a similar problem concern-
ing the configuration model for directed random graphs which was studied
in Chen and Olvera-Cravioto (2013). To precisely match their setting, add
“dummy” vertices with zero degree to both D1(n) and D2(n) so that they
have exactly n vertices each and then arbitrarily enumerate the vertices
in each with indices from [n]. From Assumption 1 it can be easily verified
that the degree distributions D1(n) and D2(n) satisfy Condition 4.2 in Chen
and Olvera-Cravioto (2013). To switch between our notation and theirs, use
D1(n) → M [n] and D2(n) → D[n]. Then Theorem 4.3 in Chen and Olvera-
Cravioto (2013) says that the probability of having no self loops and double
edges is bounded away from zero. In particular, observing that self loops are
irrelevant in our case, we conclude that limn→∞P(No double edges) > 0.
Since the number of pairs (i, j) is less than or equal to p(p − 1) which is a
constant with respect to n, the proof is now complete.

5. Exploration process. In this section we describe the exploration
process which was introduced by Molloy and Reed in Molloy and Reed (1995)
to reveal the component associated with a given vertex in the random graph.
We say a clone is of type (i, j) if it belongs to a vertex in Gi and has its
neighbor in Gj . We say a vertex is of type (i,d) if it belongs to Gi and
has degree type d. We start at time k = 0. At any point in time k in the
exploration process, there are three kinds of clones – ‘sleeping’ clones, ‘active’
clones and ‘dead’ clones. For each (i, j) ∈ S, the number of active clones of
type (i, j) at time k are denoted by Aj

i (k) and the total number of active

clones at time k is given by A(k) =
∑

(i,j)∈S Aj
i (k). Two clones are said to be

“siblings” if they belong to the same vertex. The set of sleeping and active
clones are collectively called ‘living’ clones. We denote by Li(k) the number
of living clones in Gi and Lj

i (k) to be the number of living clones of type

(i, j) at time k. It follows that
∑

j∈[p] L
j
i (k) = Li(k). If all clones of a vertex

are sleeping then the vertex is said to be a sleeping vertex, if all its clones
are dead, then the vertex is considered dead, otherwise it is considered to
be active. At the beginning of the exploration process all clones (vertices)
are sleeping. We denote the number of sleeping vertices in Gi of type d at
time k by Nd

i (k) and let NS(k) =
∑

i,dN
d
i (k). Thus Nd

i (0) = nd
i (n) and

NS(0) = n. We now describe the exploration process used to reveal the
components of the configuration model.

Exploration process.

1. Initialization: Pick a vertex uniformly at random from the set of all
sleeping vertices and and set the status of all its clones to active.
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2. Repeat the following two steps as long as there are active clones:

(a) Pick a clone uniformly at random from the set of active clones
and kill it.

(b) Reveal the neighbor of the clone by picking uniformly at random
one of its candidate neighbors. Kill the neighboring clone and
make its siblings active.

3. If there are alive clones left, restart the process by picking an alive
clone uniformly at random and setting all its siblings to active, and go
back to step 2. If there are no alive clones, the exploration process is
complete.

Note that in step 2(b), the candidate neighbors of a clones of type (i, j)
are the set of alive clones of type (j, i).

The exploration process enables us to conveniently track the evolution in
time of the number of active clones of various types. We denote the change
in Aj

i (k) by writing

Aj
i (k + 1) = Aj

i (k) + Zj
i (k + 1), (i, j) ∈ S.

Define Z(k) � (Zj
i (k), (i, j) ∈ S) to be the vector of changes in the number

of active clones of all types. To describe the probability distribution of the
changes Zj

i (k + 1), we consider the following two cases.

Case 1: A(k) > 0.
Let Ej

i denote the event that in step 2-(a) of the exploration process,
the active clone picked was of type (i, j). The probability of this

event is
Aj

i (k)
A(k) . In that case we kill the clone that we chose and

the number of active clones of type (i, j) reduces by one. Then
we proceed to reveal its neighbor which of type (j, i). One of the
following events happen:

(i) Ea: the neighbor revealed is an active clone. The probability
of the joint event is given by

P(Ej
i ∩ Ea) =

⎧⎨
⎩

Aj
i (k)

A(k)

Ai
j(k)

Li
j(k)

if i �= j,

Ai
i(k)

A(k)
Ai

i(k)−1

Li
i(k)−1

if i = j.

Such an edge is referred to as a back-edge in Molloy and Reed
(1995). The change in active clones of different types in this
joint event is as follows.
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– If i �= j,

Zj
i (k + 1) = Zi

j(k + 1) = −1,

Zm
l (k + 1) = 0, otherwise .

– If i = j,

Zi
i (k + 1) = −2,

Zm
l (k + 1) = 0, otherwise .

(ii) Ed
s : The neighbor revealed is a sleeping clone of type d. The

probability of this joint event is given by

P(Ej
i ∩ Ed

s ) =
Aj

i (k)

A(k)

diN
d
j (k)

Li
j(k)− δij

.

The sleeping vertex to which the neighbor clone belongs is now
active. The change in the number of active clones of different
types is governed by the type d of this new active vertex. The
change in active clones of different types in this event are as
follows.

– If i �= j,

Zj
i (k + 1) = −1,

Zm
j (k + 1) = dm − δim,

Zm
l (k + 1) = 0, otherwise.

– If i = j,

Zi
i (k + 1) = −2 + di,

Zm
i (k + 1) = dm, for m �= i,

Zm
l (k + 1) = 0, otherwise .

Note that the above events are exhaustive, i.e.,∑
i,j∈S

∑
d

P(Ej
i ∩ Ed

s ) +
∑
i,j∈S

P(Ej
i ∩ Ea) = 1.

Case 2: A(k) = 0.
In this case, we choose a sleeping clone at random and make it and
all its siblings active. Let Ej

i be the event that the sleeping clone
chosen was of type (i, j). Further let Ed be the event that this clone



388 D. GAMARNIK AND S. MISRA

belongs to a vertex of type (i,d). Then we have

P(Ej
i ∩ Ed) =

Lj
i (k)

L(k)

djN
d
i (k)

Lj
i (k)

=
djN

d
i (k)

L(k)
.

In this case the change in the number of active clones of different
types is given by

Zm
i (k + 1) = dm, for m ∈ Si,

Zm′
i′ (k + 1) = 0, otherwise.

We emphasize here that there are two ways in which the evolution of the
exploration process deviates from that of the edge-biased branching process.
First, a back-edge can occur in the exploration process when neighbor of an
active clone is revealed to be another active clone. Second, the degree distri-
bution of the exploration process is time dependent. However, close to the
beginning of the process, these two events do not have a significant impact.
We exploit this fact in the following sections to prove Theorems 2 and 3.

6. Supercritical case. In this section we prove the first part of Theo-
rem 2. To do this we show that the number of active clones in the exploration
process grows to a linear size w.h.p. Using this fact, we then prove the exis-
tence of a giant component. The idea behind the proof is as follows. We start
the exploration process described in the previous section at an arbitrary ver-
tex v ∈ G. At the beginning of the exploration process, i.e. at k = 0, we have
Nd

j (0) = npdj (n) and Lj
i (0) = nλj

i (n). So, close to the beginning of the explo-
ration, a clone of type (i, j) gives rise to dm − δim clones of type (j,m) with

probability close to
dip

d
j (n)

λi
j(n)

which in turn is close to
dip

d
j

λi
j

for large enough n.

If we consider the exploration process in a very small linear time scale, i.e.

for k < εn for small enough ε, then the quantities
diN

d
j (k)

Li
j(k)−δij

remain close to

dip
d
j

λj
and the quantities

Ai
j(k)

Li
j(k)−δij

are negligible. We use this observation to

construct a process which underestimates the exploration process in some
appropriate sense but whose parameters are time invariant and “close” to
the initial degree distribution. We then use this somewhat easier to analyze
process to prove our result.

We now get into the specific details of the proof. We define a stochastic
process Bj

i (k) which we will couple with Aj
i (k) such that Bj

i (k) underesti-

mates Aj
i (k) with probability one. We denote the evolution in time of Bj

i (k)
by

Bj
i (k + 1) = Bj

i (k) + Ẑj
i (k + 1), (i, j) ∈ S.
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To define Ẑj
i (k + 1), we choose quantities πd

ji satisfying

0 ≤ πd
ji <

dip
d
j

λi
j

, pdj > 0,(6)

∑
d

πd
ji = 1− γ,(7)

for some 0 < γ < 1 to be chosen later.
We now show that in a small time frame, the parameters associated with

the exploration process do not change significantly from their initial values.
This is made precise in Lemma 4 and Lemma 5 below. Before that we first
introduce some useful notation to describe these parameters for a given n
and at a given step k in the exploration process. Let M(n) denote the matrix

of means defined analogous to M by replacing
dip

d
j

λi
j

by
dip

d
j (n)

λi
j(n)

. Also for a

fixed n, define Mk(n) similarly by replacing
dip

d
j

λi
j

by
diN

d
j (k)

Li
j(k)−δij

. Note that

M0(n) = M(n). Also from Assumption 1 it follows that
dip

d
j (n)

λj
i (n)

→ dip
d
j

λj
i

and

that M(n) → M entrywise.

Lemma 4. Given δ > 0, there exists ε > 0 and some integer n̂ such that
for all n ≥ n̂ and for all time steps k ≤ εn in the exploration process we

have
∑

d |
diN

d
j (k)

Lj
i (k)−δij

− dip
d
j

λj
i

| < δ.

Proof. Fix ε1 > 0. From Lemma 1 we have that that random variables
1′Dp(n) are uniformly integrable. Then there exists q ∈ Z such that for all

n we have
∑

d dip
d
j (n)1{1′d>q} < ε1. Since 0 ≤ Nd

j (k)

n ≤ Nd
j (0)

n = pdj (n), we

have
∑

d 1{1′d>q}|dipdj (n) − di
Nd

j (k)

n | < ε1. For each time step k ≤ εn in

the exploration process we have
Nd

j (k)

n ≥ Nd
j (0)

n − ε. So for small enough ε,

we can make
∑

d 1{1′d≤q}|di
Nd

j (k)

n − dip
d
j (n)| < ε1. Additionally, Lj

i (k) can

change by at most two at each step. So |L
j
i (k)−δij

n −λj
i (n)| ≤ 2ε. So for small

enough ε, for every (i, j) ∈ S we have n

Lj
i (k)−δij

− 1

λj
i (n)

< ε1. Now we can

bound

∑
d

1{1′d>q}

∣∣∣∣∣ diN
d
j (k)

Lj
i (k)− δij

−
dip

d
j (n)

λj
i (n)

∣∣∣∣∣(8)

≤
∑
d

1{1′d>q}

(∣∣∣∣∣ diN
d
j (k)

Lj
i (k)− δij

−
diN

d
j (k)

nλj
i (n)

∣∣∣∣∣+
∣∣∣∣∣diN

d
j (k)

nλj
i (n)

−
dip

d
j (n)

λj
i (n)

∣∣∣∣∣
)
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≤
∑
d

1{1′d>q}
diN

d
j (k)

n
ε1 +

ε1

λj
i (n)

≤ δ/4,

where the last inequality can be obtained by choosing small enough ε1. Since
q is a constant, by choosing small enough ε we can ensure that∑

d 1{1′d≤q}|
diN

d
j (k)

Lj
i (k)−δij

− dip
d
j (n)

λj
i (n)

| ≤ δ/4. Additionally from Assumption 1,

for large enough n we have
∑

d |
dip

d
j (n)

λj
i (n)

− dip
d
j

λj
i

| < δ/2. The lemma follows by

combining the above inequalities.

Lemma 5. Given δ > 0, there exists ε > 0 and some integer n̂ such that
for all n ≥ n̂ and for all time steps k ≤ εn in the exploration process we
have ||Mk(n)−M || ≤ δ.

Proof. The argument is very similar to the proof of Lemma 4. Fix ε1 > 0.
From Lemma 1 we know that the random variables (1′Dp(n))

2 are uniformly
integrable. It follows that there exists q ∈ Z such that for all n, we have
E[(1′D(n))21{(1′D(n))>q}] ≤ ε1. From this we can conclude that for all i, j,m

we have
∑

d(dm − δim)dip
d
j (n)1{1′d>q} ≤ ε1. Since

Nd
j (0)

n − ε ≤ Nd
j (k)

n ≤
Nd

j (0)

n = pdj (n), we have

∣∣∣∣∣
∑
d

(dm − δim)dip
d
j (n)1{1′d>q} −

∑
d

(dm − δim)
diN

d
j (n)

n
1{1′d>q}

∣∣∣∣∣ ≤ ε1.

(9)

Also Lj
i (k) can change by at most 2εn. So, for small enough ε, by an argument

similar to the proof of Lemma 4, we can prove analogous to (8) that

∣∣∣∣∣
∑
d

1{1′d>q}(dm − δim)
diN

d
j (k)

Lj
i (k)− δij

−
∑
d

1{1′d>q}(dm − δim)
dip

d
j (n)

λj
i (n)

∣∣∣∣∣ ≤ δ

4
.

(10)

By choosing ε small enough, we can also ensure

∣∣∣∣∣
∑
d

1{1′d≤q}(dm − δim)
diN

d
j (k)

Lj
i (k)− δij

−
∑
d

1{1′d≤q}(dm − δim)
dip

d
j (n)

λj
i (n)

∣∣∣∣∣ ≤ δ

4
.

(11)

Since M(n) converges to M we can choose n̂ such that ||M(n)−M || ≤ δ
2 .

By combining the last two inequalities, the proof is complete.
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Lemma 6. Given any 0 < γ < 1, there exists ε > 0, an integer n̂ ∈ Z

and quantities πd
ij satisfying (6) and (7) and the following conditions for all

n ≥ n̂:

(a) For each time step k ≤ εn,

πd
ji <

diN
d
j (k)

Li
j(k)− δij

,(12)

for each (i, j) ∈ S.

(b) The matrix M̂ defined analogous to M by replacing
dip

d
j

λj
i

by πd
ji in (2)

satisfies

||M̂ −M || ≤ err(γ),(13)

where err(γ) is a term that satisfies limγ→0 err(γ) = 0.

Proof. Choose q = q(γ) ∈ Z such that
∑

d

dip
d
j

λj
i

1{1′d>q} ≤ γ/2. Now

choose πd
ji satisfying (6) and (7) such that πd

ji = 0 whenever 1′d > q. Using
Lemma 4, we can now choose n̂ and ε such that for every (i, j) ∈ S and
d such that 1′d ≤ q, (12) is satisfied for all n ≥ n̂ and all k ≤ εn. The
condition in part (a) is thus satisfied by this choice of πd

ji.

For any γ, let us denote the choice of πd
ji made above by πd

ji(γ). By con-

struction, whenever Mijlm = 0, we also have M̂ijlm = 0. Suppose Mijjm =∑
d(dm − δim)

dip
d
j

λj
i

> 0. Also, by construction we have 0 ≤ πd
ji(γ) <

dip
d
j

λj
i

and that πd
ji(γ) →

dip
d
j

λj
i

as γ → 0. Let Xγ be the random variable that takes

the value (dm − δim) with probability πd
ji(γ) and 0 with probability γ. Sim-

ilarly, let X be the random variable that takes the value (dm − δim) with

probability
dip

d
j

λj
i

. Then, from the above argument have Xγ → X as γ → 0

and that the random variable X dominates the random variable Xγ for all
γ ≥ 0. Note that X is integrable. The proof of part (b) is now complete by
using the Dominated Convergence Theorem.

Assume that the quantities ε and πd
ij have been chosen to satisfy the

inequalities (12) and (13). We now consider each of the events that can
occur at each step of the exploration process until time εn and describe the
coupling between Zj

i (k + 1) and Ẑj
i (k + 1) in each case.

Case 1: A(k) > 0.
Suppose the event Ej

i happens. We describe the coupling in case of
each of the following two events.
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(i) Ea: the neighbor revealed is an active clone. In this case we
simply mimic the evolution of the number of active clones in
the original exploration process. Namely, Ẑm

l (k + 1) =
Zm
l (k + 1) for all l,m.

(ii) Ed
s : The neighbor revealed is a sleeping clone of type d. In this

case, we split the event further into two events Ed
s,0 and Ed

s,1,

that is Ed
s,0 ∪ Ed

s,1 = Ed
s and Ed

s,0 ∩ Ed
s,1 = ∅. In particular,

P(Ed
s,0|E

j
i ∩ Ed

s ) =
πd
ji(L

i
j(k)− δij)

diNd
j (k)

P(Ed
s,1|E

j
i ∩ Ed

s ) = 1−P(Ed
s,0|E

j
i ∩ Ed

s ).

For the above to make sense we must have πji ≤ diN
d
j (k)

Li
j(k)−δij

which is guaranteed by our choice of πd
ij . We describe the evo-

lution of Bj
i (k) in each of the two cases.

(a) Ed
s,0: in this case set Ẑm

l (k + 1) = Zm
l (k + 1) for all l,m.

(b) Ed
s,1: In this case, we mimic the evolution of the active

clones of event Ea instead of Ed
s . More specifically,

– If i �= j,

Ẑj
i (k + 1) = Ẑi

j(k + 1) = −1,

Ẑm
l (k + 1) = 0, otherwise .

– If i = j,

Ẑi
i (k + 1) = −2,

Ẑm
l (k + 1) = 0, otherwise .

Case 2: A(k) = 0.
Suppose that event Ej

i ∩Ed happens. In this case we split Ed into
two disjoint events Ed

0 and Ed
1 such that

P(Ed
0 |E

j
i ∩ Ed) =

πd
ij(L

i
j(k)− δij)

djNd
i (k)

P(Ed
1 |E

j
i ∩ Ed) = 1−P(Ed

0 |E
j
i ∩ Ed).

Again, the probabilities above are guaranteed to be less than one
for time k ≤ εn because of the choice of πd

ij . The change in Bj
i (k+1)

in case of each of the above events is defined as follows.
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(a) Ed
0 .

– If i �= j,

Ẑi
j(k + 1) = −1,

Ẑm
i (k + 1) = dm − δim,

Ẑm
l (k + 1) = 0, for l �= j.

– If i = j,

Ẑi
i (k + 1) = −2 + di,

Ẑm
i (k + 1) = dm, for m �= i,

Ẑm
l (k + 1) = 0, for l �= i.

(b) Ed
1 .

– If i �= j,

Ẑj
i (k + 1) = Ẑi

j(k + 1) = −1,

Ẑm
l (k + 1) = 0, otherwise .

– If i = j,

Ẑi
i (k + 1) = −2,

Ẑm
l (k + 1) = 0, otherwise .

This completes the description of the probability distribution of the joint
evolution of the processes Aj

i (k) and Bj
i (k).

Intuitively, we are trying to decrease the probability of the cases that
actually help in the growth of the component and compensate by increasing
the probability of the event which hampers the growth of the component
(back-edges). From the description of the the coupling between Zj

i (k + 1)

and Ẑj
i (k + 1) it can be seen that for time k < εn, with probability one we

have Bj
i (k) ≤ Aj

i (k).

Our next goal is to show that for some (i, j) ∈ S the quantity Bj
i (k)

grows to a linear size by time εn. Let H(k) = σ({Aj
i (r), B

j
i (r), (i, j) ∈ S,

1 ≤ r ≤ k}) denote the filtration of the joint exploration process till time k.
Then the expected conditional change in Bj

i (k) can be computed by con-
sidering the two cases above. First suppose that at time step k we have
A(k) > 0, i.e., we are in Case 1. We first assume that i �= j. Note that the
only events that affect Ẑj

i (k + 1) are Ej
i and Ei

m for m ∈ [p]. Then,

E[Ẑj
i (k + 1)|H(k)] = P(Ej

i |H(k)) E[Ẑj
i (k + 1)|H(k), Ej

i ]

(14)
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+
∑
m

P(Ei
m ∩ Ea|H(k)) E[Ẑj

i (k + 1)|H(k), Ei
m ∩ Ea]

+
∑
m,d

P(Ei
m ∩ Ed

s0|H(k)) E[Ẑj
i (k + 1)|H(k), Ei

m ∩ Ed
s0]

+
∑
m,d

P(Ei
m ∩ Ed

s1|H(k)) E[Ẑj
i (k + 1)|H(k), Ei

m ∩ Ed
s1].

The event Ei
m ∩ Ea affects Ẑj

i (k + 1) only when m = j, and in this case,

Ẑj
i (k + 1) = −1. The same is true for the event Ei

m ∩ Ed
s1. In the event

Ei
m ∩Ed

s0, we have Ẑj
i (k+1) = dj − δjm. Using this, the above expression is

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)

Aj
i (k)

Lj
i (k)

(−1) +
∑
m,d

Ai
m(k)

A(k)
πd
im(dj − δjm)

+
∑
d

Ai
j(k)

A(k)

(
djN

d
i (k)

Lj
i (k)

− πd
ij

)
(−1)

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)

Aj
i (k)

Lj
i (k)

(−1) +
∑
m

Ai
m(k)

A(k)

(∑
d

πd
im(dj − δjm)

)

+
∑
d

Ai
j(k)

A(k)

(
djN

d
i (k)

Lj
i (k)

− πd
ij

)
(−1).

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)

(
Aj

i (k)

Lj
i (k)

+
∑
d

(
djN

d
i (k)

Lj
i (k)

)
−
∑
d

πd
ij

)
(−1)

+
∑
m

Ai
m(k)

A(k)

(∑
d

πd
im(dj − δjm)

)

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)
(−γ) +

∑
m

Ai
m(k)

A(k)

(∑
d

πd
im(dj − δjm)

)
,

where the last equality follows from (7). Now suppose that at time k we
have A(k) = 0, i.e., we are in Case 2. In this case, we can similarly compute

E[Ẑj
i (k + 1)|H(k)] = P(Ej

i |H(k)) E[Ẑj
i (k + 1)|H(k), Ej

i ]

+
∑
m,d

P(Em
i ∩ Ed ∩ Ed

0 |H(k)) E[Ẑj
i (k + 1)|H(k), Em

i ∩ Ed ∩ Ed
0 ]

+
∑
m,d

P(Em
i ∩ Ed ∩ Ed

1 |H(k)) E[Ẑj
i (k + 1)|H(k), Em

i ∩ Ed ∩ Ed
1 ].
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Using the description of the coupling in Case 2, the above expression is

=
Li
j(k)

L(k)
(−1) +

∑
m

Lm
i (k)

L(k)

∑
d

πd
mi(dj − δjm)

+
∑
d

Lj
i (k)

L(k)

djN
d
i (k)

Lj
i (k)

(
1−

πd
jiL

j
i (k)

djNd
i (k)

)

=
Li
j(k)

L(k)
(−1) +

Li
j(k)

L(k)
(−γ) +

∑
m

Lm
i (k)

L(k)

∑
d

πd
mi(dj − δjm).

For the case i = j, a similar computation will reveal that we obtain very
similar expressions to the case i �= j. We give the expressions below and
omit the computation. For Case 1, A(k) > 0,

E[Ẑi
i (k + 1)|H(k)] =

Ai
i(k)

A(k)
(−1) +

Ai
i(k)

A(k)
(−γ)

+
∑
m

Ai
m(k)

A(k)

(∑
d

πd
im(di − δim)

)
.

and for Case 2, A(k) = 0,

E[Ẑi
i (k + 1)|H(k)] =

Li
i(k)

L(k)
(−1) +

Li
i(k)

L(k)
(−γ)

+
∑
m

Lm
i (k)

L(k)

∑
d

πd
mi(di − δim).

Define the vector of expected change E[Ẑ(k+1)|H(k)] � (E[Zj
i (k+1)|H(k)],

(i, j) ∈ S). Also define A(k) = (
Aj

i (k)
A(k) , (i, j) ∈ S) if A(k) > 0 and A(k) =

(
Lj
i (k)
L(k) , (i, j) ∈ S) if A(k) = 0. Let Q ∈ R

N×N be given by

Qijji = 1, for (i, j) ∈ S,

Qijlm = 0, otherwise .

Then we can write the expected change of Bj
i (k) compactly as

E[Ẑ(k + 1)|H(k)] =
(
M̂ − γQ− I

)
A(k).(15)

Fix δ > 0. Let γ be small enough such that the function err(γ) in (13)
satisfies err(γ) ≤ δ. Using Lemma 6 we can choose ε and πd

ij satisfying (12)
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and (13). In particular, we have ||M̂ −M || ≤ δ. For small enough δ, both M
and M̂ have strictly positive entries in the exact same locations. Since M is
irreducible, it follows that M̂ is irreducible. The Perron-Frobenius eigenvalue
of a matrix which is the spectral norm of the matrix is a continuous function
of its entries. For small enough δ, the Perron-Frobenius eigenvalue of M̂ is
bigger than 1, say 1 + 2ζ for some ζ > 0. Let z be the corresponding left
eigenvector with all positive entries and let zm � min(i,j)∈S zji and zM �
max(i,j)∈S zji . Define the random process W (k) �

∑
(i,j)∈S zjiB

j
i (k). Then

setting ΔW (k + 1) = W (k + 1)−W (k), from (15) we have

E[ΔW (k + 1)|H(k)] = z′EẐ(k + 1)

= z′
(
M̂ − IγQ

)
A(k)

= 2ζz′A(k)− γz′QA(k).

The first term satisfies 2ζzm ≤ 2ζz′A(k) ≤ 2ζzM . This is because 1′A(k) =
1 and hence z′A(k) is a convex combination of the entries of z. By choosing
γ small enough, we can ensure γz′QA(k) ≤ ζzm. Let κ = ζzm > 0. Then,
we have

E[ΔW (k + 1)|H(k)] ≥ κ.(16)

We now use a one-sided Hoeffding bound argument to show that w.h.p.
the quantity W (k) grows to a linear size by time εn. Let X(k + 1) = κ −
ΔW (k + 1). Then

E[X(k + 1)|H(k)] ≤ 0.(17)

Also note that |X(k + 1)| ≤ cω(n) almost surely, for some constant c > 0.
For any B > 0 and for any −B ≤ x ≤ B, it can be verified that

ex ≤ 1

2

eB + e−B

2
+

1

2

eB − e−B

2
x ≤ e

B2

2 +
1

2

eB − e−B

2
x.

Using the above, we get for any t > 0,

E[etX(k+1)|H(k)] ≤ e
t2c2ω2(n)

2 +
1

2

etcω(n) − e−tcω(n)

2
E[X(k + 1)|H(k)]

≤ e
t2c2ω2(n)

2 ,

where the last statement follows from (17). We can now compute

E[et
∑εn−1

k=0 X(k+1)] =

εn−1∏
k=0

E[etX(k+1)|H(k)] ≤ e
t2c2ω2(n)εn

2 .
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So,

P

(
εn−1∑
k=0

X(k + 1) > εκn/2

)
= P(et

∑εn−1
k=0 X(k+1)−tεκn/2 > 1)

≤ e−
tεκn
2

+
t2c2ω2(n)εn

2 .

Optimizing over t, we get

P

(
εn−1∑
k=0

X(k + 1) > εκn/2

)
≤ e

− κ2εn
8c2ω2(n) = o(1),

which follows by using Lemma 2. Substituting the definition of X(k + 1),

P
(
W (εn) <

κεn

2

)
= o(1).(18)

Recall that W (k) =
∑

(i,j)∈S zjiB
j
i (k) ≤ NzM max(i,j)∈S Bj

i (k) ≤
NzM max(i,j)∈S Aj

i (k). Define μ � κε
2NzM

. Then it follows from (18) that
there exists a pair (i′, j′) such that

Aj′

i′ (εn) > μn, w.p 1− o(1).

Using the fact that the number of active clones grows to a linear size we
now show that the corresponding component is of linear size. To do this, we
continue the exploration process in a modified fashion from time εn onwards.
By this we mean, instead of choosing active clones uniformly at random in
step 2(a) of the exploration process, we now follow a more specific order in
which we choose the active clones and then reveal their neighbors. This is
still a valid way of continuing the exploration process. The main technical
result required for this purpose is Lemma 7 below.

Lemma 7. Suppose that after εn steps of the exploration process, we have

Aj′

i′ (εn) > μn for some pair (i′, j′). Then, there exists ε1 > ε and δ1 > 0 for
which we can continue the exploration process in a modified way by altering
the order in which active clones are chosen in step 2(a) of the exploration
proces such that at time ε1n, w.h.p. for all (i, j) ∈ S, we have Aj

i (ε1n) > δ1n.

The above lemma says that we can get to a point in the exploration process
where there are linearly many active clones of every type. An immediate
consequence of this is the Corollary 1 below. We remark here that Corollary 1
is merely one of the consequences of Lemma 7 and can be proved in a much
simpler way. But as we will see later, we need the full power of Lemma 7 to
prove Theorem 2-(b).
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Corollary 1. Suppose that after εn steps of the exploration process,

we have Aj′

i′ (εn) > μn for some pair (i′, j′). Then there exists δ2 > 0 such

that w.h.p., the neighbors of the Aj′

i′ clones include at least δ2n vertices
in Gj′.

Before proving Lemma 7, we state a well known result. The proof can be
obtained by standard large deviation techniques. We omit the proof.

Lemma 8. Fix m. Suppose there are n objects consisting of αin objects
of type i for 1 ≤ i ≤ m. Let β > 0 be a constant that satisfies β < maxi αi.
Suppose we pick βn objects at random from these n objects without replace-
ment. Then for given ε′ > 0 there exists z = z(ε′,m) such that,

P

(∣∣∣∣#objects chosen of type i

n
− αiβ

∣∣∣∣ > ε′
)

< zn.

Proof of Lemma 7. The proof relies on the fact that the matrix M
is irreducible. If we denote the underlying graph associated with M by H,

then H is strongly connected. We consider the subgraph T j′

i′ of H which

is the shortest path tree in H rooted at the node (i′, j′). We traverse T j′

i′

breadth first. Let d be the depth of T j′

i′ . We continue the exploration process
from time εn onwards in d stages 1, 2, . . . , d. Stage 1 begins right after time
εn. Denote the time at which stage l ends by εln. For convenience, we will
assume a base stage 0, which includes all events until time εn. For 1 ≤
l ≤ d, let Il be the set of nodes (i, j) at depth l in T j′

i′ . We let I0 =
{(i′, j′)}.

We will prove by induction that for l = 0, 1, . . . , d, there exists δ(l) > 0
such that at the end of stage l, we have w.h.p., Aj

i > δ(l)n for each (i, j) ∈⋃l
x=0 Ix. Note that at the end of stage 0 we have w.h.p. Aj′

i′ > μn. So we can
choose δ(0) = μ to satisfy the base case of the induction. Suppose |Il| = r.
Stage l + 1 consists of r substages, namely (l + 1, 1), (l + 1, 2), . . . , (l + 1, r)
where each substage addresses exactly one (i, j) ∈ Il. We start stage (l + 1, 1)
by considering any (i, j) ∈ Il. We reveal the neighbors of αδ(l)n clones among
the Aj

i > δ(l)n clones one by one. Here 0 < α < 1 is a constant that will
describe shortly. The evolution of active clones in each of these αδ(l)n steps
is identical to that in the event Ej

i in Case 1 of the original exploration pro-

cess. Fix any (j,m) ∈ Il+1. Note that Mijjm > 0 by construction of T j′

i′ . So
by making ε and ε1, . . . , εl smaller if necessary and choosing α small enough,
we can conclude using Lemma 5 that for all time steps k < εln+ αδ(l)n we
have ||Mk(n)−M || < δ for any δ > 0. Similarly, by using Lemma 4, we get
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∑
d

(
−

diN
d
j (k)

Lj
i (k)− δij

+
dip

d
j

λj
i

)
=

Aj
i (k)− δij

Lj
i (k)− δij

≤
∑
d

∣∣∣∣∣ diN
d
j (k)

Lj
i (k)− δij

−
dip

d
j

λj
i

∣∣∣∣∣ < δ.

(19)

By referring to the description of the exploration process for the event Ej
i

in Case 1, the expected change in Zm
j (k + 1) during stage (l + 1, 1) can be

computed similar to (14) as

E[Zm
j (k + 1)|H(k)] =

Ai
j(k)− δij

Lj
i (k)− δij

(−δim) +
∑
d

diN
d
j (k)

Lj
i (k)− δij

(dm − δim)

= (Mk(n))ijjm −
Ai

j(k)− δij

Lj
i (k)− δij

(−δim)

(a)

≥ Mijjm − 2δ
(b)

≥ δ,

where (a) follows from (19) and (b) can be guaranteed by choosing small
enough δ. The above argument can be repeated for each (j,m) ∈ Il+1.
We now have all the ingredients we need to repeat the one-sided Hoeffd-
ing inequality argument earlier in this section. We can then conclude that
there exists δmj > 0 such that w.h.p. we have at least δmj n active clones
of type (j,m) by the end of stage (l + 1, 1). By the same argument, this is

also true for all children of (i, j) in T j′

i′ . Before starting stage S2
l+1, we set

δ(l) = min{(1− α)δ(l), δmj1}. This makes sure that at every substage of stage

l we have at least δ(l)n clones of each kind that has been considered before.
This enables us to use the same argument for all substages of stage l. By
continuing in this fashion, we can conclude that at the end of stage l + 1 we
have δ(l+1)n clones of each type (i, j) for each (i, j) ∈

⋃l+1
x=1 Ix for appropri-

ately defined δ(l+1). The proof is now complete by induction.

Proof of Corollary 1. Consider any j ∈ [p]. We will prove that the
giant component has linearly many vertices in Gj w.h.p.

Let d be such that pdj > 0 and let di > 0 for some i ∈ [p]. This means
in the configuration model, each of these type d vertices have at least one
clones of type (j, i). Continue the exploration process as in Lemma 7. For
small enough ε1 there are at least n(p

d
j −ε1) of type (j, i) clones still unused at

time ε1n. From Lemma 7, w.h.p. we have at least δ1n clones of type (i, j) at
this point. Proceed by simply revealing the neighbors of each of these. From
Lemma 8, it follows that w.h.p., we will cover at least a constant fraction of
these clones which correspond to a linear number of vertices covered. Each of
these vertices are in the giant component and the proof is now complete.
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We now prove part(b) of Theorem 2. Part (a) will be proved in the next
section. We use the argument by Molloy and Reed, except for the multipar-
tite case, we will need the help of Lemma 7 to complete the argument.

Proof of Theorem 2 (b). Consider two vertices u, v ∈ G. We will up-
per bound the probability that u lies in the component C, which is the
component being explored at time εn and v lies in a component of size big-
ger than β log n other than C. To do so start the exploration process at u
and proceed till the time step ε1n in the statement of Lemma 7. At this
time we are in the midst of revealing the component C. But this may not be
the component of u because we may have restarted the exploration process
using the “Initialization step” at some time between 0 and ε1n. If it is not
the component of u, then u does not lie in C. So, let us assume that indeed
we are exploring the component of u. At this point continue the exploration
process in a different way by switching to revealing the component of v. For
v to lie in a component of size greater than β log n, the number of active
clones in the exploration process associated with the component of v must
remain positive for each of the first β log n steps. At each step choices of
neighbors are made uniformly at random. Also, from Lemma 7, C has at
least δ1n active clones of each type. For the component of v to be distinct
from the component of u this choice must be different from any of these
active clones of the component of u. So it follows that the probability of this
event is bounded above by (1− δ1)

β logn. For large enough β, this gives

P(C(u) = C, C(v) �= C, |C(v)| > β log n) = o(n−2).

Using a union bound over all pairs of vertices u and v completes the proof.

7. Size of the giant component. In this section we complete the
proof of Theorem 2-(a) regarding the size of the giant component. For the
unipartite case, the first result regarding the size of the giant component was
obtained by Molloy and Reed Molloy and Reed (1998) by using Wormald’s
results Wormald (1995) on using differential equations for random processes.
As with previous results for the unipartite case, we show that the size of
the giant component as a fraction of n is concentrated around the survival
probability of the edge-biased branching process. We do this in two steps.
First we show that the probability that a certain vertex v lies in the giant
component is approximately equal to the probability that the edge-biased
branching process with v as its root grows to infinity. Linearity of expectation
then shows that the expected fraction of vertices in the giant component is
equal to this probability. We then prove a concentration result around this
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expected value to complete the proof of Theorem 2. These statements are
proved formally in Lemma 10.

Before we go into the details of the proof, we first prove a lemma which
is a very widely used application of Azuma’s inequality.

Lemma 9. Let X = (X1, X2, . . . , Xt) be a vector valued random variable
and let f(X) be a function defined on X. Let Fk � σ(X1, . . . , Xk). Assume
that

|E(f(X)|Fk)−E(f(X)|Fk+1)| ≤ c.

almost surely. Then

P(|f(X)−E[f(X)]| > s) ≤ 2e−
s2

2tc2 .

Proof. The proof of this lemma is a standard martingale argument. We
include it here for completeness. Define the random variables Y0, . . . , Yt as

Yk = E(f(X)|Fk).

The sequence {Yk} is a martingale and |Yk − Yk+1| ≤ c almost surely. Also
Y0 = f(X) and Yt = E[f(X)]. The lemma then follows by applying Azuma’s
inequality to the martingale sequence {Yk}.

Lemma 10. Let ε > 0 be given. Let v ∈ G be chosen uniformly at random.
Then for large enough n, we have

|P(v ∈ C)−P(|T | = ∞)| ≤ ε.

Proof. We use a coupling argument similar to that used by Bollobas and
Riordan Bollobás and Riordan (2012) where it was used to prove a similar
result for “local” properties of random graphs. We couple the exploration
process starting at v with the branching process Tn(v) by trying to replicate
the event in the branching process as closely as often as possible. We describe
the details below.

The parameters of the distribution associated with Tn is given by
dip

d
j (n)

λj
i (n)

.

In the exploration process, at time step k the corresponding parameters are

given by
diN

d
j (k)

Li
j(k)−δij

(see Section 5). We first show that for each of the first

β logn steps of the exploration process, these two quantities are close to
each other. The quantity diN

d
j (k) is the total number of sleeping clones at

time k of type (j, i) in Gj that belong to a vertex of type d. At each step of
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the exploration process the total number of sleeping clones can change by
at most ω(n). Also Lj

i (k) is the total number of living clones of type (j, i)
in Gj and can change by at most two in each step.

Then initially for all (i, j) we have Lj
i (0) = Θ(n) and until time β logn it

remains Θ(n). Therefore,

∑
i,j,d

∣∣∣∣∣ diN
d
j (k + 1)

Li
j(k + 1)− δij

−
diN

d
j (k)

Li
j(k)− δij

∣∣∣∣∣ ≤
∑
i,j,d

∣∣∣∣∣diN
d
j (k + 1)− diN

d
j (k)

Li
j(k)− δij

∣∣∣∣∣
+

∣∣∣∣∣diN
d
j (k + 1)

Li
j(k)− δij

−
diN

d
j (k + 1)

Li
j(k + 1)− δij

∣∣∣∣∣ .
From the explanation above, the first term is O(ω(n)/n) and the second term

is O(1/n). Recall that
diN

d
j (0)

Li
j(0)

=
dip

d
j (n)

λi
j(n)

. From this we can conclude by using

a telescopic sum and triangle inequality that for time index k ≤ β log n,

∑
i,j,d

∣∣∣∣∣ diN
d
j (k)

Li
j(k)− δij

−
dip

d
j (n)

λj
i (n)

∣∣∣∣∣ = O(kω(n)/n) = O(ω(n) logn/n).

So the total variational distance between the distribution of the explo-
ration process and the branching process at each of the first β log n steps is
O(ω(n) logn/n). We now describe the coupling between the branching pro-
cess and the exploration process. For the first time step, note that the root
of Tn has type (i,d) with probability pdi . We can couple this with the explo-
ration process by letting the vertex awakened in the “Initialization step” of
the exploration process to be of type (i,d). Since the two probabilities are the
same, this step of the coupling succeeds with probability one. Suppose that
we have defined the coupling until time k < β log n. To describe the coupling
at time step k+1 we need to consider the case of two events. The first is the
event when the coupling has succeeded until time k, i.e., the two processes
are identical. In this case, since the total variational distance between the
parameters of the two processes is O(ω(n) logn/n) we perform a maximal
coupling, i.e., a coupling which fails with probability equal to the total varia-
tional distance. For our purposes, we do not need to describe the coupling at
time k+1 in the event that the coupling has failed at some previous time step.
The probability that the coupling succeeds at each of the first β log n steps
is at least (1 − O(ω(n) logn/n))β logn = 1 − O(ω(n)(log n)2/n) = 1 − o(1).
We have shown that the coupling succeeds till time β log n w.h.p. Assume
that it indeed succeeds. In that case the component explored thus far is a
tree. Therefore, at every step of the exploration process a sleeping vertex is
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awakened because otherwise landing on an active clone will result in a cycle.
This means if the branching process has survived up until this point, the
corresponding exploration process has also survived until this time and the
component revealed has at least β log n vertices. Hence,

P(|C(v)| > β logn) = P(|Tn| > β log n) + o(1).

But Theorem 2 (b) states that w.h.p., there is only one component of size
greater than β log n, which is the giant component, i.e.,

P(v ∈ C) = P(|C(v)| > β log n) + o(1) = P(|Tn| > β logn) + o(1).

So, for large enough n, we have |P(v ∈ C) − P(|Tn| > β logn)| ≤ ε/2. The
survival probability of the branching process T is given by

P(|T | = ∞) = 1−
∞∑
i=1

P(|T | = i).

Choose K large enough such that |P(|T | ≥ K)−P(|T | = ∞)| ≤ ε/4. Also,

since
dip

d
j (n)

λj
i (n)

→ dip
d
j

λj
i

for all i, j,d, from the theory of branching processes,

for large enough n,

|P(|Tn| ≥ K)−P(|T | ≥ K)| ≤ ε/4,

|P(|Tn| = ∞)−P(|T | = ∞)| ≤ ε/2.

Since for large enougn n, we have P(|Tn| = ∞) ≤ P(|Tn| > β log n) ≤
P(|Tn| ≥ K), the proof follows by combining the above statements.

Now what is left is to show that the size of the giant component concen-
trates around its expected value.

Proof of Theorem 2 (a) - (size of the giant component). From
the first two parts of Theorem 2, w.h.p. we can categorize all the vertices of
G into two parts, those which lie in the giant component, and those which
lie in a component of size smaller than β log n, i.e., in small components.
The expected value of the fraction of vertices in small components is 1− η
+ o(1). We will now show that the fraction of vertices in small components
concentrates around this mean.

Recall that cn � n
∑

i∈[p],d∈D 1′d pdi is the number of edges in the con-
figuration model. Let us consider the random process where the edges of
the configuration model are revealed one by one. Each edge corresponds
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to a matching between clones. Let Ei 1 ≤ i ≤ cn denote the (random)
edges. Let NS denote the number of vertices in small components, i.e.,
in components of size smaller than β log n. We wish to apply Lemma 9
to obtain the desired concentration result for which we need to bound
|E[NS |E1, . . . , Ek] − E[NS |E1, . . . , Ek+1]|. In the term E[NS |E1, . . . , Ek+1],
let Ek+1 be the edge (x, y). The expectation is taken over all possible out-
comes of the rest of the edges with Ek+1 fixed to be the edge (x, y). In the
first term E[NS |E1, . . . , Ek], after E1, . . . , Ek are revealed, the expectation
is taken over the rest of of the edges, which are chosen uniformly at random
among all possible edges. All outcomes are equally likely. We construct a
mapping from each possible outcome to an outcome that has Ek+1 = (x, y).
In particular, if the outcome contains the edge (x, y) we can map it to the
corresponding outcome with Ek+1 = (x, y) by simply cross-switching the
positions of (x, y) with the edge that occured at k+1. This does not change
the value of NS because it does not depend on the order in which the match-
ing is revealed. On the other hand, if the outcome does not contain (x, y),
then we map it to one of the outcomes with Ek+1 = (x, y) by switching the
two edges connected to the vertices x and y. We claim that switching two
edges in the configuration model can change NS by at most 4β log n. To see
why observe that we can split the process of cross-switching two edges into
four steps. In the first two steps we delete each of the two edges one by one
and in the next two steps we put them back one by one in the switched po-
sition. Deleting an edge can increase NS by at most 2β log n and can never
reduce NS . Adding an edge can decrease NS by at most 2β log n and can
never increase NS . So cross-switching can either increase or decrease NS by
at most 4β log n. Using this we conclude

|E[NS |E1, . . . , Ek]−E[NS |E1, . . . , Ek+1]| ≤ 4β logn.

We now apply Lemma 9 to obtain.

P

(
1

n
(NS − (1− η)) > δ

)
< e−

n2δ2

8nβ logn = o(1).

Since w.h.p., the number of vertices in the giant component is n−NS , the
above concentration result completes the proof.

8. Subcritical case. In this section we prove Theorem 3. The idea of
the proof is quite similar to that of the supercritical case. The strategy of the
proof is similar to that used in Molloy and Reed (1995). More specifically,
we consider the event Ev that a fixed vertex v lies in a component of size
greater than ζω(n)2 log n for some ζ > 0. We will show that P(Ev) = o(n−1).
Theorem 3 then follows by taking a union bound over v ∈ G.



GIANT COMPONENT IN RANDOM MULTIPARTITE GRAPHS 405

Assume that we start the exploration process at the vertex v. For v to
lie in a component of size greater than ζω(n)2 log n the exploration process
must remain positive for at least ζω(n)2 log n time steps, at each step of
the exploration process, at most one vertex is new vertex is added to the
component being revealed. This means at time ζω(n)2 log n we must have
A
(
ζω(n)2 log n

)
> 0, where recall that A(k) denotes the total number of

active clones at time k of the exploration process.
Let H(k) = σ({Aj

i (r), (i, j) ∈ S, 1 ≤ r ≤ k}) denote the filtration
of the exploration process till time k. We will assume that A(k) > 0 for
0 < k ≤ ζω(n)2 log n and upper bound P(A(ζω(n)2 log n) > 0). We first
compute the expected conditional change in the number of active clones at
time k for 0 ≤ k ≤ ζω(n)2 log n by splitting the outcomes into the several
possible cases that affects Ẑj

i (k + 1) as in (14).

E[Zj
i (k + 1)|H(k)] = P(Ej

i |H(k)) E[Z(k + 1)|H(k), Ej
i ]

+
∑
m,d

P(Ei
m ∩ Ea|H(k)) E[Z(k + 1)|H(k), Ei

m ∩ Ea]

+P(Ei
m ∩ Ed

s |H(k)) E[Z(k + 1)|H(k), Ei
m ∩ Ed

s ]

=
Aj

i (k)

A(k)
(−1) +

∑
m

Ai
m(k)

A(k)

Am
i (k)

Lm
i (k)

(−δmj)

+
∑
m,d

Ai
m(k)

A(k)

dmNd
i (k)

Lm
i (k)

(dj − δjm)

= −Aj
i (k)

A(k)
−

Ai
j(k)

A(k)

Aj
i (k)

Lj
i (k)

+
∑
m

Ai
m(k)

A(k)

∑
d

dmNd
i (k)

Lm
i (k)

(dj − δjm).

We proceed with the proof in a similar fashion to the proof of the super-
critical case. Let E[Ẑ(k + 1)|H(k)] = (E[Zj

i (k + 1)|H(k)], (i, j) ∈ S) and

define the vector quantity A(k) = (
Aj

i (k)
A(k) , (i, j) ∈ S). Also define the matrix

Q(k) ∈ R
N×N where rows and columns are indexed by double indices and

for each (i, j) ∈ S, and

Qijji(k) = − Aj
i (k)

Lj
i (k)− δij

,

Qijlm(k) = 0 for (l,m) �= (j, i).
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Then the expected change in the number of active clones of various types
can be compactly written as

E[Ẑ(k + 1)|H(k)] = (M(k)− I +Q(k))A(k).

As the exploration process proceeds, the matrix M(k) changes over time.
However for large enough n, it follows from Lemma 5 that the difference
between M(k) and M is small for 0 ≤ k ≤ 1

2ζω(n)
2 log n. In particular given

any ε > 0, for large enough n, we have ||M(k)−M || < ε. Also from Lemma 4
we also have ||Q(k)|| < ε. Let z be the Perron-Frobenius eigenvector of M .
By the assumption in Theorem 3, we have

z′M = (1− δ)z′,

for some 0 < δ < 1, where (1 − δ) = γ is the Perron-Frobenius eigenvalue
of M . Also let zm � mini zi and zM � maxi zi. Define the random process

W (k) �
∑
i

ziAi(k)

Then the expected conditional change in W (k) is given by

E(ΔW (k + 1)|H(k)) = z′EẐ(k + 1)

= z′ (M(k)− I +Q(k))A(k)

= z′(M − I)A(k) + z′(M(k)−M +Q(k))A(k)

= (−δ)z′A(k) + z′(M(k)−M +Q(k))A(k).

We can choose ε small enough such that z′(M(k)−M+Q(k)) < 1
2δz

′, where
the inequality refers to element wise inequality. Thus

E(ΔW (k)|H(k)) < −1

2
δz′A(k) < −1

2
δzm � κ.

We can now repeat the one-sided Hoeffding bound argument following equa-
tion (16) in the supercritical case and obtain the following inequality:

P(|W (α) + κα)| > δ) ≤ 2e
− δ2

2αω2(n) .

Setting α = ζω2(n) logn and δ = 1
2κα, we get

P(W (ζω2(n) logn) > 0) ≤ 2e−
κ2ζ logn

8 = o(n−1),

for large enough ζ. We conclude

P(G has a component bigger than ζω2(n) logn )

<
∑
v∈G

P(C(v) > ζ log n) = o(1).

This completes the proof of the theorem.
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